p.39
p.49
p.65
p.75
p.99
p.115
p.121
p.145
p.155
Positron Annihilation Spectroscopy Applied to Materials Science and Engineering
Abstract:
The high sensitivity of positrons to directly probe atomic scale defects revealing their structure and characteristics makes it a unique tool in materials science research covering all types of materials from hard to soft matter. This review focuses on applications of positron annihilation spectroscopy (PAS) in hard materials. However, it is not intended as a comprehensive review of the foundations of positron annihilation spectroscopy and description of its techniques. These exist in numerous publications cited in this review. Instead, the aim here is to facilitate employing PAS and interpretation of its measurements by illustrating the advantages, limitations, and challenges and guiding the reader on how to overcome technical problems and how to interpret PAS results in meaningful ways. Applications of PAS in electronic and photonic materials, nuclear and irradiated materials, and engineering materials are discussed. Examples are given to guide the reader on how PAS can be combined with complementary methods to uncover the fundamentals of defect physics and reveal interesting new phenomena in condensed matter.
Info:
Periodical:
Pages:
99-114
Citation:
Online since:
July 2025
Authors:
Permissions:
Citation:
* - Corresponding Author
[1] F.A. Selim, Positron annihilation spectroscopy of defects in nuclear and irradiated materials-a review, Mater Charact. 174 (2021) 110952.
[2] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies, Springer Science & Business Media, 1999.
[3] Y.C. Jean, Positron annihilation in polymers, 175 (1995) 59–70.
[4] S. Dannefaer, P. Mascher, D. Kerr, Defect characterization in diamonds by means of positron annihilation, Diamond and Related Materials. 1 (1992) 407–410.
[5] Y. So, S.F. Hahn, Y. Li, M.T. Reinhard, Styrene 4‐vinylbenzocyclobutene copolymer for microelectronic applications, Journal of Polymer Science Part A: Polymer Chemistry. 46 (2008) 2799–2806.
DOI: 10.1002/pola.22613
[6] S. Dhawan, C. Varney, G.V. Barbosa-Cánovas, J. Tang, F. Selim, S.S. Sablani, The impact of microwave-assisted thermal sterilization on the morphology, free volume, and gas barrier properties of multilayer polymeric films, J Appl Polym Sci. 131 (2014) np–n/a.
DOI: 10.1002/app.40376
[7] Husband, P. , Bartošová, I. , Slugeň, V. , Selim, F. A., Positron annihilation in transparent Ceramics, Accepted, Journal of Physics C. (2015).
[8] Y.C. Jean, J.D. Van Horn, W. Hung, K. Lee, Perspective of positron annihilation spectroscopy in polymers, Macromolecules. 46 (2013) 7133–7145.
DOI: 10.1021/ma401309x
[9] L. Zhang, J. Wu, P. Stepanov, M. Haseman, T. Zhou, D. Winarski, P. Saadatkia, S. Agarwal, F.A. Selim, H. Yang, Defects and solarization in YAG transparent ceramics, Photonics Research. 7 (2019) 549–557.
DOI: 10.1364/prj.7.000549
[10] P. Hautojärvi, A. Dupasquier, M.J. Manninen, Positrons in Solids, Springer, 1979.
[11] M.J. Puska, R.M. Nieminen, Theory of positrons in solids and on solid surfaces, Reviews of modern Physics. 66 (1994) 841.
[12] D.G. Lock, V. Crisp, R.N. West, Positron annihilation and Fermi surface studies: a new approach, Journal of Physics F: Metal Physics. 3 (1973) 561.
[13] P.E. Mijnarends, Determination of the Fermi surface of copper by positron annihilation, Physical Review. 178 (1969) 622.
[14] T.L. Loucks, Fermi surface and positron annihilation in yttrium, Physical Review. 144 (1966) 504.
[15] M. Biasini, Study of the Fermi surface of molybdenum and chromium via positron annihilation experiments, Physica B: Condensed Matter. 275 (2000) 285–294.
[16] L. Hoffmann, A.K. Singh, H. Takei, N. Toyota, Fermi surfaces in Nb3Sn through positron annihilation, Journal of Physics F: Metal Physics. 18 (1988) 2605.
