Radiation Damage Studies by Positron Annihilation Spectroscopy

Article Preview

Abstract:

Irradiation of materials in space or nuclear applications is unavoidable and it is well known that it modifies their properties (electronic, optical, thermal, mechanical, ..) due to the formation of point and complex defects (vacancies Vs, self-interstitial atoms SIAs, cavities, bubbles, dislocation loops, dislocation lines, precipitates). As this review shows, irradiation can also be very useful for intentionally optimizing material properties and, when performed under very well controlled conditions, for understanding defects properties and their impact on large-scale material properties. Knowledge of how damage is created and accumulated in materials is needed to better understand the behavior of materials under irradiation, in particular their radiation resistance for nuclear applications or to know the best irradiation conditions for optimizing their properties in electronic or optical applications. Experimental characterization of damage is an essential element in achieving this objective, and is very often coupled with simulation. This paper presents general information on the introduction of damage during irradiation of materials and various examples illustrating the typical advantages of the Positron Annihilation Spectroscopy (PAS) technique for the study of radiation damage.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 373)

Pages:

75-97

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.E. Mallon, Application to polymers, in: Y.C. Jean, P.E. Mallon and D.M. Schrader (Eds), Principles and Applications of Positron and Positronium Chemistry, World Scientific, 2003: p.253.

DOI: 10.1142/9789812775610_0010

Google Scholar

[2] M. Eldrup, O.E. Mogensen, J.H. Evans, A positron annihilation study of the annealing of electron irradiated molybdenum, J. Phys. F Met. Phys. 6 (1976) 499–521.

DOI: 10.1088/0305-4608/6/4/011

Google Scholar

[3] K. Petersen, Studies of Nonequilibrium Defects in Metals, in: W. Brandt, A. Dupasquier, A.P. Mills (Eds.), Positron Solids-State Phys., Varenna, 1983: p.298–358.

Google Scholar

[4] F.A. Selim, Positron annihilation spectroscopy of defects in nuclear and irradiated materials- a review, Mater. Charact. 174 (2021) 110952.

DOI: 10.1016/j.matchar.2021.110952

Google Scholar

[5] G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer US, Berlin, 2007.

Google Scholar

[6] M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Des. 33 (1975) 50–54.

DOI: 10.1016/0029-5493(75)90035-7

Google Scholar

[7] J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM – The stopping and range of ions in matter (2010), Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268 (2010) 1818–1823.

DOI: 10.1016/j.nimb.2010.02.091

Google Scholar

[8] C. Borschel, C. Ronning, Ion beam irradiation of nanostructures – A 3D Monte Carlo simulation code, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 (2011) 2133–2138.

DOI: 10.1016/j.nimb.2011.07.004

Google Scholar

[9] J.-P. Crocombette, C. Van Wambeke, Quick calculation of damage for ion irradiation: implementation in Iradina and comparisons to SRIM, EPJ Nucl. Sci. Technol. 5 (2019) 7.

DOI: 10.1051/epjn/2019003

Google Scholar

[10] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, K. Nita, Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, J. Nucl. Sci. Technol. 55 (2018) 684.

DOI: 10.1080/00223131.2017.1419890

Google Scholar

[11] Animations of bulk collision cascade development, 1997, on https://www.mv.helsinki.fi/home/knordlun/casc/index.html.

Google Scholar

[12] B.D. Wirth, M.J. Caturla, Mechanical property degradation in irradiated materials: A multiscale modeling approach, Nucl. Instrum. Methods Phys. Res. B 180 (2001) 23–31.

Google Scholar

[13] A Dupasquier, AP Mills Jr, ed., Positron spectroscopy of solids, IOS press, IOS press, 1995.

Google Scholar

[14] R. Krause-Rehberg, H. Leipner, Positron annihilation in semiconductors: defect studies, Springer Verlag, 1999.

