Positron Annihilation Spectroscopy Applied to Materials Science and Engineering

Article Preview

Abstract:

The high sensitivity of positrons to directly probe atomic scale defects revealing their structure and characteristics makes it a unique tool in materials science research covering all types of materials from hard to soft matter. This review focuses on applications of positron annihilation spectroscopy (PAS) in hard materials. However, it is not intended as a comprehensive review of the foundations of positron annihilation spectroscopy and description of its techniques. These exist in numerous publications cited in this review. Instead, the aim here is to facilitate employing PAS and interpretation of its measurements by illustrating the advantages, limitations, and challenges and guiding the reader on how to overcome technical problems and how to interpret PAS results in meaningful ways. Applications of PAS in electronic and photonic materials, nuclear and irradiated materials, and engineering materials are discussed. Examples are given to guide the reader on how PAS can be combined with complementary methods to uncover the fundamentals of defect physics and reveal interesting new phenomena in condensed matter.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] F.A. Selim, Positron annihilation spectroscopy of defects in nuclear and irradiated materials-a review, Mater Charact. 174 (2021) 110952.

DOI: 10.1016/j.matchar.2021.110952

Google Scholar

[2] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies, Springer Science & Business Media, 1999.

DOI: 10.1007/978-3-662-03893-2_8

Google Scholar

[3] Y.C. Jean, Positron annihilation in polymers, 175 (1995) 59–70.

Google Scholar

[4] S. Dannefaer, P. Mascher, D. Kerr, Defect characterization in diamonds by means of positron annihilation, Diamond and Related Materials. 1 (1992) 407–410.

DOI: 10.1016/0925-9635(92)90138-e

Google Scholar

[5] Y. So, S.F. Hahn, Y. Li, M.T. Reinhard, Styrene 4‐vinylbenzocyclobutene copolymer for microelectronic applications, Journal of Polymer Science Part A: Polymer Chemistry. 46 (2008) 2799–2806.

DOI: 10.1002/pola.22613

Google Scholar

[6] S. Dhawan, C. Varney, G.V. Barbosa-Cánovas, J. Tang, F. Selim, S.S. Sablani, The impact of microwave-assisted thermal sterilization on the morphology, free volume, and gas barrier properties of multilayer polymeric films, J Appl Polym Sci. 131 (2014) np–n/a.

DOI: 10.1002/app.40376

Google Scholar

[7] Husband, P. , Bartošová, I. , Slugeň, V. , Selim, F. A., Positron annihilation in transparent Ceramics, Accepted, Journal of Physics C. (2015).

DOI: 10.1088/1742-6596/674/1/012013

Google Scholar

[8] Y.C. Jean, J.D. Van Horn, W. Hung, K. Lee, Perspective of positron annihilation spectroscopy in polymers, Macromolecules. 46 (2013) 7133–7145.

DOI: 10.1021/ma401309x

Google Scholar

[9] L. Zhang, J. Wu, P. Stepanov, M. Haseman, T. Zhou, D. Winarski, P. Saadatkia, S. Agarwal, F.A. Selim, H. Yang, Defects and solarization in YAG transparent ceramics, Photonics Research. 7 (2019) 549–557.

DOI: 10.1364/prj.7.000549

Google Scholar

[10] P. Hautojärvi, A. Dupasquier, M.J. Manninen, Positrons in Solids, Springer, 1979.

Google Scholar

[11] M.J. Puska, R.M. Nieminen, Theory of positrons in solids and on solid surfaces, Reviews of modern Physics. 66 (1994) 841.

DOI: 10.1103/revmodphys.66.841

Google Scholar

[12] D.G. Lock, V. Crisp, R.N. West, Positron annihilation and Fermi surface studies: a new approach, Journal of Physics F: Metal Physics. 3 (1973) 561.

DOI: 10.1088/0305-4608/3/3/014

Google Scholar

[13] P.E. Mijnarends, Determination of the Fermi surface of copper by positron annihilation, Physical Review. 178 (1969) 622.

DOI: 10.1103/physrev.178.622

Google Scholar

[14] T.L. Loucks, Fermi surface and positron annihilation in yttrium, Physical Review. 144 (1966) 504.