[17] H. Aourag, A. Belaidi, T. Kobayasi, R.N. West, B. Khelifa, Positron annihilation in Si and Ge, physica status solidi (b). 155 (1989) 191–200.
[18] R.N. West, Positron studies of lattice defects in metals, Positrons in Solids, Springer, 1979, p.89–144.
[19] B. Oberdorfer, R. Würschum, Positron trapping model for point defects and grain boundaries in polycrystalline materials, Physical Review B—Condensed Matter and Materials Physics. 79 (2009) 184103.
[20] A. Seeger, The study of defects in crystals by positron annihilation, Applied physics. 4 (1974) 183–199.
[21] M.J. Puska, C. Corbel, R.M. Nieminen, Positron trapping in semiconductors, Physical Review B. 41 (1990) 9980.
[22] R.W. Siegel, Positron annihilation spectroscopy, Annual Review of Materials Research. 10 (1980) 393–425.
[23] V.I. Grafutin, E.P. Prokop'ev, Positron annihilation spectroscopy in materials structure studies, Physics-Uspekhi. 45 (2002) 59.
[24] J. Čížek, Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review, Journal of Materials Science & Technology. 34 (2018) 577–598.
[25] N. Hiroshi, Defects in metals, Physical Metallurgy, Elsevier, 2014, p.561–637.
[26] G.S. Collins, X. Jiang, J.P. Bevington, F. Selim, M.O. Zacate, Change of Diffusion Mechanism with Lattice Parameter in the Series of Lanthanide Indides Having L 1 2 Structure, Phys. Rev. Lett. 102 (2009) 155901.
[27] E. Pastor, M. Sachs, S. Selim, J.R. Durrant, A.A. Bakulin, A. Walsh, Electronic defects in metal oxide photocatalysts, Nature Reviews Materials. 7 (2022) 503–521.
[28] F.A. Selim, Advanced thermoluminescence spectroscopy as a research tool for semiconductor and photonic materials: a review and perspective, physica status solidi (a). 220 (2023) 2200712.
[29] D. Rana, S. Agarwal, M. Islam, A. Banerjee, B.P. Uberuaga, P. Saadatkia, P. Dulal, N. Adhikari, M. Butterling, M.O. Liedke, Light-driven permanent transition from insulator to conductor, Physical Review B. 104 (2021) 245208.
[30] P.L. Rossiter, The Electrical Resistivity of Metals and Alloys, Cambridge university press, 1991.
[31] P.G. Lucasson, R.M. Walker, Production and recovery of electron-induced radiation damage in a number of metals, Physical Review. 127 (1962) 485.
[32] J.W. Kauffman, J.S. Koehler, Quenching-in of lattice vacancies in pure gold, Physical Review. 97 (1955) 555.
[33] Z. Wu, Z. Ni, Spectroscopic investigation of defects in two-dimensional materials, Nanophotonics. 6 (2017) 1219–1237.
[34] B.A. Monemar, Electronic structure and bound excitons for defects in semiconductors from optical spectroscopy, Critical Reviews in Solid State and Material Sciences. 15 (1988) 111–151.
[35] A. Dutta, Fourier transform infrared spectroscopy, Spectroscopic methods for nanomaterials characterization. (2017) 73–93.
[36] S.M. Reda, C.R. Varney, F.A. Selim, Radio-luminescence and absence of trapping defects in Nd-doped YAG single crystals, Results in Physics. 2 (2012) 123–126.
[37] D.T. Mackay, C.R. Varney, J. Buscher, F.A. Selim, Study of exciton dynamics in garnets by low temperature thermo-luminescence, J. Appl. Phys. 112 (2012).
DOI: 10.1063/1.4739722
[38] C.R. Varney, M.A. Khamehchi, J. Ji, F.A. Selim, X-ray luminescence based spectrometer for investigation of scintillation properties, Rev. Sci. Instrum. 83 (2012).
DOI: 10.1063/1.4764772
[39] J. Ji, L.A. Boatner, F.A. Selim, Donor characterization in ZnO by thermally stimulated luminescence, Appl. Phys. Lett. 105 (2014).
