[1]
P.E. Mallon, Application to polymers, in: Y.C. Jean, P.E. Mallon and D.M. Schrader (Eds), Principles and Applications of Positron and Positronium Chemistry, World Scientific, 2003: p.253.
DOI: 10.1142/9789812775610_0010
Google Scholar
[2]
M. Eldrup, O.E. Mogensen, J.H. Evans, A positron annihilation study of the annealing of electron irradiated molybdenum, J. Phys. F Met. Phys. 6 (1976) 499–521.
DOI: 10.1088/0305-4608/6/4/011
Google Scholar
[3]
K. Petersen, Studies of Nonequilibrium Defects in Metals, in: W. Brandt, A. Dupasquier, A.P. Mills (Eds.), Positron Solids-State Phys., Varenna, 1983: p.298–358.
Google Scholar
[4]
F.A. Selim, Positron annihilation spectroscopy of defects in nuclear and irradiated materials- a review, Mater. Charact. 174 (2021) 110952.
DOI: 10.1016/j.matchar.2021.110952
Google Scholar
[5]
G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer US, Berlin, 2007.
Google Scholar
[6]
M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Des. 33 (1975) 50–54.
DOI: 10.1016/0029-5493(75)90035-7
Google Scholar
[7]
J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM – The stopping and range of ions in matter (2010), Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268 (2010) 1818–1823.
DOI: 10.1016/j.nimb.2010.02.091
Google Scholar
[8]
C. Borschel, C. Ronning, Ion beam irradiation of nanostructures – A 3D Monte Carlo simulation code, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 (2011) 2133–2138.
DOI: 10.1016/j.nimb.2011.07.004
Google Scholar
[9]
J.-P. Crocombette, C. Van Wambeke, Quick calculation of damage for ion irradiation: implementation in Iradina and comparisons to SRIM, EPJ Nucl. Sci. Technol. 5 (2019) 7.
DOI: 10.1051/epjn/2019003
Google Scholar
[10]
T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, K. Nita, Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, J. Nucl. Sci. Technol. 55 (2018) 684.
DOI: 10.1080/00223131.2017.1419890
Google Scholar
[11]
Animations of bulk collision cascade development, 1997, on https://www.mv.helsinki.fi/home/knordlun/casc/index.html.
Google Scholar
[12]
B.D. Wirth, M.J. Caturla, Mechanical property degradation in irradiated materials: A multiscale modeling approach, Nucl. Instrum. Methods Phys. Res. B 180 (2001) 23–31.
Google Scholar
[13]
A Dupasquier, AP Mills Jr, ed., Positron spectroscopy of solids, IOS press, IOS press, 1995.
Google Scholar
[14]
R. Krause-Rehberg, H. Leipner, Positron annihilation in semiconductors: defect studies, Springer Verlag, 1999.
DOI: 10.1007/978-3-662-03893-2_8
Google Scholar
[15]
F. Tuomisto, I. Makkonen, Defect identification in semiconductors: Experiment and theory of positron annihilation, Rev. Mod. Physics85 (2013) 1583–1631.
DOI: 10.1103/RevModPhys.85.1583
Google Scholar
[16]
J. Čížek, Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review, J. Mater. Sci. Technol. 34 (2018) 577–598.
DOI: 10.1016/j.jmst.2017.11.050
Google Scholar
[17]
P.E. Lhuillier, M.F. Barthe, P. Desgardin, W. Egger, P. Sperr, Positron annihilation studies on the nature and thermal behaviour of irradiation induced defects in tungsten, Phys. Status Solidi C - Curr. Top. Solid State Phys. Vol 6 (2009) 2329.
DOI: 10.1002/pssc.200982114
Google Scholar
[18]
W. Egger, P. Sperr, G. Kögel, G. Dollinger, Pulsed low energy positron system (PLEPS) at the Munich research reactor FRM II, Phys. Status Solidi C 4 (2007) 3969–3972.
DOI: 10.1002/pssc.200675812
Google Scholar
[19]
C. Hugenschmidt, K. Schreckenbach, M. Stadlbauer, B. Straßer, First positron experiments at NEPOMUC, Appl. Surf. Sci. 252 (2006) 3098–3105.
DOI: 10.1016/j.apsusc.2005.08.108
Google Scholar
[20]
Q. Yang, Z. Hu, I. Makkonen, P. Desgardin, W. Egger, M.-F. Barthe, P. Olsson, A combined experimental and theoretical study of small and large vacancy clusters in tungsten, J. Nucl. Mater. 571 (2022) 154019.