DOI: 10.1007/978-3-662-03893-2_8

Google Scholar

[15] F. Tuomisto, I. Makkonen, Defect identification in semiconductors: Experiment and theory of positron annihilation, Rev. Mod. Physics85 (2013) 1583–1631.

DOI: 10.1103/RevModPhys.85.1583

Google Scholar

[16] J. Čížek, Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review, J. Mater. Sci. Technol. 34 (2018) 577–598.

DOI: 10.1016/j.jmst.2017.11.050

Google Scholar

[17] P.E. Lhuillier, M.F. Barthe, P. Desgardin, W. Egger, P. Sperr, Positron annihilation studies on the nature and thermal behaviour of irradiation induced defects in tungsten, Phys. Status Solidi C - Curr. Top. Solid State Phys. Vol 6 (2009) 2329.

DOI: 10.1002/pssc.200982114

Google Scholar

[18] W. Egger, P. Sperr, G. Kögel, G. Dollinger, Pulsed low energy positron system (PLEPS) at the Munich research reactor FRM II, Phys. Status Solidi C 4 (2007) 3969–3972.

DOI: 10.1002/pssc.200675812

Google Scholar

[19] C. Hugenschmidt, K. Schreckenbach, M. Stadlbauer, B. Straßer, First positron experiments at NEPOMUC, Appl. Surf. Sci. 252 (2006) 3098–3105.

DOI: 10.1016/j.apsusc.2005.08.108

Google Scholar

[20] Q. Yang, Z. Hu, I. Makkonen, P. Desgardin, W. Egger, M.-F. Barthe, P. Olsson, A combined experimental and theoretical study of small and large vacancy clusters in tungsten, J. Nucl. Mater. 571 (2022) 154019.

DOI: 10.1016/j.jnucmat.2022.154019

Google Scholar

[21] P. Desgardin, L. Liszkay, M.F. Barthe, L. Henry, J. Briaud, M. Saillard, L. Lepolotec, C. Corbel, G. Blondiaux, A. Colder, P. Marie, M. Levalois, Slow positron beam facility in Orleans, PosMaterial Sci. Forum 363–365 (2001) 523–525.

DOI: 10.4028/www.scientific.net/MSF.363-365.523

Google Scholar

[22] A. Debelle, M.F. Barthe, T. Sauvage, First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy, J. Nucl. Mater. 376 (2008) 216–221.

DOI: 10.1016/j.jnucmat.2008.03.002

Google Scholar

[23] A. De Backer, P.E. Lhuillier, C.S. Becquart, M.F. Barthe, Modelling of the implantation and the annealing stages of 800 keV He-3 implanted tungsten: Formation of nanovoids in the near surface region, J. Nucl. Mater. 429 (2012) 78–91.

DOI: 10.1016/j.jnucmat.2012.05.024

Google Scholar

[24] A.E. Sand, K. Nordlund, S.L. Dudarev, Radiation damage production in massive cascades initiated by fusion neutrons in tungsten, J. Nucl. Mater. 455 (2014) 207–211.

DOI: 10.1016/j.jnucmat.2014.06.007

Google Scholar

[25] A. Hollingsworth, M.-F. Barthe, M.Y. Lavrentiev, P.M. Derlet, S.L. Dudarev, D.R. Mason, Z. Hu, P. Desgardin, J. Hess, S. Davies, B. Thomas, H. Salter, E.F.J. Shelton, K. Heinola, K. Mizohata, A. De Backer, A. Baron-Wiechec, I. Jepu, Y. Zayachuk, A. Widdowson, E. Meslin, A. Morellec, Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten, J. Nucl. Mater. 558 (2022) 153373.

DOI: 10.1016/j.jnucmat.2021.153373

Google Scholar

[26] M. Sidibe, Etude du comportement du tungstène sous irradiation : Applications aux réacteurs de fusion., (phD thesis, Orleans University (2014).

Google Scholar

[27] S. Wang, W. Guo, T. Schwarz-Selinger, Y. Yuan, L. Ge, L. Cheng, X. Zhang, X. Cao, E. Fu, G.-H. Lu, Dynamic equilibrium of displacement damage defects in heavy-ion irradiated tungsten, Acta Mater. 244 (2023) 118578.

