[1]
S. Kim, B. Marelli, M.A. Brenckle, A.N. Mitropoulos, E.S. Gil, K.Tsioris, F.G. Omenetto, All-water-based electron-beam lithography using silk as a resist, Nat. Nanotechnol.9 (2014) 306-310.
DOI: 10.1038/nnano.2014.47
Google Scholar
[2]
V.C. Elarde, R. Rangarajan, J.J. Borchardt, J.J. Coleman, Room-temperature operation of patterned quantum-dot lasers fabricated by electron beam lithography and selective area metal-organic chemical vapor deposition, IEEE Photon. Technol. Lett. 17 (2005) 935-937.
DOI: 10.1109/lpt.2005.844555
Google Scholar
[3]
S. Franchi, G. Trevisi, L. Seravalli, P. Frigeri, Quantum dot nanostructures and molecular beam epitaxy, Progress in Crystal Growth and Characterization of Materials, 47 (2003) 166-195.
DOI: 10.1016/j.pcrysgrow.2005.01.002
Google Scholar
[4]
J.L. Zhu, X. Chen, Spectrum and binding of an off-center donor in a spherical quantum dot, Phys. Rev. B 50 (1994) 4497-4502.
DOI: 10.1103/physrevb.50.4497
Google Scholar
[5]
A.J. Peter, The effect of hydrostatic pressure on binding energy of impurity states in spherical quantum dots, Physica E Low Dimens. Syst. Nanostruct. 28 (2005) 225-229.
DOI: 10.1016/j.physe.2005.03.018
Google Scholar
[6]
S.G. Jayam, K. Navaneethakrishnan, Effects of electric field and hydrostatic pressure on donor binding energies in a spherical quantum dot, Solid State Commun. 126 (2003) 681-685.
DOI: 10.1016/s0038-1098(03)00209-6
Google Scholar
[7]
J. D. Correa, N. Porras‐Montenegro, C. A. Duque, Donor‐related photoionization cross‐section of GaAs–(Ga, Al) As quantum dots: hydrostatic pressure effects. Phys. Stat. solidi (b) 241 (2004) 2440-2443.
DOI: 10.1002/pssb.200404908
Google Scholar
[8]
R. Arraoui, A. Sali, A. Ed-Dahmouny, M. Jaouane, A. Fakkahi, Polaronic mass and non-parabolicity effects on the photoionization cross section of an impurity in a double quantum dot, Superlattices Microstruct. 159 (2021) 107049.
DOI: 10.1016/j.spmi.2021.107049
Google Scholar
[9]
M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi, R. Arraoui, Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots, Physica E Low Dimens. Syst. Nanostruct. 127 (2021) 114543.
DOI: 10.1016/j.physe.2020.114543
Google Scholar
[10]
H. Satori, A. Sali, The finite element simulation for the shallow impurity in quantum dots, Physica E Low Dimens. Syst. Nanostruct. 48 (2013) 171-175.
DOI: 10.1016/j.physe.2012.12.010
Google Scholar
[11]
E. Iqraoun, A. Sali, K. El-Bakkari, A. Ezzarfi, M.E. Mora-Ramos, C.A. Duque, Simultaneous effects of temperature, pressure, polaronic mass, and conduction band non-parabolicity on a single dopant in conical GaAs-AlxGa1–xAs quantum dots, Phys Scr. 96 065808 (2021).
DOI: 10.1088/1402-4896/abf450
Google Scholar
[12]
M.E. Mora-Ramos, J.A. Vinasco, D. Laroze, A. Radu, R.L. Restrepo, C. Heyn, C.A. Duque, Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes, A finite-element approach, Sci. Rep. 11 (2021) 1-16.
DOI: 10.1038/s41598-021-83583-5
Google Scholar
[13]
K. Batra and V. Prasa, Finite difference calculation of optical properties of hydrogenic impurity in spherical quantum dot with parabolic confinement, Rev. Mex. de Fis. E. 64 (2018) 7–15.
DOI: 10.31349/revmexfise.64.7
Google Scholar
[14]
L. Belamkadem, O. Mommadi, J.A. Vinasco, D. Laroze, A. El Moussaouy, M. Chnafi, C.A. Duque, Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot, Physica E. 129 (2021) 114642-114649.