DOI: 10.1103/physrev.144.504

Google Scholar

[15] M. Biasini, Study of the Fermi surface of molybdenum and chromium via positron annihilation experiments, Physica B: Condensed Matter. 275 (2000) 285–294.

DOI: 10.1016/s0921-4526(99)00745-0

Google Scholar

[16] L. Hoffmann, A.K. Singh, H. Takei, N. Toyota, Fermi surfaces in Nb3Sn through positron annihilation, Journal of Physics F: Metal Physics. 18 (1988) 2605.

DOI: 10.1088/0305-4608/18/12/011

Google Scholar

[17] H. Aourag, A. Belaidi, T. Kobayasi, R.N. West, B. Khelifa, Positron annihilation in Si and Ge, physica status solidi (b). 155 (1989) 191–200.

DOI: 10.1002/pssb.2221550118

Google Scholar

[18] R.N. West, Positron studies of lattice defects in metals, Positrons in Solids, Springer, 1979, p.89–144.

DOI: 10.1007/978-3-642-81316-0_3

Google Scholar

[19] B. Oberdorfer, R. Würschum, Positron trapping model for point defects and grain boundaries in polycrystalline materials, Physical Review B—Condensed Matter and Materials Physics. 79 (2009) 184103.

DOI: 10.1103/physrevb.79.184103

Google Scholar

[20] A. Seeger, The study of defects in crystals by positron annihilation, Applied physics. 4 (1974) 183–199.

Google Scholar

[21] M.J. Puska, C. Corbel, R.M. Nieminen, Positron trapping in semiconductors, Physical Review B. 41 (1990) 9980.

DOI: 10.1103/physrevb.41.9980

Google Scholar

[22] R.W. Siegel, Positron annihilation spectroscopy, Annual Review of Materials Research. 10 (1980) 393–425.

Google Scholar

[23] V.I. Grafutin, E.P. Prokop'ev, Positron annihilation spectroscopy in materials structure studies, Physics-Uspekhi. 45 (2002) 59.

DOI: 10.1070/pu2002v045n01abeh000971

Google Scholar

[24] J. Čížek, Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review, Journal of Materials Science & Technology. 34 (2018) 577–598.

DOI: 10.1016/j.jmst.2017.11.050

Google Scholar

[25] N. Hiroshi, Defects in metals, Physical Metallurgy, Elsevier, 2014, p.561–637.

Google Scholar

[26] G.S. Collins, X. Jiang, J.P. Bevington, F. Selim, M.O. Zacate, Change of Diffusion Mechanism with Lattice Parameter in the Series of Lanthanide Indides Having L 1 2 Structure, Phys. Rev. Lett. 102 (2009) 155901.

DOI: 10.1103/physrevlett.102.155901

Google Scholar

[27] E. Pastor, M. Sachs, S. Selim, J.R. Durrant, A.A. Bakulin, A. Walsh, Electronic defects in metal oxide photocatalysts, Nature Reviews Materials. 7 (2022) 503–521.

DOI: 10.1038/s41578-022-00433-0

Google Scholar

[28] F.A. Selim, Advanced thermoluminescence spectroscopy as a research tool for semiconductor and photonic materials: a review and perspective, physica status solidi (a). 220 (2023) 2200712.

DOI: 10.1002/pssa.202200712

Google Scholar

[29] D. Rana, S. Agarwal, M. Islam, A. Banerjee, B.P. Uberuaga, P. Saadatkia, P. Dulal, N. Adhikari, M. Butterling, M.O. Liedke, Light-driven permanent transition from insulator to conductor, Physical Review B. 104 (2021) 245208.

DOI: 10.1103/physrevb.104.245208

Google Scholar

[30] P.L. Rossiter, The Electrical Resistivity of Metals and Alloys, Cambridge university press, 1991.

Google Scholar

[31] P.G. Lucasson, R.M. Walker, Production and recovery of electron-induced radiation damage in a number of metals, Physical Review. 127 (1962) 485.

DOI: 10.1103/physrev.127.485

Google Scholar

[32] J.W. Kauffman, J.S. Koehler, Quenching-in of lattice vacancies in pure gold, Physical Review. 97 (1955) 555.

DOI: 10.1103/physrev.97.555

Google Scholar

[33] Z. Wu, Z. Ni, Spectroscopic investigation of defects in two-dimensional materials, Nanophotonics. 6 (2017) 1219–1237.

