Impact of Applied Temperature and Hydrostatic Pressure on the Off-Center Donor Spectrum in Spherical Quantum Dot

Article Preview

Abstract:

Within the effective mass approximation and the infinite confinement potential, this work focused on studying the electronic properties of spherical quantum dot (SQD) nanostructure through the finite difference method. The effects of shallow donor impurity position, temperature (T), and hydrostatic pressure (P) on the binding energy, the electron spatial extension <re> and the average electron-impurity distance <rD-e> in a SQD have been evaluated. Our findings show that the binding energy increases as a function of hydrostatic pressure and decreases with the temperature effect. However, the binding energy presents very clear maximum around the spherical nanostructure center depending on the impurity position. For higher SQD, the impact of externals perturbations (P and T) on the electron spatial extension are more significant. The distance <re> decreases with the augmentation of hydrostatic pressure when the impurity is near the center, which is conversely when the impurity is near the edge. In addition, applying the hydrostatic pressure and temperature leads to decreasing and increasing the average distance <rD-e>, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 335)

Pages:

31-41

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Kim, B. Marelli, M.A. Brenckle, A.N. Mitropoulos, E.S. Gil, K.Tsioris, F.G. Omenetto, All-water-based electron-beam lithography using silk as a resist, Nat. Nanotechnol.9 (2014) 306-310.

DOI: 10.1038/nnano.2014.47

Google Scholar

[2] V.C. Elarde, R. Rangarajan, J.J. Borchardt, J.J. Coleman, Room-temperature operation of patterned quantum-dot lasers fabricated by electron beam lithography and selective area metal-organic chemical vapor deposition, IEEE Photon. Technol. Lett. 17 (2005) 935-937.

DOI: 10.1109/lpt.2005.844555

Google Scholar

[3] S. Franchi, G. Trevisi, L. Seravalli, P. Frigeri, Quantum dot nanostructures and molecular beam epitaxy, Progress in Crystal Growth and Characterization of Materials, 47 (2003) 166-195.

DOI: 10.1016/j.pcrysgrow.2005.01.002

Google Scholar

[4] J.L. Zhu, X. Chen, Spectrum and binding of an off-center donor in a spherical quantum dot, Phys. Rev. B 50 (1994) 4497-4502.

DOI: 10.1103/physrevb.50.4497

Google Scholar

[5] A.J. Peter, The effect of hydrostatic pressure on binding energy of impurity states in spherical quantum dots, Physica E Low Dimens. Syst. Nanostruct. 28 (2005) 225-229.

DOI: 10.1016/j.physe.2005.03.018

Google Scholar

[6] S.G. Jayam, K. Navaneethakrishnan, Effects of electric field and hydrostatic pressure on donor binding energies in a spherical quantum dot, Solid State Commun. 126 (2003) 681-685.

DOI: 10.1016/s0038-1098(03)00209-6

Google Scholar

[7] J. D. Correa, N. Porras‐Montenegro, C. A. Duque, Donor‐related photoionization cross‐section of GaAs–(Ga, Al) As quantum dots: hydrostatic pressure effects. Phys. Stat. solidi (b) 241 (2004) 2440-2443.

DOI: 10.1002/pssb.200404908

Google Scholar

[8] R. Arraoui, A. Sali, A. Ed-Dahmouny, M. Jaouane, A. Fakkahi, Polaronic mass and non-parabolicity effects on the photoionization cross section of an impurity in a double quantum dot, Superlattices Microstruct. 159 (2021) 107049.

DOI: 10.1016/j.spmi.2021.107049

Google Scholar

[9] M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi, R. Arraoui, Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots, Physica E Low Dimens. Syst. Nanostruct. 127 (2021) 114543.

DOI: 10.1016/j.physe.2020.114543

Google Scholar

[10] H. Satori, A. Sali, The finite element simulation for the shallow impurity in quantum dots, Physica E Low Dimens. Syst. Nanostruct. 48 (2013) 171-175.

DOI: 10.1016/j.physe.2012.12.010

Google Scholar

[11] E. Iqraoun, A. Sali, K. El-Bakkari, A. Ezzarfi, M.E. Mora-Ramos, C.A. Duque, Simultaneous effects of temperature, pressure, polaronic mass, and conduction band non-parabolicity on a single dopant in conical GaAs-AlxGa1–xAs quantum dots, Phys Scr. 96 065808 (2021).