DOI: 10.1016/j.jnucmat.2022.154019
Google Scholar
[21]
P. Desgardin, L. Liszkay, M.F. Barthe, L. Henry, J. Briaud, M. Saillard, L. Lepolotec, C. Corbel, G. Blondiaux, A. Colder, P. Marie, M. Levalois, Slow positron beam facility in Orleans, PosMaterial Sci. Forum 363–365 (2001) 523–525.
DOI: 10.4028/www.scientific.net/MSF.363-365.523
Google Scholar
[22]
A. Debelle, M.F. Barthe, T. Sauvage, First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy, J. Nucl. Mater. 376 (2008) 216–221.
DOI: 10.1016/j.jnucmat.2008.03.002
Google Scholar
[23]
A. De Backer, P.E. Lhuillier, C.S. Becquart, M.F. Barthe, Modelling of the implantation and the annealing stages of 800 keV He-3 implanted tungsten: Formation of nanovoids in the near surface region, J. Nucl. Mater. 429 (2012) 78–91.
DOI: 10.1016/j.jnucmat.2012.05.024
Google Scholar
[24]
A.E. Sand, K. Nordlund, S.L. Dudarev, Radiation damage production in massive cascades initiated by fusion neutrons in tungsten, J. Nucl. Mater. 455 (2014) 207–211.
DOI: 10.1016/j.jnucmat.2014.06.007
Google Scholar
[25]
A. Hollingsworth, M.-F. Barthe, M.Y. Lavrentiev, P.M. Derlet, S.L. Dudarev, D.R. Mason, Z. Hu, P. Desgardin, J. Hess, S. Davies, B. Thomas, H. Salter, E.F.J. Shelton, K. Heinola, K. Mizohata, A. De Backer, A. Baron-Wiechec, I. Jepu, Y. Zayachuk, A. Widdowson, E. Meslin, A. Morellec, Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten, J. Nucl. Mater. 558 (2022) 153373.
DOI: 10.1016/j.jnucmat.2021.153373
Google Scholar
[26]
M. Sidibe, Etude du comportement du tungstène sous irradiation : Applications aux réacteurs de fusion., (phD thesis, Orleans University (2014).
Google Scholar
[27]
S. Wang, W. Guo, T. Schwarz-Selinger, Y. Yuan, L. Ge, L. Cheng, X. Zhang, X. Cao, E. Fu, G.-H. Lu, Dynamic equilibrium of displacement damage defects in heavy-ion irradiated tungsten, Acta Mater. 244 (2023) 118578.
DOI: 10.1016/j.actamat.2022.118578
Google Scholar
[28]
S. Agarwal, M.O. Liedke, A.C.L. Jones, E. Reed, A.A. Kohnert, B.P. Uberuaga, Y.Q. Wang, J. Cooper, D. Kaoumi, N. Li, R. Auguste, P. Hosemann, L. Capolungo, D.J. Edwards, M. Butterling, E. Hirschmann, A. Wagner, F.A. Selim, A new mechanism for void-cascade interaction from nondestructive depth-resolved atomic-scale measurements of ion irradiation–induced defects in Fe, Sci. Adv. 6 (2020) eaba8437.
DOI: 10.1126/sciadv.aba8437
Google Scholar
[29]
A. Wagner, M. Butterling, M.O. Liedke, K. Potzger, R. Krause-Rehberg, Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility, in: Newport News, VA, USA, 2018: p.040003.
DOI: 10.1063/1.5040215
Google Scholar
[30]
Z. Hu, Q. Yang, F. Jomard, P. Desgardin, C. Génévois, J. Joseph, P. Olsson, T. Jourdan, M.-F. Barthe, Revealing the Role of Oxygen on the Microstructure of Electron-Irradiated Tungsten: A Combined Experimental and Simulation Study, (2024).
DOI: 10.2139/ssrn.4684966
Google Scholar
[31]
Y.-W. You, X.-S. Kong, X.-B. Wu, C.S. Liu, Q.F. Fang, J.L. Chen, G.-N. Luo, Interaction of carbon, nitrogen and oxygen with vacancies and solutes in tungsten, RSC Adv. 5 (2015) 23261–23270.
DOI: 10.1039/C4RA13854F
Google Scholar
[32]
N. Castin, A. Dubinko, G. Bonny, A. Bakaev, J. Likonen, A. De Backer, A.E. Sand, K. Heinola, D. Terentyev, The influence of carbon impurities on the formation of loops in tungsten irradiated with self-ions, J. Nucl. Mater. 527 (2019) 151808.