DOI: 10.1063/1.4891677
[40] F.A. Selim, M.C. Tarun, D.E. Wall, L.A. Boatner, M.D. McCluskey, Cu-doping of ZnO by nuclear transmutation, Appl. Phys. Lett. 99 (2011).
DOI: 10.1063/1.4736950
[41] R. Teti, N. Alberti, Ultrasonic identification and measurement of defects in composite material laminates, CIRP annals. 39 (1990) 527–530.
[42] F. Honarvar, A. Varvani-Farahani, A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control, Ultrasonics. 108 (2020) 106227.
[43] G.B. González, Investigating the defect structures in transparent conducting oxides using X-ray and neutron scattering techniques, Materials. 5 (2012) 818–850.
DOI: 10.3390/ma5050818
[44] R.J. Stewart, Neutron scattering from defects in materials, Defects in Solids: Modern Techniques, Springer, 1986, p.95–130.
[45] P. Ehrhart, H. Haubold, W. Schilling, Investigation of point defects and their agglomerates in irradiated metals by diffuse X-ray scattering, Festkörperprobleme 14: Plenary Lectures of the Divisions "Semiconductor Physics","Low Temperature Physics","Metal Physics" of the German Physical Society, Freudenstadt, April 1–5, 1974. (1974) 87–110.
DOI: 10.1007/bfb0108463
[46] P.H. Dederichs, The theory of diffuse X-ray scattering and its application to the study of point defects and their clusters, Journal of Physics F: Metal Physics. 3 (1973) 471.
[47] J.D. Eshelby, Distortion of a crystal by point imperfections, J. Appl. Phys. 25 (1954) 255–261.
[48] J.P. Bevington, F. Selim, G.S. Collins, Site preferences of indium impurity atoms in intermetallics having Al 3 Ti or Al 3 Zr crystal structures, Hyperfine Interactions. 177 (2007) 15–19.
[49] F. Selim, J.P. Bevington, G.S. Collins, Diffusion of 111 Cd probes in Ga 7 Pt 3 studied via nuclear quadrupole relaxation, (2008) 333–336.
[50] T. Butz, Nuclear Spectroscopy on Charge Density Wave Systems, Springer Science & Business Media, 2013.
[51] G.L. Catchen, Perturbed-angular-correlation spectroscopy: renaissance of a nuclear technique, MRS Bull. 20 (1995) 37–46.
[52] H.F. Greer, W. Zhou, Electron diffraction and HRTEM imaging of beam-sensitive materials, Crystallography reviews. 17 (2011) 163–185.
[53] J.M. Thomas, P.A. Midgley, High-resolution transmission electron microscopy: the ultimate nanoanalytical technique, Chemical communications. (2004) 1253–1267.
DOI: 10.1039/b315513g
[54] R. Wirth, Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale, Chem. Geol. 261 (2009) 217–229.
[55] P. Buseck, J. Cowley, L. Eyring, High-Resolution Transmission Electron Microscopy: And Associated Techniques, Oxford University Press, 1989.
[56] Y. Lin, M. Zhou, X. Tai, H. Li, X. Han, J. Yu, Analytical transmission electron microscopy for emerging advanced materials, Matter. 4 (2021) 2309–2339.
[57] R.M. Nieminen, M.J. Manninen, Positrons in imperfect solids: theory, Positrons in Solids, Springer, 1979, p.145–195.
[58] R.W. Siegel, Vacancy concentrations in metals, J. Nucl. Mater. 69 (1978) 117–146.
[59] M.H. Weber, F.A. Selim, D. Solodovnikov, K.G. Lynn, Defect engineering of ZnO, Appl. Surf. Sci. 255 (2008) 68–70.
[60] S. Van Petegem, C. Dauwe, T. Van Hoecke, J. De Baerdemaeker, D. Segers, Diffusion length of positrons and positronium investigated using a positron beam with longitudinal geometry, Physical Review B—Condensed Matter and Materials Physics. 70 (2004) 115410.
[61] J. Čížek, M. Vlček, I. Procházka, Digital spectrometer for coincidence measurement of Doppler broadening of positron annihilation radiation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 623 (2010) 982–994.