DOI: 10.1016/j.physe.2021.114642
Google Scholar
[15]
C. Heyn, C.A. Duque, Donor impurity related optical and electronic properties of cylindrical GaAs-AlxGa1− xAs quantum dots under tilted electric and magnetic fields, Sci. Rep. 10 (2020) 1-18.
DOI: 10.1038/s41598-020-65862-9
Google Scholar
[16]
E. Iqraoun, A. Sali, A. Rezzouk, E. Feddi, F. Dujardin, M.E. Mora-Ramos, C.A. Duque, Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field, Philos Mag. 97 (2017)1445-1463.
DOI: 10.1080/14786435.2017.1302613
Google Scholar
[17]
G.V.B. de Souza, A. Bruno-Alfonso, Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field, Physica E. 66 (2015) 128–132.
DOI: 10.1016/j.physe.2014.10.011
Google Scholar
[18]
Y.P. Kravchenko, M.A. Liberman, B. Johansson, Exact solution for a hydrogen atom in a magnetic field of arbitrary strength. Phys. Rev. A 54 (1996) 287.
DOI: 10.1103/physreva.54.287
Google Scholar
[19]
O. Mommadi, A. El Moussaouy, L. Belamkadem, Diamagnetic susceptibility of bound exciton in cylindrical quantum nanodots under hydrostatic pressure and temperature effects, Phys. Scr. 95 (2020) 095809.
DOI: 10.1088/1402-4896/abacfd
Google Scholar
[20]
O. Mommadi, A. El Moussaouy, M. El Hadi, M. Chnafi, Y.M. Meziani, C.A. Duque, Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature, and electric field effects, Philos. Mag. 101 (2021) 753-775.
DOI: 10.1080/14786435.2020.1862430
Google Scholar
[21]
M. Chnafi, A. El Moussaouy, O. Mommadi, L. Belamkadem, Energy and stability of negatively charged trion in cylindrical quantum dot under temperature effect, Physica B 594 (2020) 412333.
DOI: 10.1016/j.physb.2020.412333
Google Scholar
[22]
A. Sali, H. Satori, The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation. Superlattice. Microstruct. 69 (2014) 38-52.
DOI: 10.1016/j.spmi.2014.01.011
Google Scholar
[23]
A. Sivakami, M. Mahendran, Hydrostatic pressure and conduction band non-parabolicity effects on the impurity binding energy in a spherical quantum dot, Physica B 405 (2010) 1403-1407.
DOI: 10.1016/j.physb.2009.12.008
Google Scholar
[24]
A.R. Jeice, S.G Jayam, K.J. Wilson, Effect of hydrostatic pressure and polaronic mass of the binding energy in a spherical quantum dot, Chin. Phys. B 24 (2015) 110303-110309.
DOI: 10.1088/1674-1056/24/11/110303
Google Scholar
[25]
C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Hydrostatic pressure and electric field effects and nonlinear optical rectification of confined excitons in spherical quantum dots, Superlattice. Microstruct. 49 (2011) 264-268.
DOI: 10.1016/j.spmi.2010.06.008
Google Scholar
[26]
A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot, Appl. Phys. A 127 (2021) 1-9.
DOI: 10.1007/s00339-021-05055-x
Google Scholar
[27]
M. Chnafi, L. Belamkadem, O. Mommadi, R. Boussetta, M. El Hadi, A. El Moussaouy, F. Falyouni, J.A. Vinasco, D. Laroze, F. Mora-Rey, C.A. Duque, Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge, Superlattice. Microstruct. 159 (2021) 107052.
DOI: 10.1016/j.spmi.2021.107052
Google Scholar
[28]
S.J. Liang, W.F. Xie, The hydrostatic pressure and temperature effects on a hydrogenic impurity in a spherical quantum dot, Eur. Phys. J. B 81 (2011) 79-84.
DOI: 10.1140/epjb/e2011-10831-9
Google Scholar
[29]
M. Kirak, Y. Altinok, S. Yilmaz, The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum dot under external electric field, J. Lumin. 136 (2013) 415-421.