DOI: 10.1016/j.jnucmat.2019.151808
Google Scholar
[33]
Z. Hu, P. Desgardin, C. Genevois, J. Joseph, B. Décamps, R. Schäublin, M.-F. Barthe, Effect of purity on the vacancy defects induced in self–irradiated tungsten: A combination of PAS and TEM, J. Nucl. Mater. 556 (2021) 153175.
DOI: 10.1016/j.jnucmat.2021.153175
Google Scholar
[34]
A. Vehanen, K.G. Lynn, P.J. Schultz, M. Eldrup, Improved slow-positron yield using a single crystal tungsten moderator, Appl. Phys. Solids Surf. 32 (1983) 163–167.
DOI: 10.1007/BF00616613
Google Scholar
[35]
C.S. Becquart, C. Domain, Ab initio calculations about intrinsic point defects and He in W, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 255 (2007) 23–26.
DOI: 10.1016/j.nimb.2006.11.006
Google Scholar
[36]
P.M. Derlet, S.L. Dudarev, Microscopic structure of a heavily irradiated material, Phys. Rev. Mater. 4 (2020) 023605.
DOI: 10.1103/PhysRevMaterials.4.023605
Google Scholar
[37]
X. Hu, T. Koyanagi, M. Fukuda, Y. Katoh, L.L. Snead, B.D. Wirth, Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation, J. Nucl. Mater. 470 (2016) 278–289.
DOI: 10.1016/j.jnucmat.2015.12.040
Google Scholar
[38]
S. Wang, H. Wang, X. Yi, W. Tan, L. Ge, Y. Sun, W. Guo, Q. Yang, L. Cheng, X. Zhang, Y. Yuan, X. Cao, E. Fu, G.-H. Lu, Damage recovery stages revisited: Thermal evolution of non-saturated and saturated displacement damage in heavy-ion irradiated tungsten, Acta Mater. 273 (2024) 119942.
DOI: 10.1016/j.actamat.2024.119942
Google Scholar
[39]
A. De Backer, A. Souidi, . Hodille E, E. Autissier, C. Genevois, Haddad F., Della Noce A., C.S. Becquart, M.-F. Barthe, Multi-Objective Optimization of the Nanocavities Diffusion in Irradiated Metals, Phys. Sci. Forum 5 (2022) 41.
DOI: 10.3390/psf2022005041
Google Scholar
[40]
A. De Backer, A. Souidi, E.A. Hodille, E. Autissier, C. Genevois, F. Haddad, A. Della Noce, C. Domain, C.S. Becquart, M.-F. Barthe, Readdressing nanocavity diffusion in tungsten, Front. Nucl. Eng. 2 (2023) 1240995.
DOI: 10.3389/fnuen.2023.1240995
Google Scholar
[41]
Y. Nagai, Z. Tang, M. Hassegawa, T. Kanai, M. Saneyasu, Irradiation-induced Cu aggregations in Fe: An origin of embrittlement of reactor pressure vessel steels, Phys. Rev. B 63 (2001) 134110.
DOI: 10.1103/PhysRevB.63.134110
Google Scholar
[42]
M. Lambrecht, L. Malerba, A. Almazouzi, Influence of different chemical elements on irradiation-induced hardening embrittlement of RPV steels, J. Nucl. Mater. 378 (2008) 282–290.
DOI: 10.1016/j.jnucmat.2008.06.030
Google Scholar
[43]
M. Lambrecht, L. Malerba, Positron annihilation spectroscopy on binary Fe–Cr alloys and ferritic/martensitic steels after neutron irradiation, Acta Mater. 59 (2011) 6547–6555.
DOI: 10.1016/j.actamat.2011.06.046
Google Scholar
[44]
V. Krsjak, S. Sojak, M. Petriska, B. Stribrnsky, R. Hinca, M. Huska, V. Slugen, M. Kolluri, O. Martin, J. Degmova, Positron annihilation study of the reactor pressure vessel model steels irradiated in the high flux reactor, J. Nucl. Mater. 584 (2023) 154563.
DOI: 10.1016/j.jnucmat.2023.154563
Google Scholar
[45]
S. Abhaya, R. Rajaraman, S. Kalavathi, C. David, B.K. Panigrahi, G. Amarendra, Effect of dose and post irradiation annealing in Ni implanted high entropy alloy FeCrCoNi using slow positron beam, J. Alloys Compd. 669 (2016) 117–122.