DOI: 10.1016/j.actamat.2022.118578

Google Scholar

[28] S. Agarwal, M.O. Liedke, A.C.L. Jones, E. Reed, A.A. Kohnert, B.P. Uberuaga, Y.Q. Wang, J. Cooper, D. Kaoumi, N. Li, R. Auguste, P. Hosemann, L. Capolungo, D.J. Edwards, M. Butterling, E. Hirschmann, A. Wagner, F.A. Selim, A new mechanism for void-cascade interaction from nondestructive depth-resolved atomic-scale measurements of ion irradiation–induced defects in Fe, Sci. Adv. 6 (2020) eaba8437.

DOI: 10.1126/sciadv.aba8437

Google Scholar

[29] A. Wagner, M. Butterling, M.O. Liedke, K. Potzger, R. Krause-Rehberg, Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility, in: Newport News, VA, USA, 2018: p.040003.

DOI: 10.1063/1.5040215

Google Scholar

[30] Z. Hu, Q. Yang, F. Jomard, P. Desgardin, C. Génévois, J. Joseph, P. Olsson, T. Jourdan, M.-F. Barthe, Revealing the Role of Oxygen on the Microstructure of Electron-Irradiated Tungsten: A Combined Experimental and Simulation Study, (2024).

DOI: 10.2139/ssrn.4684966

Google Scholar

[31] Y.-W. You, X.-S. Kong, X.-B. Wu, C.S. Liu, Q.F. Fang, J.L. Chen, G.-N. Luo, Interaction of carbon, nitrogen and oxygen with vacancies and solutes in tungsten, RSC Adv. 5 (2015) 23261–23270.

DOI: 10.1039/C4RA13854F

Google Scholar

[32] N. Castin, A. Dubinko, G. Bonny, A. Bakaev, J. Likonen, A. De Backer, A.E. Sand, K. Heinola, D. Terentyev, The influence of carbon impurities on the formation of loops in tungsten irradiated with self-ions, J. Nucl. Mater. 527 (2019) 151808.

DOI: 10.1016/j.jnucmat.2019.151808

Google Scholar

[33] Z. Hu, P. Desgardin, C. Genevois, J. Joseph, B. Décamps, R. Schäublin, M.-F. Barthe, Effect of purity on the vacancy defects induced in self–irradiated tungsten: A combination of PAS and TEM, J. Nucl. Mater. 556 (2021) 153175.

DOI: 10.1016/j.jnucmat.2021.153175

Google Scholar

[34] A. Vehanen, K.G. Lynn, P.J. Schultz, M. Eldrup, Improved slow-positron yield using a single crystal tungsten moderator, Appl. Phys. Solids Surf. 32 (1983) 163–167.

DOI: 10.1007/BF00616613

Google Scholar

[35] C.S. Becquart, C. Domain, Ab initio calculations about intrinsic point defects and He in W, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 255 (2007) 23–26.

DOI: 10.1016/j.nimb.2006.11.006

Google Scholar

[36] P.M. Derlet, S.L. Dudarev, Microscopic structure of a heavily irradiated material, Phys. Rev. Mater. 4 (2020) 023605.

DOI: 10.1103/PhysRevMaterials.4.023605

Google Scholar

[37] X. Hu, T. Koyanagi, M. Fukuda, Y. Katoh, L.L. Snead, B.D. Wirth, Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation, J. Nucl. Mater. 470 (2016) 278–289.

DOI: 10.1016/j.jnucmat.2015.12.040

Google Scholar

[38] S. Wang, H. Wang, X. Yi, W. Tan, L. Ge, Y. Sun, W. Guo, Q. Yang, L. Cheng, X. Zhang, Y. Yuan, X. Cao, E. Fu, G.-H. Lu, Damage recovery stages revisited: Thermal evolution of non-saturated and saturated displacement damage in heavy-ion irradiated tungsten, Acta Mater. 273 (2024) 119942.

