Electron Transport in AlGaAs Cylindrical Quantum Wire Sandwiched between Two GaAs Cylindrical Quantum Well Wires

Article Preview

Abstract:

In this work, we study theoretically and analytically the electronic transport through a nanowire structure composed of a finite cylindrical quantum wire (CQWR) based on barrier AlGaAs semiconductor, sandwiched between two semi-infinite cylindrical GaAs quantum well wires (CQWWRs). Using the Green function approach to determine the electronic structure of this artificial nanostructure, which is analyzed as a function of the geometrical and physical parameters of nanowires structure. The results show the eigen states (confined states), when they interact with the incoming electronic waves from the first semi-infinite cylindrical GaAs quantum well wire. The decrease of the radius of the system leads to the energy quantization of the electrons and the electronic states move towards high energies until a critical radius Rc=20Å below which no electronic state can exist. In addition, we found that the electronic energy levels of the finite cylindrical quantum wire depend on the mole fraction of aluminum and the ratio between the radius of the cylindrical nanowires and the thickness of the barrier, which are the most important parameters in the optimization of the cylindrical quantum wires nanostructure.Keywords: Cylindrical Quantum Wire, Nanowire, Electronic States, Green Function

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 335)

Pages:

23-30

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Garnett, E., Mai, L., & Yang, P. Introduction: 1D nanomaterials/nanowires. Chemical reviews, 119(15), 8955-8957. (2019).

DOI: 10.1021/acs.chemrev.9b00423

Google Scholar

[2] Alt, L. and Reichl, Christian and Berl, Matthias and Dietsche, W. and Wegscheider, W. Gate induced quantum wires in GaAs/AlGaAs heterostructures by cleaved edge deposition, Scientific Reports (2021).

DOI: 10.1038/s41598-021-01130-8

Google Scholar

[3] Gulyamov, G., Gulyamov, A. G., Davlatov, A. B., & Shahobiddinov, B. B. Electron energy in rectangular and cylindrical quantum wires. (2020).

Google Scholar

[4] Lei, C., Khalsa, G., Du, J., & MacDonald, A. H. Majorana zero modes in a cylindrical semiconductor quantum wire. Physical Review B, 104(3), 035426. (2021).

DOI: 10.1103/physrevb.104.035426

Google Scholar

[5] Zhuo, M. P., Wu, J. J., Wang, X. D., Tao, Y. C., Yuan, Y., & Liao, L. S. Hierarchical self-assembly of organic heterostructure nanowires. Nature communications, 10(1), 1-9. (2019).

DOI: 10.1038/s41467-019-11731-7

Google Scholar

[6] Dehzangi, A., Li, J., & Razeghi, M. Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice. Light: Science & Applications, 10(1), 1-7. (2021).

DOI: 10.1038/s41377-020-00453-x

Google Scholar

[7] Ludwig, T., Bohr, C., Queraltó, A., Frohnhoven, R., Fischer, T., &Mathur, S. Inorganic Nanofibers by Electrospinning Techniques and Their Application in Energy Conversion and Storage Systems. Nanowires for Energy Applications, 1–70. (2018).

DOI: 10.1016/bs.semsem.2018.04.003

Google Scholar

[8] Wen, S., Liu, Y., Wang, F., Lin, G., Zhou, J., Shi, B., Jin, D. Nanorods with multidimensional optical information beyond the diffraction limit. Nature Communications, 11(1). (2020).

DOI: 10.1038/s41467-020-19952-x

Google Scholar

[9] Lin, C. Y., Chen, C. F., Chang, Y. M., Yang, S. H., Lee, K. C., Wu, W. W., ... & Lin, Y. F. A Triode Device with a Gate Controllable Schottky Barrier: Germanium Nanowire Transistors and Their Applications. Small, 15(33), 1900865. (2019).

DOI: 10.1002/smll.201900865

Google Scholar

[10] Azam, Z., & Singh, A. Various Applications of Nanowires. In Innovative Applications of Nanowires for Circuit Design (pp.17-53). IGI Global(2021).

DOI: 10.4018/978-1-7998-6467-7.ch002

Google Scholar

[11] Mirzaei, A., Lee, J. H., Majhi, S. M., Weber, M., Bechelany, M., Kim, H. W., & Kim, S. S. Resistive gas sensors based on metal-oxide nanowires. Journal of Applied Physics, 126(24), 241102.(2019).