DOI: 10.1088/1402-4896/abf450

Google Scholar

[12] M.E. Mora-Ramos, J.A. Vinasco, D. Laroze, A. Radu, R.L. Restrepo, C. Heyn, C.A. Duque, Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes, A finite-element approach, Sci. Rep. 11 (2021) 1-16.

DOI: 10.1038/s41598-021-83583-5

Google Scholar

[13] K. Batra and V. Prasa, Finite difference calculation of optical properties of hydrogenic impurity in spherical quantum dot with parabolic confinement, Rev. Mex. de Fis. E. 64 (2018) 7–15.

DOI: 10.31349/revmexfise.64.7

Google Scholar

[14] L. Belamkadem, O. Mommadi, J.A. Vinasco, D. Laroze, A. El Moussaouy, M. Chnafi, C.A. Duque, Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot, Physica E. 129 (2021) 114642-114649.

DOI: 10.1016/j.physe.2021.114642

Google Scholar

[15] C. Heyn, C.A. Duque, Donor impurity related optical and electronic properties of cylindrical GaAs-AlxGa1− xAs quantum dots under tilted electric and magnetic fields, Sci. Rep. 10 (2020) 1-18.

DOI: 10.1038/s41598-020-65862-9

Google Scholar

[16] E. Iqraoun, A. Sali, A. Rezzouk, E. Feddi, F. Dujardin, M.E. Mora-Ramos, C.A. Duque, Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field, Philos Mag. 97 (2017)1445-1463.

DOI: 10.1080/14786435.2017.1302613

Google Scholar

[17] G.V.B. de Souza, A. Bruno-Alfonso, Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field, Physica E. 66 (2015) 128–132.

DOI: 10.1016/j.physe.2014.10.011

Google Scholar

[18] Y.P. Kravchenko, M.A. Liberman, B. Johansson, Exact solution for a hydrogen atom in a magnetic field of arbitrary strength. Phys. Rev. A 54 (1996) 287.

DOI: 10.1103/physreva.54.287

Google Scholar

[19] O. Mommadi, A. El Moussaouy, L. Belamkadem, Diamagnetic susceptibility of bound exciton in cylindrical quantum nanodots under hydrostatic pressure and temperature effects, Phys. Scr. 95 (2020) 095809.

DOI: 10.1088/1402-4896/abacfd

Google Scholar

[20] O. Mommadi, A. El Moussaouy, M. El Hadi, M. Chnafi, Y.M. Meziani, C.A. Duque, Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature, and electric field effects, Philos. Mag. 101 (2021) 753-775.

DOI: 10.1080/14786435.2020.1862430

Google Scholar

[21] M. Chnafi, A. El Moussaouy, O. Mommadi, L. Belamkadem, Energy and stability of negatively charged trion in cylindrical quantum dot under temperature effect, Physica B 594 (2020) 412333.

DOI: 10.1016/j.physb.2020.412333

Google Scholar

[22] A. Sali, H. Satori, The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation. Superlattice. Microstruct. 69 (2014) 38-52.

DOI: 10.1016/j.spmi.2014.01.011

Google Scholar

[23] A. Sivakami, M. Mahendran, Hydrostatic pressure and conduction band non-parabolicity effects on the impurity binding energy in a spherical quantum dot, Physica B 405 (2010) 1403-1407.

DOI: 10.1016/j.physb.2009.12.008

Google Scholar

[24] A.R. Jeice, S.G Jayam, K.J. Wilson, Effect of hydrostatic pressure and polaronic mass of the binding energy in a spherical quantum dot, Chin. Phys. B 24 (2015) 110303-110309.

DOI: 10.1088/1674-1056/24/11/110303

Google Scholar

[25] C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Hydrostatic pressure and electric field effects and nonlinear optical rectification of confined excitons in spherical quantum dots, Superlattice. Microstruct. 49 (2011) 264-268.

DOI: 10.1016/j.spmi.2010.06.008

Google Scholar

[26] A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot, Appl. Phys. A 127 (2021) 1-9.

DOI: 10.1007/s00339-021-05055-x

Google Scholar

[27] M. Chnafi, L. Belamkadem, O. Mommadi, R. Boussetta, M. El Hadi, A. El Moussaouy, F. Falyouni, J.A. Vinasco, D. Laroze, F. Mora-Rey, C.A. Duque, Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge, Superlattice. Microstruct. 159 (2021) 107052.

DOI: 10.1016/j.spmi.2021.107052

Google Scholar

[28] S.J. Liang, W.F. Xie, The hydrostatic pressure and temperature effects on a hydrogenic impurity in a spherical quantum dot, Eur. Phys. J. B 81 (2011) 79-84.