DOI: 10.1016/j.actamat.2024.119942

Google Scholar

[39] A. De Backer, A. Souidi, . Hodille E, E. Autissier, C. Genevois, Haddad F., Della Noce A., C.S. Becquart, M.-F. Barthe, Multi-Objective Optimization of the Nanocavities Diffusion in Irradiated Metals, Phys. Sci. Forum 5 (2022) 41.

DOI: 10.3390/psf2022005041

Google Scholar

[40] A. De Backer, A. Souidi, E.A. Hodille, E. Autissier, C. Genevois, F. Haddad, A. Della Noce, C. Domain, C.S. Becquart, M.-F. Barthe, Readdressing nanocavity diffusion in tungsten, Front. Nucl. Eng. 2 (2023) 1240995.

DOI: 10.3389/fnuen.2023.1240995

Google Scholar

[41] Y. Nagai, Z. Tang, M. Hassegawa, T. Kanai, M. Saneyasu, Irradiation-induced Cu aggregations in Fe: An origin of embrittlement of reactor pressure vessel steels, Phys. Rev. B 63 (2001) 134110.

DOI: 10.1103/PhysRevB.63.134110

Google Scholar

[42] M. Lambrecht, L. Malerba, A. Almazouzi, Influence of different chemical elements on irradiation-induced hardening embrittlement of RPV steels, J. Nucl. Mater. 378 (2008) 282–290.

DOI: 10.1016/j.jnucmat.2008.06.030

Google Scholar

[43] M. Lambrecht, L. Malerba, Positron annihilation spectroscopy on binary Fe–Cr alloys and ferritic/martensitic steels after neutron irradiation, Acta Mater. 59 (2011) 6547–6555.

DOI: 10.1016/j.actamat.2011.06.046

Google Scholar

[44] V. Krsjak, S. Sojak, M. Petriska, B. Stribrnsky, R. Hinca, M. Huska, V. Slugen, M. Kolluri, O. Martin, J. Degmova, Positron annihilation study of the reactor pressure vessel model steels irradiated in the high flux reactor, J. Nucl. Mater. 584 (2023) 154563.

DOI: 10.1016/j.jnucmat.2023.154563

Google Scholar

[45] S. Abhaya, R. Rajaraman, S. Kalavathi, C. David, B.K. Panigrahi, G. Amarendra, Effect of dose and post irradiation annealing in Ni implanted high entropy alloy FeCrCoNi using slow positron beam, J. Alloys Compd. 669 (2016) 117–122.

DOI: 10.1016/j.jallcom.2016.01.242

Google Scholar

[46] A. Mackova, V. Havránek, R. Mikšová, S. Fernandes, J. Matejicek, H. Hadraba, M. Vilemová, M.O. Liedke, J. Martan, M. Vronka, P. Haušild, M. Butterling, P. Honnerová, A.G. Attalah, A. Wagner, F. Lukac, Radiation damage evolution in High Entropy Alloys (HEAs) caused by 3–5 MeV Au and 5 MeV Cu ions in a broad range of dpa in connection to mechanical properties and internal morphology, Nucl. Mater. Energy 37 (2023) 101510.

DOI: 10.1016/j.nme.2023.101510

Google Scholar

[47] C. Li, X. Hu, T. Yang, N.K. Kumar, B.D. Wirth, S.J. Zinkle, Neutron irradiation response of a Co-free high entropy alloy, J. Nucl. Mater. 527 (2019) 151838.

DOI: 10.1016/j.jnucmat.2019.151838

Google Scholar

[48] E. Lu, J. Zhao, I. Makkonen, K. Mizohata, Z. Li, M. Hua, F. Djurabekova, F. Tuomisto, Enhancement of vacancy diffusion by C and N interstitials in the equiatomic FeMnNiCoCr high entropy alloy, Acta Mater. 215 (2021) 117093.

