Uncorrelated Excitonic Properties in Multilayered Cylindrical Quantum Dot

Article Preview

Abstract:

The unbound exciton properties in multilayered cylindrical quantum dot (CQD) (core/shell/shell) have been studied theoretically, within the effective mass approximation and two-band model. The uncorrelated energy of an exciton confined in GaAs/Ga1-x1Alx1As/Ga1-x2Alx2As CQD as a function of the core and first shell radius is presented. The numerical results show that the quantum dot size and the confinement potentials depth significantly adjust the ground state uncorrelated energy of exciton. However, the exciton wave function parameters are dependent on the core and first shell radius (R1 and R2), as well as the concentration of the barrier’s materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 335)

Pages:

43-52

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: theoretical and computational physics of semiconductor nanostructures, John Wiley & Sons (2016).

DOI: 10.1002/9781118923337

Google Scholar

[2] A.V. Zvelindovsky, Nanostructured soft matter: experiment, theory, simulation and perspectives, Springer Science & Business Media (2007).

Google Scholar

[3] Y. Li, F. Qian, J. Xiang, Charles M.lieber, Nanowire electronic and optoelectronic devices, Materials today 9 (2006) 18-27.

DOI: 10.1016/s1369-7021(06)71650-9

Google Scholar

[4] L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots, Springer, Berlin (1998).

Google Scholar

[5] A. El Moussaouy, N. Ouchani, Y. El Hassouani, A. Benami, Bound polaron states in GaAs/Ga1-xAlxAs cylindrical dot under hydrostatic pressure effect, Surf. Sci. 624 (2014) 95–102.

DOI: 10.1016/j.susc.2014.02.005

Google Scholar

[6] L. Belamkadem, O. Mommadi, J.A. Vinasco, D. Laroze, A. El Moussaouy, M. Chnafi, C.A. Duque, Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot, physica E 126 (2021) 114642.

DOI: 10.1016/j.physe.2021.114642

Google Scholar

[7] Z. Zeng, C.S. Garoufalis, A.F. Terzis, S. Baskoutas, Linear and nonlinear optical properties of ZnO/ZnS and ZnS/ZnO core shell quantum dots: Effects of shell thickness, impurity, and dielectric environment, J. Appl. Phys. 114 (2013) 023510.

DOI: 10.1063/1.4813094

Google Scholar

[8] X. Peng, P. Logan, Electronic properties of strained Si/Ge core-shell nanowires, Appl. Phys. Lett. 96 (2010) 143119.

DOI: 10.1063/1.3389495

Google Scholar

[9] A.C. Bartnik, F.W. Wise, A. Kigel, E. Lifshitz, Electronic structure of PbSe/PbS core-shell quantum dots, Phys. Rev. B 75 (2007) 245424.

Google Scholar

[10] Y. Nandan, Mohan, S. Mehata, Wavefunction Engineering of Type-Ⅰ/Type-Ⅱ Excitons of CdSe/CdS Core-shell Quantum Dots, Sci. Rep. 9 (2019) 1-11.

DOI: 10.1038/s41598-018-37676-3

Google Scholar

[11] A.D. Lad, P.P. Kiran, D. More, G.R. Kumar, S. Mahamuni, Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures, Appl. Phys. Lett. 92 (2008) 043126.

DOI: 10.1063/1.2839400

Google Scholar

[12] A. Chafai F. Dujardin I. Essaoudi A. Ainane, Energy spectrum of an exciton in a CdSe/ZnTe Type-Ⅱ core/shell spherical quantum dot, Superlattice. Microstruct. 101 (2017) 40-48.

DOI: 10.1016/j.spmi.2016.11.017

Google Scholar

[13] H. Sun, B.C. Liu, and Q. Tian, Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires, Chin. Phys. B 26 (2017) 097302.

DOI: 10.1088/1674-1056/26/9/097302

Google Scholar

[14] A. El Moussaouy, N. Ouchani, Y. El Hassouani, D. Abouelaoualim, Temperature and hydrostatic pressure effects on exciton-phonon coupled states in semiconductor quantum dot, Superlattice. Microstruct.73 (2014) 22-37.

DOI: 10.1016/j.spmi.2014.05.006

Google Scholar

[15] O. Mommadi, A. El Moussaouy, M. El Hadi, A. Nougaoui, Excitonic properties in an asymmetric quantum dot nanostructure under combined influence of temperature and lateral hydrostatic pressure, Mater. Today: Proc. 13 (2019) 1023–1032.

DOI: 10.1016/j.matpr.2019.04.067

Google Scholar

[16] O. Mommadi, A. EL Moussaouy, M. Chnafi, M. El Hadi, A. Nougaoui, H. Magrez, Exciton-phonon properties in cylindrical quantum dot with parabolic confinement potential under electric field, Physica E 118 (2020) 113903.

DOI: 10.1016/j.physe.2019.113903

Google Scholar

[17] R. Betancourt-Riera, R. Betancourt-Riera, L.A. Ferrer-Moreno, A.D. Sañu-Ginarte, Theory of electron Raman scattring in a semiconductor core/shell quantum well wire, Physica B 563 (2019) 93–100.

DOI: 10.1016/j.physb.2019.04.004

Google Scholar

[18] O. Mommadi, A. El Moussaouy, M. El Hadi, M. Chnafi, Y. M. Meziani, C. A. Duque, Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature, and electric field effects, Philos. Mag. 101 (2021) 753-775.

DOI: 10.1080/14786435.2020.1862430

Google Scholar

[19] G.O. Eren, S. Sadeghi, H. B. Jalali, M. Ritter, M. Han, I. Baylam, R. Melikov, A. Onal, F. Oz, M. Sahin, C.W. Ow-Yang, A. Sennaroglu, R.T. Lechner, S. Nizamoglu ACS Applied Materials & Interfaces  13 (2021), 32022-32030.

DOI: 10.1021/acsami.1c08118

Google Scholar

[20] E. B. Al, Effect of magnetic field, size and donor position on the absorption coefficients related a donor within the core/shell/shell quantum dot. Opt. Quant. Electron. 53, 676 (2021).

DOI: 10.1007/s11082-021-03340-w

Google Scholar