First-Principles Study of the Optical Properties of Zinc Antimonide Using the mBJ Approximation

Article Preview

Abstract:

This computational study focused on the optical properties of zinc antimonide ZnSb. It relates to the complex dielectric function ε (ω), the refractive index n (ω), the extinction function k (ω), the optical conductivity σ (ω), the reflectivity R(ω), the absorption coefficient α (ω) and the energy loss spectrum L(ω). These properties are calculated and discussed for a growing energy of the incident electromagnetic radiation ranging from 0 to 14 eV, comprising infrared, visible and ultraviolet regions. All these properties are obtained using the Full Potential Linearized Augmented Plane Wave (FP-LAPW), by solving Kohn-Sham equations. This method based on Density Functional Theory (DFT), implemented in Wien2k simulation package. This compound is already used in photo-optical applications, it is for this reason that we interested in the calculation of its optical properties according to the energy of the incident photons, in order to open up for it other use ways. Since the zinc antimonide ZnSb is a semiconductor, its optical properties are investigated using Generalized Gradient Approximation plus modified Becke–Johnson as the exchange correlation (GGA-mBJ). Our calculations are performed by considering only the interband transition of electrons between the occupied states in valence band and unoccupied conduction band states along high symmetry points in Brillouin zone. In addition, the relations of the optical properties to these transitions are discussed in detail. We have also verified the Penn’s model by showing the inverse relationship between the static real part of dielectric function ε1(0) and the optical band gap Eg. The results obtained are compared with other results existing in the literature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 335)

Pages:

15-22

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. B. Xiong, N.L. Okamoto, H. Inui. Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with Ag3Sb. Scr. Mater., 69 (2013) 397-400.

DOI: 10.1016/j.scriptamat.2013.05.029

Google Scholar

[2] D. Sidharth, B. Srinivasan, A. A. Nedunchezhian, P. Thirukumaran, M. Arivanandhan, & R. Jayavel. Enhancing the thermoelectric performance of nanostructured ZnSb by heterovalent bismuth substitution. Journal of Physics and Chemistry of Solids, 160 (2022) 110303.

DOI: 10.1016/j.jpcs.2021.110303

Google Scholar

[3] K. Valset, P.H.M. Bottger, J. Tafto, T.G. Finstad. Thermoelectric properties of Cu doped ZnSb containing Zn3P2 particles. J. Appl. Phys., 111 (2012) 023703.

DOI: 10.1063/1.3675505

Google Scholar

[4] J. Sottmann, K. Valset, O.B. Karlsen, J. Tafto. Synthesis and measurement of the thermoelectric properties of multiphase composites: ZnSb matrix with Zn4Sb3, Zn3P2, and Cu5Zn8. J. Electron Mater., 42 (2013) 1820-1826.

DOI: 10.1007/s11664-012-2441-7

Google Scholar

[5] G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, B. B. Iversen. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater., 3 (2004) 458-463.

DOI: 10.1038/nmat1154

Google Scholar

[6] G. H. Zhu, W. S. Liu, Y. C. Lan, G. Joshi, H. Wang, G. Chen, Z. F. Ren. The effect of secondary phase on thermoelectric properties of Zn4Sb3 compound. Nano Energy, 2 (2013) 1172-1178.

DOI: 10.1016/j.nanoen.2013.04.010

Google Scholar

[7] J. B. Li, M. C. Record, J. C. Tedenac. A thermodynamic assessment of the Sb–Zn system. J. Alloys Compd., 438 (2007) 171-177.

DOI: 10.1016/j.jallcom.2006.08.035

Google Scholar

[8] A. Bafekry, M. Yagmurcukardes, M. Shahrokhi, M. Ghergherehchi, D. Kim & B. Mortazavi. Electro-optical and mechanical properties of Zinc antimonide (ZnSb) monolayer and bilayer: A first-principles study. Applied Surface Science, 540 (2021) 148289.

DOI: 10.1016/j.apsusc.2020.148289

Google Scholar

[9] M. Gajdos, K. Hummer, G. Kresse, J. Furthmller, F. Bechstedt. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B: Condens. Matter Mater. Phys., 73 (2006)  045112.

DOI: 10.1103/physrevb.73.045112

Google Scholar

[10] J. Heyd, G.E. Scuseria. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 121 (3) (2004) 1187-1192.

Google Scholar

[11] S. Malki, et L. EL Farh. Structural and electronic properties of zinc antimonide ZnSb. Materials Today: Proceedings, 31(2020) S41-S44.

DOI: 10.1016/j.matpr.2020.05.598

Google Scholar

[12] H. B. Lee, J. H We, H. J. Yang, et al. Thermoelectric properties of screen-printed ZnSb film. Thin Solid Films, 519 (2011) 5441-5443.

DOI: 10.1016/j.tsf.2011.03.031

Google Scholar

[13] T. Ueda, C. Okamura, Y. Noda, et al. Effect of Tellurium doping on the thermoelectric properties of ZnSb. Materials transactions, 2009, pp.0909070892-0909070892.