DOI: 10.1016/j.actamat.2021.117093

Google Scholar

[49] X.L. Ren, B.D. Yao, T. Zhu, Z.H. Zhong, Y.X. Wang, X.Z. Cao, S. Jinno, Q. Xu, Effect of irradiation on randomness of element distribution in CoCrFeMnNi equiatomic high-entropy alloy, Intermetallics 126 (2020) 106942.

DOI: 10.1016/j.intermet.2020.106942

Google Scholar

[50] F. Tuomisto, I. Makkonen, J. Heikinheimo, F. Granberg, F. Djurabekova, K. Nordlund, G. Velisa, H. Bei, H. Xue, W.J. Weber, Y. Zhang, Segregation of Ni at early stages of radiation damage in NiCoFeCr solid solution alloys, Acta Mater. 196 (2020) 44–51.

DOI: 10.1016/j.actamat.2020.06.024

Google Scholar

[51] H. Tsuchida, T. Iwai, M. Awano, N. Oshima, R. Suzuki, K. Yasuda, C. Batchuluun, A. Itoh, Radiation damage in nanocrystalline Ni under irradiation studied using positron annihilation spectroscopy, J. Nucl. Mater. 442 (2013) S856–S860.

DOI: 10.1016/j.jnucmat.2013.03.012

Google Scholar

[52] R. Auguste, M.O. Liedke, F.A. Selim, B.P. Uberuaga, A. Wagner, P. Hosemann, Measurement and Simulation of Vacancy Formation in 2-MeV Self-irradiated Pure Fe, JOM 72 (2020) 2436–2444.

DOI: 10.1007/s11837-020-04116-5

Google Scholar

[53] J. Keinonen, M. Hautala, E. Rauhala, M. Erola, Hydrogen-implantation-induced damage in silicon, Phys. Rev. B 36 (1987) 1344–1347.

DOI: 10.1103/PhysRevB.36.1344

Google Scholar

[54] J.-L. Lee, J.S. Kim, H.M. Park, D.S. Ma, S. Tanigawa, A. Uedono, Depth profiles on ion implantation induced vacancy-type defects in GaAs and Si observed by slow positron, Appl. Phys. Lett. 53 (1988) 1302–1304.

DOI: 10.1063/1.100003

Google Scholar

[55] M. Fujinami, T. Miyagoe, T. Sawada, T. Akahane, Improved depth profiling with slow positrons of ion implantation-induced damage in silicon, J. Appl. Phys. 94 (2003) 4382–4388.

DOI: 10.1063/1.1606855

Google Scholar

[56] J. Botsoa, T. Sauvage, M.-P. Adam, P. Desgardin, E. Leoni, B. Courtois, F. Treussart, M.-F. Barthe, Optimal conditions for NV- center formation in type-1b diamond studied using photoluminescence and positron annihilation spectroscopies, Phys. Rev. B 84 (2011) 125209.

DOI: 10.1103/PhysRevB.84.125209

Google Scholar

[57] I. Prozheev, T. Heikkinen, I. Makkonen, K. Mizohata, F. Tuomisto, In-grown and irradiation-induced Al and N vacancies in 100 keV H + implanted AlN single crystals, Jpn. J. Appl. Phys. 63 (2024) 071001.

DOI: 10.35848/1347-4065/ad52da

Google Scholar

[58] H.E. Evans, J.H. Evans, P. Rice-Evans, D.L. Smith, C. Smith, A slow positron study into the recovery behaviour of as-polished and krypton-implanted uranium dioxide, J. Nucl. Mater. 199 (1992) 79–83.

DOI: 10.1016/0022-3115(92)90442-N

Google Scholar

[59] J. Wiktor, M.-F. Barthe, G. Jomard, M. Torrent, M. Freyss, M. Bertolus, Coupled experimental and DFT plus U investigation of positron lifetimes in UO2, Phys. Rev. B 90 (2014) 184101.