DOI: 10.1515/nanoph-2016-0151

Google Scholar

[34] B.A. Monemar, Electronic structure and bound excitons for defects in semiconductors from optical spectroscopy, Critical Reviews in Solid State and Material Sciences. 15 (1988) 111–151.

DOI: 10.1080/10408438808243736

Google Scholar

[35] A. Dutta, Fourier transform infrared spectroscopy, Spectroscopic methods for nanomaterials characterization. (2017) 73–93.

DOI: 10.1016/b978-0-323-46140-5.00004-2

Google Scholar

[36] S.M. Reda, C.R. Varney, F.A. Selim, Radio-luminescence and absence of trapping defects in Nd-doped YAG single crystals, Results in Physics. 2 (2012) 123–126.

DOI: 10.1016/j.rinp.2012.09.007

Google Scholar

[37] D.T. Mackay, C.R. Varney, J. Buscher, F.A. Selim, Study of exciton dynamics in garnets by low temperature thermo-luminescence, J. Appl. Phys. 112 (2012).

DOI: 10.1063/1.4739722

Google Scholar

[38] C.R. Varney, M.A. Khamehchi, J. Ji, F.A. Selim, X-ray luminescence based spectrometer for investigation of scintillation properties, Rev. Sci. Instrum. 83 (2012).

DOI: 10.1063/1.4764772

Google Scholar

[39] J. Ji, L.A. Boatner, F.A. Selim, Donor characterization in ZnO by thermally stimulated luminescence, Appl. Phys. Lett. 105 (2014).

DOI: 10.1063/1.4891677

Google Scholar

[40] F.A. Selim, M.C. Tarun, D.E. Wall, L.A. Boatner, M.D. McCluskey, Cu-doping of ZnO by nuclear transmutation, Appl. Phys. Lett. 99 (2011).

DOI: 10.1063/1.4736950

Google Scholar

[41] R. Teti, N. Alberti, Ultrasonic identification and measurement of defects in composite material laminates, CIRP annals. 39 (1990) 527–530.

DOI: 10.1016/s0007-8506(07)61112-3

Google Scholar

[42] F. Honarvar, A. Varvani-Farahani, A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control, Ultrasonics. 108 (2020) 106227.

DOI: 10.1016/j.ultras.2020.106227

Google Scholar

[43] G.B. González, Investigating the defect structures in transparent conducting oxides using X-ray and neutron scattering techniques, Materials. 5 (2012) 818–850.

DOI: 10.3390/ma5050818

Google Scholar

[44] R.J. Stewart, Neutron scattering from defects in materials, Defects in Solids: Modern Techniques, Springer, 1986, p.95–130.

DOI: 10.1007/978-1-4757-0761-8_5

Google Scholar

[45] P. Ehrhart, H. Haubold, W. Schilling, Investigation of point defects and their agglomerates in irradiated metals by diffuse X-ray scattering, Festkörperprobleme 14: Plenary Lectures of the Divisions "Semiconductor Physics","Low Temperature Physics","Metal Physics" of the German Physical Society, Freudenstadt, April 1–5, 1974. (1974) 87–110.

DOI: 10.1007/bfb0108463

Google Scholar

[46] P.H. Dederichs, The theory of diffuse X-ray scattering and its application to the study of point defects and their clusters, Journal of Physics F: Metal Physics. 3 (1973) 471.

DOI: 10.1088/0305-4608/3/2/010

Google Scholar

[47] J.D. Eshelby, Distortion of a crystal by point imperfections, J. Appl. Phys. 25 (1954) 255–261.

Google Scholar

[48] J.P. Bevington, F. Selim, G.S. Collins, Site preferences of indium impurity atoms in intermetallics having Al 3 Ti or Al 3 Zr crystal structures, Hyperfine Interactions. 177 (2007) 15–19.

DOI: 10.1007/s10751-008-9615-y

Google Scholar

[49] F. Selim, J.P. Bevington, G.S. Collins, Diffusion of 111 Cd probes in Ga 7 Pt 3 studied via nuclear quadrupole relaxation, (2008) 333–336.

