Study of the Structural, Electronic and Optical Properties of 1T-ZrX2 Materials (X=S, Se, Te)

Article Preview

Abstract:

The Electronic and optical properties of zirconium dichalcogenides (ZrS2,ZrSe2, andZrTe2),have been explored via ab-initio methods based on the density functionaltheory (DFT) within the frame of generalized gradient approximation (GGA) and a couplingtechnique between the plane wave (PW) and the pseudo-potential (PP) approaches. Theobtained results showed that ZrS2 and ZrSe2 are semiconducting materials with energy gapsof 1.15 eV and 0.3 eV respectively from the valence band maximum located at G point andthe conduction band minimum located at L point, while ZrTe2 showed a metallic characterwith a density of states at the Fermi level of about 0.8 states/eV. Based on a Kramers–Kroniganalysis of the reflectivity, we have obtained the spectral dependence of the real andimaginary parts of the complex dielectric function (ε1 and ε2, respectively) and the refractiveindex (n). The collected data were used for the calculation of absorption coefficient,reflectivity index, conductivity, and electron energy loss function of ZrS2, ZrSe2, and ZrTe2 forradiation up to 20 eV. All three chalcogenides were found to be good absorbers of ultravioletradiation. The reflectivity of ZrS2 is low in the visible and near-ultraviolet region butincreases sharply for higher photon energies and approaches 96% at ~18.5 eV. The R(ω) spectrum of ZrTe2, on the other hand, is non-selective and remains above 50% over a widerange of energies from infrared to ultraviolet which suggeststhe potential application of thismaterial as an effective solar reflector. On the other hand, the refractive indices of ZrS2, ZrSe2,and ZrTe2 in the visible range are high. The optical spectra show moderate anisotropy concerning the electric field polarization of the incident light.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 335)

Pages:

3-13

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012) 699–712. https://doi.org/10.1038/nnano.2012.193.

DOI: 10.1038/nnano.2012.193

Google Scholar

[2] D. Jiménez, Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors, Appl. Phys. Lett. 101 (2012) 243501. https://doi.org/10.1063/1.4770313.

DOI: 10.1063/1.4770313

Google Scholar

[3] C. Gong, Y. Zhang, W. Chen, J. Chu, T. Lei, J. Pu, L. Dai, C. Wu, Y. Cheng, T. Zhai, L. Li, J. Xiong, Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides, Adv. Sci. 4 (2017) 1700231. https://doi.org/10.1002/advs.201700231.

DOI: 10.1002/advs.201700231

Google Scholar

[4] M.A. Khan, M.N. Leuenberger, Optoelectronics with single layer group-VIB transition metal dichalcogenides, Nanophotonics. 7 (2018) 1589–1600. https://doi.org/10.1515/nanoph-2018-0041.

DOI: 10.1515/nanoph-2018-0041

Google Scholar

[5] M. Porer, U. Leierseder, J.-M. Ménard, H. Dachraoui, L. Mouchliadis, I.E. Perakis, U. Heinzmann, J. Demsar, K. Rossnagel, R. Huber, Non-thermal separation of electronic and structural orders in a persisting charge density wave, Nat. Mater. 13 (2014) 857–861. https://doi.org/10.1038/nmat4042.

DOI: 10.1038/nmat4042

Google Scholar

[6] Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, B. Huang, Evidence of the Existence of Magnetism in Pristine VX 2 Monolayers (X = S, Se) and Their Strain-Induced Tunable Magnetic Properties, ACS Nano. 6 (2012) 1695–1701. https://doi.org/10.1021/nn204667z.

DOI: 10.1021/nn204667z

Google Scholar

[7] C.-X. Liu, Unconventional Superconductivity in Bilayer Transition Metal Dichalcogenides, Phys. Rev. Lett. 118 (2017) 087001. https://doi.org/10.1103/PhysRevLett.118.087001.

DOI: 10.1103/physrevlett.118.087001

Google Scholar

[8] R.G. Dickinson, L. Pauling, THE CRYSTAL STRUCTURE OF MOLYBDENITE, J. Am. Chem. Soc. 45 (1923) 1466–1471. https://doi.org/10.1021/ja01659a020.

DOI: 10.1021/ja01659a020

Google Scholar

[9] J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys. 18 (1969) 193–335. https://doi.org/10.1080/00018736900101307.

DOI: 10.1080/00018736900101307

Google Scholar

[10] P.A. Lee, G. Said, R. Davis, T.H. Lim, ON THE OPTICAL PROPERTIES OF SOME LAYER COMPOUNDS, (n.d.) 11.

Google Scholar

[11] I. Kar, J. Chatterjee, L. Harnagea, Y. Kushnirenko, A.V. Fedorov, D. Shrivastava, B. Büchner, P. Mahadevan, S. Thirupathaiah, Metal-chalcogen bond-length induced electronic phase transition from semiconductor to topological semimetal in Zr X 2 ( X = Se and Te), Phys. Rev. B. 101 (2020) 165122. https://doi.org/10.1103/PhysRevB.101.165122.

DOI: 10.1103/physrevb.101.165122

Google Scholar

[12] T.M. Herninda, C.-H. Ho, Optical and Thermoelectric Properties of Surface-Oxidation Sensitive Layered Zirconium Dichalcogenides ZrS2−xSex (x = 0, 1, 2) Crystals Grown by Chemical Vapor Transport, Crystals. 10 (2020) 327. https://doi.org/10.3390/cryst10040327.