DOI: 10.1103/PhysRevB.90.184101

Google Scholar

[60] M.F. Barthe, H. Labrim, A. Gentils, P. Desgardin, C. Corbel, S. Esnouf, J.P. Piron, Positron annihilation characteristics in UO 2 : for lattice and vacancy defects induced by electron irradiation, Phys. Status Solidi C 4 (2007) 3627–3632.

DOI: 10.1002/pssc.200675752

Google Scholar

[61] N. Djourelov, B. Marchand, H. Marinov, N. Moncoffre, Y. Pipon, P. Nédélec, N. Toulhoat, D. Sillou, Variable energy positron beam study of Xe-implanted uranium oxide, J. Nucl. Mater. 432 (2013) 287–293.

DOI: 10.1016/j.jnucmat.2012.07.035

Google Scholar

[62] M.H. Weber, J.S. McCloy, C.R. Halverson, S.E. Karcher, R. Mohun, C.L. Corkhill, Characterization of vacancy type defects in irradiated UO2 and CeO2, MRS Adv. 7 (2022) 123–127.

DOI: 10.1557/s43580-022-00213-6

Google Scholar

[63] H. Labrim, M.F. Barthe, P. Desgardin, T. Sauvage, G. Blondiaux, C. Corbel, J.P. Piron, Vacancy defects induced in sintered polished UO2 disks by helium implantation, Appl. Surf. Sci. 252 (2006) 3256–3261.

DOI: 10.1016/j.apsusc.2005.08.045

Google Scholar

[64] R. Mohun, L. Desgranges, C. Jégou, B. Boizot, O. Cavani, A. Canizarès, F. Duval, C. He, P. Desgardin, M.-F. Barthe, P. Simon, Quantification of irradiation-induced defects in UO2 using Raman and positron annihilation spectroscopies, Acta Mater. 164 (2019) 512–519.

DOI: 10.1016/j.actamat.2018.10.044

Google Scholar

[65] J. Wiktor, G. Jomard, M. Torrent, M. Bertolus, First-principles calculations of momentum distributions of annihilating electron–positron pairs in defects in UO 2, J. Phys. Condens. Matter 29 (2017) 035503.

DOI: 10.1088/1361-648X/29/3/035503

Google Scholar

[66] M. Gérardin, Study of the thermal behavior of fission gas in relation to vacancy defects, (phD thesis), Orleans university (2019).

Google Scholar

[67] N. Djourelov, B. Marchand, H. Marinov, N. Moncoffre, Y. Pipon, P. Nédélec, N. Toulhoat, D. Sillou, Variable energy positron beam study of Xe-implanted uranium oxide, J. Nucl. Mater. 432 (2013) 287–293.

DOI: 10.1016/j.jnucmat.2012.07.035

Google Scholar

[68] H. Labrim, M.F. Barthe, P. Desgardin, T. Sauvage, G. Blondiaux, C. Corbel, J.P. Piron, Thermal evolution of vacancy defects induced in sintered UO2 disks by helium implantation, Appl. Surf. Sci. 252 (2006) 3262–3268.

DOI: 10.1016/j.apsusc.2005.08.114

Google Scholar

[69] D. Roudil, M.F. Barthe, C. Jegou, A. Gavazzi, F. Vella, Investigation of defects in actinide-doped UO2 by positron annihilation spectroscopy, J. Nucl. Mater. 420 (2012) 63–68.

DOI: 10.1016/j.jnucmat.2011.08.011

Google Scholar

[70] H.L. Chan, R. Auguste, E. Romanovskaia, A.L. Morales, F. Schmidt, V. Romanovski, C. Winkler, J. Qiu, Y. Wang, D. Kaoumi, F.A. Selim, B.P. Uberuaga, P. Hosemann, J.R. Scully, Multi–length scale characterization of point defects in thermally oxidized, proton irradiated iron oxides, Materialia 28 (2023) 101762.

DOI: 10.1016/j.mtla.2023.101762

Google Scholar