DOI: 10.1140/epjb/e2011-10831-9

Google Scholar

[29] M. Kirak, Y. Altinok, S. Yilmaz, The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum dot under external electric field, J. Lumin. 136 (2013) 415-421.

DOI: 10.1016/j.jlumin.2012.12.026

Google Scholar

[30] A. Sali, J. Kharbach, A. Rezzouk, M. O. Jamil, The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot, Superlattices Microstruct. 104 (2017) 93-103.

DOI: 10.1016/j.spmi.2017.02.014

Google Scholar

[31] B. Stébé, E. Assaid, F. Dujardin, S. Le Goff, Exciton bound to an ionized donor impurity in semiconductor spherical quantum dots, Phys. Rev. B 54 (1996) 17785–17793.

DOI: 10.1103/physrevb.54.17785

Google Scholar

[32] B. Welber, M. Cardona, C.K. Kim, S. Rodriguez, Dependence of the direct energy gap of GaAs on hydrostatic pressure, Phys. Rev. B 12(1975) 5729.

DOI: 10.1103/physrevb.12.5729

Google Scholar

[33] A.M. Elabsy, Effect of temperature on the binding energy of a confined impurity to a spherical semiconductor quantum dot, Phys Scr. 59 (1999) 328.

DOI: 10.1238/physica.regular.059a00328

Google Scholar

[34] C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots. J. Phys. Cond. Matter. 18 (2006)1877.

DOI: 10.1088/0953-8984/18/6/005

Google Scholar

[35] U. Yesilgul, S. Şakiroğlu, E. Kasapoglu, H. Sari, I. Sökmen, The effects of temperature and hydrostatic pressure on the photoionization cross-section and binding energy of shallow donor impurities in quantum dots, Superlattices Microstruct. 48 (2010) 509-516.

DOI: 10.1016/j.spmi.2010.09.005

Google Scholar

[36] A.J. Peter, Simultaneous effects of pressure and magnetic field on donors in a parabolic quantum dot, Solid State Commun. 147 (2008) 296-300.

DOI: 10.1016/j.ssc.2008.05.042

Google Scholar

[37] A. Sivakami, V. Gayathri, Hydrostatic pressure and temperature d quantum dot, Superlattices Microstruct. 58 (2013) 218-227.

DOI: 10.1016/j.spmi.2013.03.002

Google Scholar

[38] G. Rezaei, S.F. Taghizadeh, A.A. Enshaeian, External electric field, hydrostatic pressure and temperature effects on the binding energy of an off-center hydrogenic impurity confined in a spherical Gaussian quantum dot, Physica E Low Dimens. Syst. Nanostruct. 44 (2012) 1562-1566.

DOI: 10.1016/j.physe.2012.03.028

Google Scholar

[39] I. Erdogan, O. Akankan, H. Akbas, Simultaneous effects of temperature, hydrostatic pressure and electric field on the self-polarization and electric field polarization in a GaAs/Ga0.7Al0.3As spherical quantum dot with a donor impurity, Superlattices Microstruct. 59 (2013) 13-20.

DOI: 10.1016/j.spmi.2013.03.020

Google Scholar

[40] S.T. Perez-Merchancano, R. Franco, J. Silva-Valencia, Impurity states in a spherical GaAs–Ga1-xAlxAs quantum dots: Effects of hydrostatic pressure, J. Microelectronics 39 (2008) 383-386.

DOI: 10.1016/j.mejo.2007.07.012

Google Scholar

[41] S.T. Perez-Merchancano, H. Paredes-Gutierrez, J. Silva-Valencia, Hydrostatic-pressure effects on the donor binding energy in GaAs–(Ga, Al)As quantum dots, J. Phys. Cond. Matter. 19 (2006) 026225.

DOI: 10.1088/0953-8984/19/2/026225

Google Scholar

[42] C. Xia, Y. Liu, S. Wei, Hydrostatic pressure effects on impurity states in InAs/GaAs quantum dot, Appl. Surf. Sci. 254 (2008) 3479-3483.

DOI: 10.1016/j.apsusc.2007.11.036

Google Scholar

[43] S.N. Mohajer, A. Ibral, J. El Khamkhami, E.M. Assaid, Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hasse variation method, Physica B 537 (2018) 40-50.

DOI: 10.1016/j.physb.2018.01.061

Google Scholar