DOI: 10.1016/j.jallcom.2016.01.242
Google Scholar
[46]
A. Mackova, V. Havránek, R. Mikšová, S. Fernandes, J. Matejicek, H. Hadraba, M. Vilemová, M.O. Liedke, J. Martan, M. Vronka, P. Haušild, M. Butterling, P. Honnerová, A.G. Attalah, A. Wagner, F. Lukac, Radiation damage evolution in High Entropy Alloys (HEAs) caused by 3–5 MeV Au and 5 MeV Cu ions in a broad range of dpa in connection to mechanical properties and internal morphology, Nucl. Mater. Energy 37 (2023) 101510.
DOI: 10.1016/j.nme.2023.101510
Google Scholar
[47]
C. Li, X. Hu, T. Yang, N.K. Kumar, B.D. Wirth, S.J. Zinkle, Neutron irradiation response of a Co-free high entropy alloy, J. Nucl. Mater. 527 (2019) 151838.
DOI: 10.1016/j.jnucmat.2019.151838
Google Scholar
[48]
E. Lu, J. Zhao, I. Makkonen, K. Mizohata, Z. Li, M. Hua, F. Djurabekova, F. Tuomisto, Enhancement of vacancy diffusion by C and N interstitials in the equiatomic FeMnNiCoCr high entropy alloy, Acta Mater. 215 (2021) 117093.
DOI: 10.1016/j.actamat.2021.117093
Google Scholar
[49]
X.L. Ren, B.D. Yao, T. Zhu, Z.H. Zhong, Y.X. Wang, X.Z. Cao, S. Jinno, Q. Xu, Effect of irradiation on randomness of element distribution in CoCrFeMnNi equiatomic high-entropy alloy, Intermetallics 126 (2020) 106942.
DOI: 10.1016/j.intermet.2020.106942
Google Scholar
[50]
F. Tuomisto, I. Makkonen, J. Heikinheimo, F. Granberg, F. Djurabekova, K. Nordlund, G. Velisa, H. Bei, H. Xue, W.J. Weber, Y. Zhang, Segregation of Ni at early stages of radiation damage in NiCoFeCr solid solution alloys, Acta Mater. 196 (2020) 44–51.
DOI: 10.1016/j.actamat.2020.06.024
Google Scholar
[51]
H. Tsuchida, T. Iwai, M. Awano, N. Oshima, R. Suzuki, K. Yasuda, C. Batchuluun, A. Itoh, Radiation damage in nanocrystalline Ni under irradiation studied using positron annihilation spectroscopy, J. Nucl. Mater. 442 (2013) S856–S860.
DOI: 10.1016/j.jnucmat.2013.03.012
Google Scholar
[52]
R. Auguste, M.O. Liedke, F.A. Selim, B.P. Uberuaga, A. Wagner, P. Hosemann, Measurement and Simulation of Vacancy Formation in 2-MeV Self-irradiated Pure Fe, JOM 72 (2020) 2436–2444.
DOI: 10.1007/s11837-020-04116-5
Google Scholar
[53]
J. Keinonen, M. Hautala, E. Rauhala, M. Erola, Hydrogen-implantation-induced damage in silicon, Phys. Rev. B 36 (1987) 1344–1347.
DOI: 10.1103/PhysRevB.36.1344
Google Scholar
[54]
J.-L. Lee, J.S. Kim, H.M. Park, D.S. Ma, S. Tanigawa, A. Uedono, Depth profiles on ion implantation induced vacancy-type defects in GaAs and Si observed by slow positron, Appl. Phys. Lett. 53 (1988) 1302–1304.
DOI: 10.1063/1.100003
Google Scholar
[55]
M. Fujinami, T. Miyagoe, T. Sawada, T. Akahane, Improved depth profiling with slow positrons of ion implantation-induced damage in silicon, J. Appl. Phys. 94 (2003) 4382–4388.
DOI: 10.1063/1.1606855
Google Scholar
[56]
J. Botsoa, T. Sauvage, M.-P. Adam, P. Desgardin, E. Leoni, B. Courtois, F. Treussart, M.-F. Barthe, Optimal conditions for NV- center formation in type-1b diamond studied using photoluminescence and positron annihilation spectroscopies, Phys. Rev. B 84 (2011) 125209.
DOI: 10.1103/PhysRevB.84.125209
Google Scholar
[57]
I. Prozheev, T. Heikkinen, I. Makkonen, K. Mizohata, F. Tuomisto, In-grown and irradiation-induced Al and N vacancies in 100 keV H + implanted AlN single crystals, Jpn. J. Appl. Phys. 63 (2024) 071001.
