Defects in Semiconductors: Charge States, Shallow Traps and Annealing Experiments

Article Preview

Abstract:

Utilizing positron annihilation spectroscopy for studying the energetics, kinetics or charge states of open volume point defects in semiconductors is seldom straight forward. Although obtaining usable experimental results with the technique is usually fairly easy, designing a suitable experiment for a specific case and/or interpreting the results in an unambiguous manner can be challenging. The goal of this lecture is to give advice and suggestions on what to consider when planning experiments with Positron Annihilation Spectroscopy (PAS) in semiconductors, through various example cases. This contribution is not meant to be scientific, rather educational.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 373)

Pages:

115-120

Citation:

Online since:

July 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Fabri, G. Poletti, and G. Randone, Phys. Rev. 151, 356 (1966).

Google Scholar

[2] R. Fieschi, A. Gainotti, C. Ghezzi, and M. Manfredi, Phys. Rev. 175, 383 (1968).

DOI: 10.1103/physrev.175.383

Google Scholar

[3] M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841 (1994).

Google Scholar

[4] R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors (Springer, Berlin, 1999).

DOI: 10.1007/978-3-662-03893-2_3

Google Scholar

[5] F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013).

Google Scholar

[6] J. Slotte, I. Makkonen, and F. Tuomisto, in: Characterisation and Control of Defects in Semiconductors, edited by F. Tuomisto, (IET, London, 2020), chap. 6.[7] D. V. Lang, J. Appl. Phys 45(7), 3023 (1974).

DOI: 10.1049/pbcs045e_ch6

Google Scholar

[8] E. Schubert, Doping in III-V Semiconductors (Cambridge University Press, New York, 1993).

Google Scholar

[9] C. D. Beling, S. Fung, H. L. Au, C. C. Ling, C. V. Reddy, A. H. Deng, and B. K. Panda, Appl. Surf. Sci. 116, 121 (1997).

Google Scholar

[10] J. M. Mäki, F. Tuomisto, A. Varpula, D. Fisher, R. U. A. Khan, and P. M. Martineau, Phys. Rev. Lett. 107, 217403 (2011).

Google Scholar

[11] J. Slotte, K. Saarinen, A. Salmi, R. Aavikko, S. Simula, and P. Hautojärvi, Phys. Rev. B 67, 115209 (2003).

DOI: 10.1103/physrevb.67.115209

Google Scholar

[12] S. Valkealahti and R. M. Nieminen, Appl. Phys. A 35, 51 (1984).

Google Scholar

[13] A. F. Makhov, Sov. Phys. Sol. State 2, 1934 (1961).

Google Scholar

[14] A. van Veen, H. Schut, M. Clement, J. de Nijs, A. Kruseman, and M. IJpma, Appl. Surf. Sci 85, 216 (1995).

DOI: 10.1016/0169-4332(94)00334-3

Google Scholar

[15] J. V. Olsen, P. Kirkegaard, N. J. Pedersen, and M. Eldrup, phys. stat sol. (c) 4, 4004 (2007).

Google Scholar

[16] J. Kujala, N. Segercrantz, F. Tuomisto, and J. Slotte, J. Appl. Phys. 116, 143508 (2014).

Google Scholar

[17] J. Gebauer, M. Lausmann, F. Redmann, R. Krause-Rehberg, H. S. Leipner, E. R. Weber, and P. Ebert, Phys. Rev. B 67, 235207 (2003).

DOI: 10.1103/physrevb.67.235207

Google Scholar