DOI: 10.1016/j.jlumin.2012.12.026
Google Scholar
[30]
A. Sali, J. Kharbach, A. Rezzouk, M. O. Jamil, The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot, Superlattices Microstruct. 104 (2017) 93-103.
DOI: 10.1016/j.spmi.2017.02.014
Google Scholar
[31]
B. Stébé, E. Assaid, F. Dujardin, S. Le Goff, Exciton bound to an ionized donor impurity in semiconductor spherical quantum dots, Phys. Rev. B 54 (1996) 17785–17793.
DOI: 10.1103/physrevb.54.17785
Google Scholar
[32]
B. Welber, M. Cardona, C.K. Kim, S. Rodriguez, Dependence of the direct energy gap of GaAs on hydrostatic pressure, Phys. Rev. B 12(1975) 5729.
DOI: 10.1103/physrevb.12.5729
Google Scholar
[33]
A.M. Elabsy, Effect of temperature on the binding energy of a confined impurity to a spherical semiconductor quantum dot, Phys Scr. 59 (1999) 328.
DOI: 10.1238/physica.regular.059a00328
Google Scholar
[34]
C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots. J. Phys. Cond. Matter. 18 (2006)1877.
DOI: 10.1088/0953-8984/18/6/005
Google Scholar
[35]
U. Yesilgul, S. Şakiroğlu, E. Kasapoglu, H. Sari, I. Sökmen, The effects of temperature and hydrostatic pressure on the photoionization cross-section and binding energy of shallow donor impurities in quantum dots, Superlattices Microstruct. 48 (2010) 509-516.
DOI: 10.1016/j.spmi.2010.09.005
Google Scholar
[36]
A.J. Peter, Simultaneous effects of pressure and magnetic field on donors in a parabolic quantum dot, Solid State Commun. 147 (2008) 296-300.
DOI: 10.1016/j.ssc.2008.05.042
Google Scholar
[37]
A. Sivakami, V. Gayathri, Hydrostatic pressure and temperature d quantum dot, Superlattices Microstruct. 58 (2013) 218-227.
DOI: 10.1016/j.spmi.2013.03.002
Google Scholar
[38]
G. Rezaei, S.F. Taghizadeh, A.A. Enshaeian, External electric field, hydrostatic pressure and temperature effects on the binding energy of an off-center hydrogenic impurity confined in a spherical Gaussian quantum dot, Physica E Low Dimens. Syst. Nanostruct. 44 (2012) 1562-1566.
DOI: 10.1016/j.physe.2012.03.028
Google Scholar
[39]
I. Erdogan, O. Akankan, H. Akbas, Simultaneous effects of temperature, hydrostatic pressure and electric field on the self-polarization and electric field polarization in a GaAs/Ga0.7Al0.3As spherical quantum dot with a donor impurity, Superlattices Microstruct. 59 (2013) 13-20.
DOI: 10.1016/j.spmi.2013.03.020
Google Scholar
[40]
S.T. Perez-Merchancano, R. Franco, J. Silva-Valencia, Impurity states in a spherical GaAs–Ga1-xAlxAs quantum dots: Effects of hydrostatic pressure, J. Microelectronics 39 (2008) 383-386.
DOI: 10.1016/j.mejo.2007.07.012
Google Scholar
[41]
S.T. Perez-Merchancano, H. Paredes-Gutierrez, J. Silva-Valencia, Hydrostatic-pressure effects on the donor binding energy in GaAs–(Ga, Al)As quantum dots, J. Phys. Cond. Matter. 19 (2006) 026225.
DOI: 10.1088/0953-8984/19/2/026225
Google Scholar
[42]
C. Xia, Y. Liu, S. Wei, Hydrostatic pressure effects on impurity states in InAs/GaAs quantum dot, Appl. Surf. Sci. 254 (2008) 3479-3483.
DOI: 10.1016/j.apsusc.2007.11.036
Google Scholar
[43]
S.N. Mohajer, A. Ibral, J. El Khamkhami, E.M. Assaid, Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hasse variation method, Physica B 537 (2018) 40-50.
DOI: 10.1016/j.physb.2018.01.061
Google Scholar