DOI: 10.1007/978-3-540-85320-6_52

Google Scholar

[50] T. Butz, Nuclear Spectroscopy on Charge Density Wave Systems, Springer Science & Business Media, 2013.

Google Scholar

[51] G.L. Catchen, Perturbed-angular-correlation spectroscopy: renaissance of a nuclear technique, MRS Bull. 20 (1995) 37–46.

DOI: 10.1557/s0883769400037167

Google Scholar

[52] H.F. Greer, W. Zhou, Electron diffraction and HRTEM imaging of beam-sensitive materials, Crystallography reviews. 17 (2011) 163–185.

DOI: 10.1080/0889311x.2010.535525

Google Scholar

[53] J.M. Thomas, P.A. Midgley, High-resolution transmission electron microscopy: the ultimate nanoanalytical technique, Chemical communications. (2004) 1253–1267.

DOI: 10.1039/b315513g

Google Scholar

[54] R. Wirth, Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale, Chem. Geol. 261 (2009) 217–229.

DOI: 10.1016/j.chemgeo.2008.05.019

Google Scholar

[55] P. Buseck, J. Cowley, L. Eyring, High-Resolution Transmission Electron Microscopy: And Associated Techniques, Oxford University Press, 1989.

Google Scholar

[56] Y. Lin, M. Zhou, X. Tai, H. Li, X. Han, J. Yu, Analytical transmission electron microscopy for emerging advanced materials, Matter. 4 (2021) 2309–2339.

DOI: 10.1016/j.matt.2021.05.005

Google Scholar

[57] R.M. Nieminen, M.J. Manninen, Positrons in imperfect solids: theory, Positrons in Solids, Springer, 1979, p.145–195.

DOI: 10.1007/978-3-642-81316-0_4

Google Scholar

[58] R.W. Siegel, Vacancy concentrations in metals, J. Nucl. Mater. 69 (1978) 117–146.

Google Scholar

[59] M.H. Weber, F.A. Selim, D. Solodovnikov, K.G. Lynn, Defect engineering of ZnO, Appl. Surf. Sci. 255 (2008) 68–70.

DOI: 10.1016/j.apsusc.2008.05.170

Google Scholar

[60] S. Van Petegem, C. Dauwe, T. Van Hoecke, J. De Baerdemaeker, D. Segers, Diffusion length of positrons and positronium investigated using a positron beam with longitudinal geometry, Physical Review B—Condensed Matter and Materials Physics. 70 (2004) 115410.

DOI: 10.1103/physrevb.70.115410

Google Scholar

[61] J. Čížek, M. Vlček, I. Procházka, Digital spectrometer for coincidence measurement of Doppler broadening of positron annihilation radiation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 623 (2010) 982–994.

DOI: 10.1016/j.nima.2010.07.046

Google Scholar

[62] P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, K.G. Lynn, Increased elemental specificity of positron annihilation spectra, Phys. Rev. Lett. 77 (1996) 2097.

DOI: 10.1103/physrevlett.77.2097

Google Scholar

[63] T.M. Hall, A.N. Goland, C.L. Snead Jr, Applications of positron-lifetime measurements to the study of defects in metals, Physical Review B. 10 (1974) 3062.

DOI: 10.1103/physrevb.10.3062

Google Scholar

[64] M.J. Puska, R.M. Nieminen, Defect spectroscopy with positrons: a general calculational method, Journal of Physics F: Metal Physics. 13 (1983) 333.

DOI: 10.1088/0305-4608/13/2/009

Google Scholar

[65] M. Eldrup, B.N. Singh, Accumulation of point defects and their complexes in irradiated metals as studied by the use of positron annihilation spectroscopy–a brief review, J. Nucl. Mater. 323 (2003) 346–353.

DOI: 10.1016/j.jnucmat.2003.08.011

Google Scholar

[66] P. Hautojärvi, C. Corbel, Positron spectroscopy of defects in metals and semiconductors, Positron Spectroscopy of Solids, IOS press, 1995, p.491–532.

Google Scholar

[67] F.A. Selim, D. Winarski, C.R. Varney, M.C. Tarun, J. Ji, M.D. McCluskey, Generation and characterization of point defects in SrTiO3 and Y3Al5O12, Results in Physics. 5 (2015) 28–31.