[62] P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, K.G. Lynn, Increased elemental specificity of positron annihilation spectra, Phys. Rev. Lett. 77 (1996) 2097.
[63] T.M. Hall, A.N. Goland, C.L. Snead Jr, Applications of positron-lifetime measurements to the study of defects in metals, Physical Review B. 10 (1974) 3062.
[64] M.J. Puska, R.M. Nieminen, Defect spectroscopy with positrons: a general calculational method, Journal of Physics F: Metal Physics. 13 (1983) 333.
[65] M. Eldrup, B.N. Singh, Accumulation of point defects and their complexes in irradiated metals as studied by the use of positron annihilation spectroscopy–a brief review, J. Nucl. Mater. 323 (2003) 346–353.
[66] P. Hautojärvi, C. Corbel, Positron spectroscopy of defects in metals and semiconductors, Positron Spectroscopy of Solids, IOS press, 1995, p.491–532.
[67] F.A. Selim, D. Winarski, C.R. Varney, M.C. Tarun, J. Ji, M.D. McCluskey, Generation and characterization of point defects in SrTiO3 and Y3Al5O12, Results in Physics. 5 (2015) 28–31.
[68] N.G. Fazleev, J.L. Fry, M.P. Nadesalingam, A.H. Weiss, Positron trapping at quantum-dot-like particles on metal surfaces, Appl. Surf. Sci. 252 (2006) 3327–3332.
[69] Y. Nagai, M. Hasegawa, Z. Tang, A. Hempel, K. Yubuta, T. Shimamura, Y. Kawazoe, A. Kawai, F. Kano, Positron confinement in ultrafine embedded particles: Quantum-dot-like state in an Fe-Cu alloy, Physical Review B. 61 (2000) 6574.
[70] Z. Tang, T. Toyama, Y. Nagai, K. Inoue, Z.Q. Zhu, M. Hasegawa, Size-dependent momentum smearing effect of positron annihilation radiation in embedded nano Cu clusters, Journal of Physics: Condensed Matter. 20 (2008) 445203.
[71] S. McGuire, D.J. Keeble, Positron lifetimes of polycrystalline metals: A positron source correction study, J. Appl. Phys. 100 (2006).
DOI: 10.1063/1.2384794
[72] A. Wagner, M. Butterling, M.O. Liedke, K. Potzger, R. Krause-Rehberg, Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility, 1970 (2018).
DOI: 10.1063/1.5040215
[73] R. Suzuki, T. Ohdaira, A. Uedono, Y. Kobayashi, Positron annihilation in SiO2–Si studied by a pulsed slow positron beam, Appl. Surf. Sci. 194 (2002) 89–96.
[74] F.A. Selim, D.P. Wells, J.F. Harmon, J. Williams, Development of accelerator-based γ-ray-induced positron annihilation spectroscopy technique, J. Appl. Phys. 97 (2005).
DOI: 10.1063/1.1925769
[75] F.A. Selim, D.P. Wells, J.F. Harmon, J. Kwofie, G. Erikson, T. Roney, New positron annihilation spectroscopy techniques for thick materials, Radiat. Phys. Chem. 68 (2003) 427–430.
[76] C. Hugenschmidt, B. Löwe, J. Mayer, C. Piochacz, P. Pikart, R. Repper, M. Stadlbauer, K. Schreckenbach, Unprecedented intensity of a low-energy positron beam, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 593 (2008) 616–618.
[77] P. Asoka‐Kumar, K.G. Lynn, D.O. Welch, Characterization of defects in Si and SiO2− Si using positrons, J. Appl. Phys. 76 (1994) 4935–4982.
DOI: 10.1063/1.357207
[78] J. Slotte, Positron annihilation spectroscopy of vacancy complexes in SiGe, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 253 (2006) 130–135.
[79] S. Dannefaer, B. Hogg, D. Kerr, Investigation of defects in gallium arsenide using positron annihilation, Physical Review B. 30 (1984) 3355.