DOI: 10.2320/matertrans.m2009201

Google Scholar

[14] M. Amsler. S. Goedecker. W.G. Zeier et al. ZnSb polymorphs with improved thermoelectric properties. Chemistry of Materials, 28 (2016) 2912-2920.

DOI: 10.1021/acs.chemmater.5b03856

Google Scholar

[15] K. Niedziolka. R. Pothin. F. Rouessac et al. Theoretical and experimental search for ZnSb-based thermoelectric materials. Journal of Physics: Condensed Matter, 26 (2014) 365401.

DOI: 10.1088/0953-8984/26/36/365401

Google Scholar

[16] A. Fischer, E.W. Scheidt, W. Scherer, et al. Thermal and vibrational properties of thermoelectric ZnSb: Exploring the origin of low thermal conductivity. Physical Review B,91 (2015) 224309.

DOI: 10.1103/physrevb.91.224309

Google Scholar

[17] R. Pothin, R.M. Ayral, A. Bercheet al. Preparation and properties of ZnSb thermoelectric material through mechanical-alloying and Spark Plasma Sintering. Chemical Engineering Journal, 299 (2016) 126-134.

DOI: 10.1016/j.cej.2016.04.063

Google Scholar

[18] Y. Zhang. G. Wang. L. Jin, L. Y. Chen. Y. Chen & X. Shen. Nanostructured ZnSb films composited with Bi2Te3 topological insulators exhibit strongly unusual p–n conduction conversion upon crystallization. Ceramics International.48 (2021) 4539-4544.

DOI: 10.1016/j.ceramint.2021.10.239

Google Scholar

[19] M. I. Fedorv, L.V. Prokofieva, Yu. I. Ravich, et al. Thermoelectric efficiency of intermetallic compound ZnSb. Semiconductors. 48 (2014) 432-437.

DOI: 10.1134/s1063782614040095

Google Scholar

[20] L. Bjerg, K.H. Georg KH Madsen, et Bo. B. Iversen. Enhanced thermoelectric properties in zinc antimonides. Chemistry of Materials. 23(2011) 3907-3914.

DOI: 10.1021/cm201271d

Google Scholar

[21] A.Berche, Alexandre et Jund, Philippe. Thermoelectric power factor of pure and doped ZnSb via DFT based defect calculations. Physical Chemistry Chemical Physics. 21 (2019) 23056-23064.

DOI: 10.1039/c9cp04397g

Google Scholar

[22] D. Eklof, A. Fischer, Y. Wu et al. Transport properties of the II–V semiconductor ZnSb. Journal of Materials Chemistry A. 1(2013) 1407-1414.

Google Scholar

[23] P. Blaha, K. Schwarz, P. Sorantin, et al. Full-potential, linearized augmented plane wave programs for crystalline systems. Computer physics communications. 59 (1990) 399-415.

DOI: 10.1016/0010-4655(90)90187-6

Google Scholar

[24] P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Physical review. 136 (1964) B864.

DOI: 10.1103/physrev.136.b864

Google Scholar

[25] F. Tran et P. Blaha. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Physical review letters, 102(2009) 226401.

DOI: 10.1103/physrevlett.102.226401

Google Scholar

[26] C. Ambrosch-Draxl and J.O. Sofo. Linear optical properties of solids within the fullpotential linearized augmented planewave method. Computer physics communications 175 (2008) 1-14.

DOI: 10.1016/j.cpc.2006.03.005

Google Scholar

[27] F. Wooten. Optical Properties of Solids", New York: University of California, Academic Press.(1972).

Google Scholar

[28] D. R. Penn. Wave-number-dependent dielectric function of semiconductors. Physical Review,. 128 (1962) (2093).

DOI: 10.1103/physrev.128.2093

Google Scholar

[29] B. Merabet, H. Aalami, A. ZaouiI, et al. Ab initio LSDA+ U Study of Optical Properties of RVO4 (R= Eu, Ho, Lu) Compounds. Materials Research, 21 (2018).

DOI: 10.1590/1980-5373-mr-2016-0568

Google Scholar

[30] B. Amina, A. Lachebi, A. Shuhaimi, et al. First-principles calculation of structural, optoelectronic properties of the cubic AlxGayIn1-xy N quaternary alloys matching on AlN substrate, within modified Becke–Johnson (mBJ) exchange potential. Optik. 127 (2016) 11577-11587.

DOI: 10.1016/j.ijleo.2016.09.014

Google Scholar

[31] M. Faizan, M., Murtaza, G., Azam, Sikander, et al. Elastic and optoelectronic properties of novel Ag3AuSe2 and Ag3AuTe2 semiconductors. Materials Science in Semiconductor Processing, 52 (2016) 8-15.

DOI: 10.1016/j.mssp.2016.05.009

Google Scholar