[1]
H. Wu, J. Spinelli, P. Konkapaka, M. Spencer, Rapid growth of bulk GaN crystal using GaN powder as source material, MRS Online Proceedings Library Archive 892 (2005).
DOI: 10.1557/proc-0892-ff30-01
Google Scholar
[2]
D. Siche, D. Gogova, S. Lehmann, T. Fizia, R. Fornari, M. Andrasch, A. Pipa, J. Ehlbeck, PVT growth of GaN bulk crystals, J. Cryst. Growth 318(1) (2011) 406-410.
DOI: 10.1016/j.jcrysgro.2010.10.030
Google Scholar
[3]
M. Aoki, H. Yamane, M. Shimada, S. Sarayama, F.J. DiSalvo, GaN single crystal growth using high-purity Na as a flux, J. Cryst. Growth 242(1-2) (2002) 70-76.
DOI: 10.1016/s0022-0248(02)01349-0
Google Scholar
[4]
R. Dwiliński, R. Doradziński, J. Garczyński, L. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, H. Hayashi, Excellent crystallinity of truly bulk ammonothermal GaN, J. Cryst. Growth 310(17) (2008) 3911-3916.
DOI: 10.1016/j.jcrysgro.2008.06.036
Google Scholar
[5]
T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, Ammonothermal growth of bulk GaN, J. Cryst. Growth 310(17) (2008) 3907-3910.
DOI: 10.1016/j.jcrysgro.2008.06.005
Google Scholar
[6]
H.P. Maruska, J. Tietjen, The preparation and properties of vapor deposited single crystalline GaN, Appl. Phys. Lett. 15(10) (1969) 327-329.
DOI: 10.1063/1.1652845
Google Scholar
[7]
T. Nakamura, K. Motoki, GaN substrate technologies for optical devices, IEEE, 2013, p.2221.
Google Scholar
[8]
B. Raghothamachar, Y. Liu, H. Peng, T. Ailihumaer, M. Dudley, F.S. Shahedipour-Sandvik, K.A. Jones, A. Armstrong, A.A. Allerman, J. Han, H. Fu, K. Fu, Y. Zhao, X-ray topography characterization of gallium nitride substrates for power device development, J. Cryst. Growth 544 (2020) 125709.
DOI: 10.1016/j.jcrysgro.2020.125709
Google Scholar
[9]
Y. Liu, B. Raghothamachar, H. Peng, T. Ailihumaer, M. Dudley, R. Collazo, J. Tweedie, Z. Sitar, F.S. Shahedipour-Sandvik, K.A. Jones, Synchrotron X-ray topography characterization of high quality ammonothermal-grown gallium nitride substrates, J. Cryst. Growth 551 (2020) 125903.
DOI: 10.1016/j.jcrysgro.2020.125903
Google Scholar
[10]
Y. Liu, H. Peng, T. Ailihumaer, B. Raghothamachar, M. Dudley, X-ray Topography Characterization of GaN Substrates Used for Power Electronic Devices, J. Electron. Mater. 50(6) (2021) 2981-2989.
DOI: 10.1007/s11664-021-08762-6
Google Scholar
[11]
K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, Growth and characterization of freestanding GaN substrates, J. Cryst. Growth 237 (2002) 912-921.
DOI: 10.1016/s0022-0248(01)02078-4
Google Scholar
[12]
B. Raghothamachar, M. Dudley, X-Ray Topography, Mater. Charact., ASM International2019.
Google Scholar
[13]
Y. Liu, Z. Chen, S. Hu, H. Peng, Q. Cheng, B. Raghothamachar, M. Dudley, Strain mapping of GaN substrates and epitaxial layers used for power electronic devices by synchrotron X-ray rocking curve topography, J. Cryst. Growth 583 (2022) 126559.
DOI: 10.1016/j.jcrysgro.2022.126559
Google Scholar
[14]
J.W. DuMond, Theory of the use of more than two successive X-ray crystal reflections to obtain increased resolving power, Physical Review 52(8) (1937) 872.
DOI: 10.1103/physrev.52.872
Google Scholar
[15]
Q. Sun, C.D. Yerino, B. Leung, J. Han, M.E. Coltrin, Understanding and controlling heteroepitaxy with the kinetic Wulff plot: A case study with GaN, J. Appl. Phys. 110(5) (2011).
DOI: 10.1063/1.3632073
Google Scholar