[80] X.D. Pi, P.G. Coleman, C.L. Tseng, C.P. Burrows, B. Yavich, W.N. Wang, Defects in GaN films studied by positron annihilation spectroscopy, Journal of Physics: Condensed Matter. 14 (2002) L243.
[81] F.A. Selim, M.H. Weber, D. Solodovnikov, K.G. Lynn, Nature of native defects in ZnO, Phys. Rev. Lett. 99 (2007) 085502.
[82] S. Dutta, M. Chakrabarti, S. Chattopadhyay, D. Jana, D. Sanyal, A. Sarkar, Defect dynamics in annealed ZnO by positron annihilation spectroscopy, J. Appl. Phys. 98 (2005).
DOI: 10.1063/1.2035308
[83] P. Saadatkia, S. Agarwal, A. Hernandez, E. Reed, I.D. Brackenbury, C.L. Codding, M.O. Liedke, M. Butterling, A. Wagner, F.A. Selim, Point and extended defects in heteroepitaxial β-G a 2 O 3 films, Physical Review Materials. 4 (2020) 104602.
[84] M. Haseman, P. Saadatkia, D.J. Winarski, F.A. Selim, K.D. Leedy, S. Tetlak, D.C. Look, W. Anwand, A. Wagner, Effects of substrate and post-growth treatments on the microstructure and properties of ZnO thin films prepared by atomic layer deposition, J Electron Mater. 45 (2016) 6337–6345.
[85] F. Tuomisto, I. Makkonen, Defect identification in semiconductors with positron annihilation: Experiment and theory, Reviews of Modern Physics. 85 (2013) 1583–1631.
[86] F. Plazaola, A.P. Seitsonen, M.J. Puska, Positron annihilation in II-VI compound semiconductors: theory, Journal of Physics: Condensed Matter. 6 (1994) 8809.
[87] K. Saarinen, P. Hautojärvi, C. Corbel, Positron annihilation spectroscopy of defects in semiconductors, Semiconductors and Semimetals, Elsevier, 1998, p.209–285.
[88] R. Cotterill, I.K. MacKenzie, L. Smedskjaer, G. Trumpy, J. Träff, Correlation of void size and positron annihilation characteristics in neutron-irradiated molybdenum, Nature. 239 (1972) 99–101.
DOI: 10.1038/239099a0
[89] W. Triftshäuser, J.D. McGervey, R.W. Hendricks, Positron-annihilation studies of voids in neutron-irradiated aluminum single crystals, Physical Review B. 9 (1974) 3321.
[90] T. Wider, S. Hansen, U. Holzwarth, K. Maier, Sensitivity of positron annihilation to plastic deformation, Physical Review B. 57 (1998) 5126.
[91] U. Holzwarth, P. Schaaff, Nondestructive monitoring of fatigue damage evolution in austenitic stainless steel by positron-lifetime measurements, Physical Review B. 69 (2004) 094110.
[92] F.A. Selim, D.P. Wells, J.F. Harmon, J. Kwofie, R. Spaulding, G. Erickson, T. Roney, Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 495 (2002) 154–160.
[93] F.A. Selim, D.P. Wells, J.F. Harmon, W. Scates, J. Kwofie, R. Spaulding, S.P. Duttagupta, J.L. Jones, T. White, T. Roney, Doppler broadening measurements of positron annihilation using bremsstrahlung radiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 192 (2002) 197–201.
[94] F.A. Selim, D.P. Wells, J.F. Harmon, J. Williams, High depth nondestructive stress measurements on thick steel alloys, J. Appl. Phys. 97 (2005).
DOI: 10.1063/1.1925770
[95] F. Selim, Gamma induced positron annihilation: History, current, and future developments, Acta Physica Polonica A. 132 (2017) 1450–1455.
[96] F.A. Selim, D.P. Wells, J.F. Harmon, Positron lifetime measurements by proton capture, Rev. Sci. Instrum. 76 (2005).
[97] F.A. Selim, Nanosecond time scale measurements of electron states during laser excitation by positron annihilation, Physics Letters A. 344 (2005) 291–296.
[98] P. Saadatkia, P. Stepanov, F.A. Selim, Photoconductivity of bulk SrTiO3 single crystals at room temperature, Materials Research Express. 5 (2018) 016202.