DOI: 10.3390/cryst10040327

Google Scholar

[13] W.Y. Liang, S.L. Cundy, Electron energy loss studies of the transition metal dichalcogenides, Philos. Mag. 19 (1969) 1031–1043. https://doi.org/10.1080/14786436908225867.

DOI: 10.1080/14786436908225867

Google Scholar

[14] H.P. Hughes, W.Y. Liang, Vacuum ultraviolet reflectivity spectra of the disulphides and diselenides of titanium, zirconium and hafnium, J. Phys. C Solid State Phys. 10 (1977) 1079–1087. https://doi.org/10.1088/0022-3719/10/7/018.

DOI: 10.1088/0022-3719/10/7/018

Google Scholar

[15] S.C. Bayliss, W.Y. Liang, Reflectivity, joint density of states and band structure of group IVb transition-metal dichalcogenides, J. Phys. C Solid State Phys. 18 (1985) 3327–3335. https://doi.org/10.1088/0022-3719/18/17/010.

DOI: 10.1088/0022-3719/18/17/010

Google Scholar

[16] A. Singh, Y. Li, B. Fodor, L. Makai, J. Zhou, H. Xu, A. Akey, J. Li, R. Jaramillo, Near-infrared optical properties and proposed phase-change usefulness of transition metal disulfides, Appl. Phys. Lett. 115 (2019) 161902. https://doi.org/10.1063/1.5124224.

DOI: 10.1063/1.5124224

Google Scholar

[17] H. Jiang, Structural and electronic properties of ZrX 2 and HfX 2 (X = S and Se) from first principles calculations, J. Chem. Phys. 134 (2011) 204705. https://doi.org/10.1063/1.3594205.

DOI: 10.1063/1.3594205

Google Scholar

[18] A. Afzal, R.S. Islam, S.H. Naqib, Structural, elastic, bonding, optoelectronic, and some thermo- physical properties of transition metal dichalcogenides ZrX2 (X = S, Se, Te): Insights from ab-initio calculations, (n.d.) 31.

DOI: 10.1063/5.0073631

Google Scholar

[19] A.H. Reshak, S. Auluck, Theoretical investigation of the electronic and optical properties of ZrX2 (X=S, Se and Te), Phys. B Condens. Matter. 353 (2004) 230–237. https://doi.org/10.1016/j.physb.2004.10.001.

DOI: 10.1016/j.physb.2004.10.001

Google Scholar

[20] H. Isomaki, J. von Boehm, P. Krusius, Band structure of group IVA transition-metal dichalcogenides, J. Phys. C Solid State Phys. 12 (1979) 3239–3252. https://doi.org/10.1088/0022-3719/12/16/012.

DOI: 10.1088/0022-3719/12/16/012

Google Scholar

[21] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Z. Für Krist. - Cryst. Mater. 220 (2005) 567–570. https://doi.org/10.1524/zkri.220.5.567.65075.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[22] B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, Relaxation of Crystals with the Quasi-Newton Method, J. Comput. Phys. 131 (1997) 233–240. https://doi.org/10.1006/jcph.1996.5612.

DOI: 10.1006/jcph.1996.5612

Google Scholar

[23] R.H. Friend, A.D. Yoffe, Electronic properties of intercalation complexes of the transition metal dichalcogenides, Adv. Phys. 36 (1987) 1–94. https://doi.org/10.1080/00018738700101951.

DOI: 10.1080/00018738700101951

Google Scholar

[24] W. Conroy, K.C. Park, Electrical Properties of the Group IV Disulfides Tis,, ZrS,, HfS,, and SnS,1,2, (1968) 5.

Google Scholar

[25] R.B. Murray, R.A. Bromley, A.D. Yoffe, The band structures of some transition metal dichalcogenides. II. Group IVA; octahedral coordination, J. Phys. C Solid State Phys. 5 (1972) 746–758. https://doi.org/10.1088/0022-3719/5/7/006.

DOI: 10.1088/0022-3719/5/7/006

Google Scholar

[26] R.L. Olmon, B. Slovick, T.W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, M.B. Raschke, Optical dielectric function of gold, Phys. Rev. B. 86 (2012) 235147. https://doi.org/10.1103/PhysRevB.86.235147.

DOI: 10.1103/physrevb.86.235147

Google Scholar

[27] F. Wooten, Optical Properties of Solids, (n.d.) 270.

Google Scholar

[28] T.V. Vu, A.A. Lavrentyev, D.V. Thuan, C.V. Nguyen, O.Y. Khyzhun, B.V. Gabrelian, K.C. Tran, H.L. Luong, P.D. Tung, K.D. Pham, P.T. Dang, D.D. Vo, Electronic properties and optical behaviors of bulk and monolayer ZrS2: A theoretical investigation, Superlattices Microstruct. 125 (2019) 205–213. https://doi.org/10.1016/j.spmi.2018.11.008.

DOI: 10.1016/j.spmi.2018.11.008

Google Scholar

[29] Vitesse supraluminique - Définition et Explications, (n.d.). https://www.techno-science.net/ glossaire-definition/Vitesse-supraluminique.html (accessed December 13, 2021).

Google Scholar

[30] R. Saniz, L.-H. Ye, T. Shishidou, A.J. Freeman, Structural, electronic, and optical properties of NiAl 3 : First-principles calculations, Phys. Rev. B. 74 (2006) 014209. https://doi.org/10.1103/PhysRevB.74.014209.

DOI: 10.1103/physrevb.74.014209

Google Scholar