DOI: 10.1063/1.5118805

Google Scholar

[12] Wong‐Leung, J., Yang, I., Li, Z., Karuturi, S. K., Fu, L., Tan, H. H., & Jagadish, C. Engineering III–V semiconductor nanowires for device applications. Advanced Materials, 32(18), 1904359. (2020).

DOI: 10.1002/adma.201904359

Google Scholar

[13] Tutschku, C., Reinthaler, R. W., Lei, C., MacDonald, A. H., & Hankiewicz, E. M. Majorana-based quantum computing in nanowire devices. Physical Review B, 102(12), 125407. (2020).

DOI: 10.1103/physrevb.102.125407

Google Scholar

[14] Danga, J. E., Kenfack, S. C., Tsiaze, R. K., & Fai, L. C. Landau-Zener tunneling of qubit states and Aharonov-Bohm interferometry in double quantum wires. Physica E: Low-dimensional Systems and Nanostructures, 108, 123-134. (2019).

DOI: 10.1016/j.physe.2018.12.016

Google Scholar

[15] Borsoi, F., Zuo, K., Gazibegovic, S., Op het Veld, R. L., Bakkers, E. P., Kouwenhoven, L. P., & Heedt, S. Transmission phase read-out of a large quantum dot in a nanowire interferometer. Nature communications, 11(1), 1-6. (2020).

DOI: 10.1038/s41467-020-17461-5

Google Scholar

[16] Chen, X., & Tao, J. W. Design of electron wave filters in monolayer graphene by tunable transmission gap. Applied Physics Letters, 94(26), 262102. (2009).

DOI: 10.1063/1.3168527

Google Scholar

[17] Tshipa, M., Winkoun, D. P., Nijegorodov, N., &Masale, M. Donor impurity binding energies of coaxial GaAs/AlxGa1−xAs cylindrical quantum wires in a parallel applied magnetic field. Superlattices and Microstructures, 116, 227-237. (2018).

DOI: 10.1016/j.spmi.2018.02.028

Google Scholar

[18] Farias, G. A., de Sousa, J. S., & Chaves, A. Quantum Confinement in Heterostructured Semiconductor Nanowires with Graded Interfaces. Nanowires, 31. (2010).

DOI: 10.5772/39518

Google Scholar

[19] Kurniawan, O., Ng, M.-F., Koh, W. S., Leong, Z. Y., & Li, E. Simplified model for ballistic current–voltage characteristic in cylindrical nanowires. Microelectronics Journal, 41(2-3), 155–161. (2010).

DOI: 10.1016/j.mejo.2010.01.013

Google Scholar

[20] Vahdani, M. R. K. Investigation of quantum confinement phenomenon in composition-and diameter-modulated nanowires. Physics Letters A, 384(32), 126795.(2020).

DOI: 10.1016/j.physleta.2020.126795

Google Scholar

[21] Qasem, M. R., Falyouni, F., Elamri, F. Z., & Bria, D. Electronic states in GaAs∕ Ga1−xAlxAs∕ GaAs MQWs induced by two defect layers. Physica B: Condensed Matter, 413228. (2021).

DOI: 10.1016/j.physb.2021.413228

Google Scholar

[22] Sanada, H., & Watanabe, K. A study on electron‐wave filters using barrier height modulated multiple barrier structures. Electronics and Communications in Japan (Part II: Electronics), 86(9), 11-19. (2003).

DOI: 10.1002/ecjb.10133

Google Scholar

[23] Gubbens, A., Barfels, M., Trevor, C., Twesten, R., Mooney, P., Thomas, P., &McGinn, B. The GIF Quantum, a next generation post-column imaging energy filter. Ultramicroscopy, 110(8), 962-970. (2010).

DOI: 10.1016/j.ultramic.2010.01.009

Google Scholar

[24] Luo, X., Shi, J., Zhang, Y., Niu, Z., Miao, D., Mi, H., & Huang, W. Filtering electrons by mode coupling in semiconductor superlattices. arXiv preprint arXiv:2109.12905. (2021).

DOI: 10.1038/s41598-022-11449-5

Google Scholar

[25] Ezzarfi, A., Elamri, F. Z., Safi, F. Z., Bouchafra, Y., Ben-Ali, Y., Sali, A., & Bria, D. High quality factor multichannel filter of electrons based on defective CdMnTe/CdTe multi-quantum wells. PhysicaScripta, 96(12), 125811. (2021).

DOI: 10.1088/1402-4896/ac217f

Google Scholar