[99] M.C. Tarun, F.A. Selim, M.D. McCluskey, Persistent photoconductivity in strontium titanate, Phys. Rev. Lett. 111 (2013) 187403.
[100] S.C. Agarwal, S. Guha, Persistent photoconductivity in a− Si: H/a− Si N x: H layered structures, Physical Review B. 31 (1985) 5547.
[101] J. Krištiak, K. Krištiaková, O. Šauša, Phase transition in C 60 observed by positron annihilation, Physical Review B. 50 (1994) 2792.
[102] F.A. Selim, C.R. Varney, M.C. Tarun, M.C. Rowe, G.S. Collins, M.D. McCluskey, Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets, Physical Review B—Condensed Matter and Materials Physics. 88 (2013) 174102.
[103] K.M. Johansen, A. Zubiaga, F. Tuomisto, E.V. Monakhov, A.Y. Kuznetsov, B.G. Svensson, H passivation of Li on Zn-site in ZnO: Positron annihilation spectroscopy and secondary ion mass spectrometry, Physical Review B—Condensed Matter and Materials Physics. 84 (2011) 115203.
[104] L.J. Huang, W.M. Lau, P.J. Simpson, P.J. Schultz, Depth profiling of hydrogen passivation of boron in Si (100), Physical Review B. 46 (1992) 4086.
[105] D.J. Winarski, W. Anwand, A. Wagner, P. Saadatkia, F.A. Selim, M. Allen, B. Wenner, K. Leedy, J. Allen, S. Tetlak, Induced conductivity in sol-gel ZnO films by passivation or elimination of Zn vacancies, Aip Advances. 6 (2016).
DOI: 10.1063/1.4962658
[106] M.M. Islam, M.O. Liedke, D. Winarski, M. Butterling, A. Wagner, P. Hosemann, Y. Wang, B. Uberuaga, F.A. Selim, Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3, Scientific reports. 10 (2020) 6134.
[107] S. Agarwal, M.O. Liedke, A. Jones, E. Reed, A.A. Kohnert, B.P. Uberuaga, Y.Q. Wang, J. Cooper, D. Kaoumi, N. Li, A new mechanism for void-cascade interaction from nondestructive depth-resolved atomic-scale measurements of ion irradiation–induced defects in Fe, Science advances. 6 (2020) eaba8437.
[108] H. Kim, M.R. Chancey, T. Chung, I. Brackenbury, M.O. Liedke, M. Butterling, E. Hirschmann, A. Wagner, J.K. Baldwin, B.K. Derby, Interface effect of Fe and Fe2O3 on the distributions of ion induced defects, J. Appl. Phys. 132 (2022).
DOI: 10.1063/5.0095013
[109] S. Agarwal, M. Butterling, M.O. Liedke, K.H. Yano, D.K. Schreiber, A. Jones, B.P. Uberuaga, Y.Q. Wang, M. Chancey, H. Kim, The mechanism behind the high radiation tolerance of Fe–Cr alloys, J. Appl. Phys. 131 (2022).
DOI: 10.1063/5.0085086
[110] F. Tuomisto, I. Makkonen, J. Heikinheimo, F. Granberg, F. Djurabekova, K. Nordlund, G. Velisa, H. Bei, H. Xue, W.J. Weber, Segregation of Ni at early stages of radiation damage in NiCoFeCr solid solution alloys, Acta Materialia. 196 (2020) 44–51.
[111] F.J. Ye, T. Zhu, Q.Q. Wang, Y.M. Song, H.Q. Zhang, P. Zhang, P. Kuang, R.S. Yu, X.Z. Cao, B.Y. Wang, Positron annihilation study of open volume defects and Cr segregation in deformed CoCrFeMnNi alloy, Intermetallics. 149 (2022) 107670.
[112] G. Dlubek, R. Krause, O. Brummer, Z. Michno, T. Gorecki, Impurity-induced vacancy clustering in cold-rolled nickel alloys as studied by positron annihilation techniques, Journal of Physics F: Metal Physics. 17 (1987) 1333.