DOI: 10.1016/j.rinp.2015.01.002

Google Scholar

[68] N.G. Fazleev, J.L. Fry, M.P. Nadesalingam, A.H. Weiss, Positron trapping at quantum-dot-like particles on metal surfaces, Appl. Surf. Sci. 252 (2006) 3327–3332.

DOI: 10.1016/j.apsusc.2005.08.105

Google Scholar

[69] Y. Nagai, M. Hasegawa, Z. Tang, A. Hempel, K. Yubuta, T. Shimamura, Y. Kawazoe, A. Kawai, F. Kano, Positron confinement in ultrafine embedded particles: Quantum-dot-like state in an Fe-Cu alloy, Physical Review B. 61 (2000) 6574.

DOI: 10.1103/physrevb.61.6574

Google Scholar

[70] Z. Tang, T. Toyama, Y. Nagai, K. Inoue, Z.Q. Zhu, M. Hasegawa, Size-dependent momentum smearing effect of positron annihilation radiation in embedded nano Cu clusters, Journal of Physics: Condensed Matter. 20 (2008) 445203.

DOI: 10.1088/0953-8984/20/44/445203

Google Scholar

[71] S. McGuire, D.J. Keeble, Positron lifetimes of polycrystalline metals: A positron source correction study, J. Appl. Phys. 100 (2006).

DOI: 10.1063/1.2384794

Google Scholar

[72] A. Wagner, M. Butterling, M.O. Liedke, K. Potzger, R. Krause-Rehberg, Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility, 1970 (2018).

DOI: 10.1063/1.5040215

Google Scholar

[73] R. Suzuki, T. Ohdaira, A. Uedono, Y. Kobayashi, Positron annihilation in SiO2–Si studied by a pulsed slow positron beam, Appl. Surf. Sci. 194 (2002) 89–96.

DOI: 10.1016/s0169-4332(02)00094-6

Google Scholar

[74] F.A. Selim, D.P. Wells, J.F. Harmon, J. Williams, Development of accelerator-based γ-ray-induced positron annihilation spectroscopy technique, J. Appl. Phys. 97 (2005).

DOI: 10.1063/1.1925769

Google Scholar

[75] F.A. Selim, D.P. Wells, J.F. Harmon, J. Kwofie, G. Erikson, T. Roney, New positron annihilation spectroscopy techniques for thick materials, Radiat. Phys. Chem. 68 (2003) 427–430.

DOI: 10.1016/s0969-806x(03)00249-4

Google Scholar

[76] C. Hugenschmidt, B. Löwe, J. Mayer, C. Piochacz, P. Pikart, R. Repper, M. Stadlbauer, K. Schreckenbach, Unprecedented intensity of a low-energy positron beam, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 593 (2008) 616–618.

DOI: 10.1016/j.nima.2008.05.038

Google Scholar

[77] P. Asoka‐Kumar, K.G. Lynn, D.O. Welch, Characterization of defects in Si and SiO2− Si using positrons, J. Appl. Phys. 76 (1994) 4935–4982.

DOI: 10.1063/1.357207

Google Scholar

[78] J. Slotte, Positron annihilation spectroscopy of vacancy complexes in SiGe, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 253 (2006) 130–135.

DOI: 10.1016/j.nimb.2006.10.018

Google Scholar

[79] S. Dannefaer, B. Hogg, D. Kerr, Investigation of defects in gallium arsenide using positron annihilation, Physical Review B. 30 (1984) 3355.

DOI: 10.1103/physrevb.30.3355

Google Scholar

[80] X.D. Pi, P.G. Coleman, C.L. Tseng, C.P. Burrows, B. Yavich, W.N. Wang, Defects in GaN films studied by positron annihilation spectroscopy, Journal of Physics: Condensed Matter. 14 (2002) L243.

DOI: 10.1088/0953-8984/14/12/102

Google Scholar

[81] F.A. Selim, M.H. Weber, D. Solodovnikov, K.G. Lynn, Nature of native defects in ZnO, Phys. Rev. Lett. 99 (2007) 085502.

DOI: 10.1103/physrevlett.99.085502

Google Scholar

[82] S. Dutta, M. Chakrabarti, S. Chattopadhyay, D. Jana, D. Sanyal, A. Sarkar, Defect dynamics in annealed ZnO by positron annihilation spectroscopy, J. Appl. Phys. 98 (2005).