DOI: 10.35848/1347-4065/ad52da
Google Scholar
[58]
H.E. Evans, J.H. Evans, P. Rice-Evans, D.L. Smith, C. Smith, A slow positron study into the recovery behaviour of as-polished and krypton-implanted uranium dioxide, J. Nucl. Mater. 199 (1992) 79–83.
DOI: 10.1016/0022-3115(92)90442-N
Google Scholar
[59]
J. Wiktor, M.-F. Barthe, G. Jomard, M. Torrent, M. Freyss, M. Bertolus, Coupled experimental and DFT plus U investigation of positron lifetimes in UO2, Phys. Rev. B 90 (2014) 184101.
DOI: 10.1103/PhysRevB.90.184101
Google Scholar
[60]
M.F. Barthe, H. Labrim, A. Gentils, P. Desgardin, C. Corbel, S. Esnouf, J.P. Piron, Positron annihilation characteristics in UO 2 : for lattice and vacancy defects induced by electron irradiation, Phys. Status Solidi C 4 (2007) 3627–3632.
DOI: 10.1002/pssc.200675752
Google Scholar
[61]
N. Djourelov, B. Marchand, H. Marinov, N. Moncoffre, Y. Pipon, P. Nédélec, N. Toulhoat, D. Sillou, Variable energy positron beam study of Xe-implanted uranium oxide, J. Nucl. Mater. 432 (2013) 287–293.
DOI: 10.1016/j.jnucmat.2012.07.035
Google Scholar
[62]
M.H. Weber, J.S. McCloy, C.R. Halverson, S.E. Karcher, R. Mohun, C.L. Corkhill, Characterization of vacancy type defects in irradiated UO2 and CeO2, MRS Adv. 7 (2022) 123–127.
DOI: 10.1557/s43580-022-00213-6
Google Scholar
[63]
H. Labrim, M.F. Barthe, P. Desgardin, T. Sauvage, G. Blondiaux, C. Corbel, J.P. Piron, Vacancy defects induced in sintered polished UO2 disks by helium implantation, Appl. Surf. Sci. 252 (2006) 3256–3261.
DOI: 10.1016/j.apsusc.2005.08.045
Google Scholar
[64]
R. Mohun, L. Desgranges, C. Jégou, B. Boizot, O. Cavani, A. Canizarès, F. Duval, C. He, P. Desgardin, M.-F. Barthe, P. Simon, Quantification of irradiation-induced defects in UO2 using Raman and positron annihilation spectroscopies, Acta Mater. 164 (2019) 512–519.
DOI: 10.1016/j.actamat.2018.10.044
Google Scholar
[65]
J. Wiktor, G. Jomard, M. Torrent, M. Bertolus, First-principles calculations of momentum distributions of annihilating electron–positron pairs in defects in UO 2, J. Phys. Condens. Matter 29 (2017) 035503.
DOI: 10.1088/1361-648X/29/3/035503
Google Scholar
[66]
M. Gérardin, Study of the thermal behavior of fission gas in relation to vacancy defects, (phD thesis), Orleans university (2019).
Google Scholar
[67]
N. Djourelov, B. Marchand, H. Marinov, N. Moncoffre, Y. Pipon, P. Nédélec, N. Toulhoat, D. Sillou, Variable energy positron beam study of Xe-implanted uranium oxide, J. Nucl. Mater. 432 (2013) 287–293.
DOI: 10.1016/j.jnucmat.2012.07.035
Google Scholar
[68]
H. Labrim, M.F. Barthe, P. Desgardin, T. Sauvage, G. Blondiaux, C. Corbel, J.P. Piron, Thermal evolution of vacancy defects induced in sintered UO2 disks by helium implantation, Appl. Surf. Sci. 252 (2006) 3262–3268.
DOI: 10.1016/j.apsusc.2005.08.114
Google Scholar
[69]
D. Roudil, M.F. Barthe, C. Jegou, A. Gavazzi, F. Vella, Investigation of defects in actinide-doped UO2 by positron annihilation spectroscopy, J. Nucl. Mater. 420 (2012) 63–68.
DOI: 10.1016/j.jnucmat.2011.08.011
Google Scholar
[70]
H.L. Chan, R. Auguste, E. Romanovskaia, A.L. Morales, F. Schmidt, V. Romanovski, C. Winkler, J. Qiu, Y. Wang, D. Kaoumi, F.A. Selim, B.P. Uberuaga, P. Hosemann, J.R. Scully, Multi–length scale characterization of point defects in thermally oxidized, proton irradiated iron oxides, Materialia 28 (2023) 101762.
DOI: 10.1016/j.mtla.2023.101762
Google Scholar