DOI: 10.1063/1.2035308

Google Scholar

[83] P. Saadatkia, S. Agarwal, A. Hernandez, E. Reed, I.D. Brackenbury, C.L. Codding, M.O. Liedke, M. Butterling, A. Wagner, F.A. Selim, Point and extended defects in heteroepitaxial β-G a 2 O 3 films, Physical Review Materials. 4 (2020) 104602.

DOI: 10.1103/physrevmaterials.4.104602

Google Scholar

[84] M. Haseman, P. Saadatkia, D.J. Winarski, F.A. Selim, K.D. Leedy, S. Tetlak, D.C. Look, W. Anwand, A. Wagner, Effects of substrate and post-growth treatments on the microstructure and properties of ZnO thin films prepared by atomic layer deposition, J Electron Mater. 45 (2016) 6337–6345.

DOI: 10.1007/s11664-016-5025-0

Google Scholar

[85] F. Tuomisto, I. Makkonen, Defect identification in semiconductors with positron annihilation: Experiment and theory, Reviews of Modern Physics. 85 (2013) 1583–1631.

DOI: 10.1103/revmodphys.85.1583

Google Scholar

[86] F. Plazaola, A.P. Seitsonen, M.J. Puska, Positron annihilation in II-VI compound semiconductors: theory, Journal of Physics: Condensed Matter. 6 (1994) 8809.

DOI: 10.1088/0953-8984/6/42/012

Google Scholar

[87] K. Saarinen, P. Hautojärvi, C. Corbel, Positron annihilation spectroscopy of defects in semiconductors, Semiconductors and Semimetals, Elsevier, 1998, p.209–285.

DOI: 10.1016/s0080-8784(08)63057-4

Google Scholar

[88] R. Cotterill, I.K. MacKenzie, L. Smedskjaer, G. Trumpy, J. Träff, Correlation of void size and positron annihilation characteristics in neutron-irradiated molybdenum, Nature. 239 (1972) 99–101.

DOI: 10.1038/239099a0

Google Scholar

[89] W. Triftshäuser, J.D. McGervey, R.W. Hendricks, Positron-annihilation studies of voids in neutron-irradiated aluminum single crystals, Physical Review B. 9 (1974) 3321.

DOI: 10.1103/physrevb.9.3321

Google Scholar

[90] T. Wider, S. Hansen, U. Holzwarth, K. Maier, Sensitivity of positron annihilation to plastic deformation, Physical Review B. 57 (1998) 5126.

DOI: 10.1103/physrevb.57.5126

Google Scholar

[91] U. Holzwarth, P. Schaaff, Nondestructive monitoring of fatigue damage evolution in austenitic stainless steel by positron-lifetime measurements, Physical Review B. 69 (2004) 094110.

DOI: 10.1103/physrevb.69.094110

Google Scholar

[92] F.A. Selim, D.P. Wells, J.F. Harmon, J. Kwofie, R. Spaulding, G. Erickson, T. Roney, Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 495 (2002) 154–160.

DOI: 10.1016/s0168-9002(02)01575-9

Google Scholar

[93] F.A. Selim, D.P. Wells, J.F. Harmon, W. Scates, J. Kwofie, R. Spaulding, S.P. Duttagupta, J.L. Jones, T. White, T. Roney, Doppler broadening measurements of positron annihilation using bremsstrahlung radiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 192 (2002) 197–201.

DOI: 10.1016/s0168-583x(02)00868-6

Google Scholar

[94] F.A. Selim, D.P. Wells, J.F. Harmon, J. Williams, High depth nondestructive stress measurements on thick steel alloys, J. Appl. Phys. 97 (2005).

DOI: 10.1063/1.1925770

Google Scholar

[95] F. Selim, Gamma induced positron annihilation: History, current, and future developments, Acta Physica Polonica A. 132 (2017) 1450–1455.

DOI: 10.12693/aphyspola.132.1450

Google Scholar

[96] F.A. Selim, D.P. Wells, J.F. Harmon, Positron lifetime measurements by proton capture, Rev. Sci. Instrum. 76 (2005).

Google Scholar

[97] F.A. Selim, Nanosecond time scale measurements of electron states during laser excitation by positron annihilation, Physics Letters A. 344 (2005) 291–296.

DOI: 10.1016/j.physleta.2005.06.051

Google Scholar

[98] P. Saadatkia, P. Stepanov, F.A. Selim, Photoconductivity of bulk SrTiO3 single crystals at room temperature, Materials Research Express. 5 (2018) 016202.

DOI: 10.1088/2053-1591/aaa094

Google Scholar

[99] M.C. Tarun, F.A. Selim, M.D. McCluskey, Persistent photoconductivity in strontium titanate, Phys. Rev. Lett. 111 (2013) 187403.

DOI: 10.1103/physrevlett.111.187403

Google Scholar

[100] S.C. Agarwal, S. Guha, Persistent photoconductivity in a− Si: H/a− Si N x: H layered structures, Physical Review B. 31 (1985) 5547.

Google Scholar

[101] J. Krištiak, K. Krištiaková, O. Šauša, Phase transition in C 60 observed by positron annihilation, Physical Review B. 50 (1994) 2792.

DOI: 10.1103/physrevb.50.2792

Google Scholar

[102] F.A. Selim, C.R. Varney, M.C. Tarun, M.C. Rowe, G.S. Collins, M.D. McCluskey, Positron lifetime measurements of hydrogen passivation of cation vacancies in yttrium aluminum oxide garnets, Physical Review B—Condensed Matter and Materials Physics. 88 (2013) 174102.

DOI: 10.1103/physrevb.88.174102

Google Scholar

[103] K.M. Johansen, A. Zubiaga, F. Tuomisto, E.V. Monakhov, A.Y. Kuznetsov, B.G. Svensson, H passivation of Li on Zn-site in ZnO: Positron annihilation spectroscopy and secondary ion mass spectrometry, Physical Review B—Condensed Matter and Materials Physics. 84 (2011) 115203.

DOI: 10.1103/physrevb.84.115203

Google Scholar

[104] L.J. Huang, W.M. Lau, P.J. Simpson, P.J. Schultz, Depth profiling of hydrogen passivation of boron in Si (100), Physical Review B. 46 (1992) 4086.

DOI: 10.1103/physrevb.46.4086

Google Scholar

[105] D.J. Winarski, W. Anwand, A. Wagner, P. Saadatkia, F.A. Selim, M. Allen, B. Wenner, K. Leedy, J. Allen, S. Tetlak, Induced conductivity in sol-gel ZnO films by passivation or elimination of Zn vacancies, Aip Advances. 6 (2016).

DOI: 10.1063/1.4962658

Google Scholar

[106] M.M. Islam, M.O. Liedke, D. Winarski, M. Butterling, A. Wagner, P. Hosemann, Y. Wang, B. Uberuaga, F.A. Selim, Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3, Scientific reports. 10 (2020) 6134.

DOI: 10.1038/s41598-020-62948-2

Google Scholar

[107] S. Agarwal, M.O. Liedke, A. Jones, E. Reed, A.A. Kohnert, B.P. Uberuaga, Y.Q. Wang, J. Cooper, D. Kaoumi, N. Li, A new mechanism for void-cascade interaction from nondestructive depth-resolved atomic-scale measurements of ion irradiation–induced defects in Fe, Science advances. 6 (2020) eaba8437.

DOI: 10.1126/sciadv.aba8437

Google Scholar

[108] H. Kim, M.R. Chancey, T. Chung, I. Brackenbury, M.O. Liedke, M. Butterling, E. Hirschmann, A. Wagner, J.K. Baldwin, B.K. Derby, Interface effect of Fe and Fe2O3 on the distributions of ion induced defects, J. Appl. Phys. 132 (2022).

DOI: 10.1063/5.0095013

Google Scholar

[109] S. Agarwal, M. Butterling, M.O. Liedke, K.H. Yano, D.K. Schreiber, A. Jones, B.P. Uberuaga, Y.Q. Wang, M. Chancey, H. Kim, The mechanism behind the high radiation tolerance of Fe–Cr alloys, J. Appl. Phys. 131 (2022).

DOI: 10.1063/5.0085086

Google Scholar

[110] F. Tuomisto, I. Makkonen, J. Heikinheimo, F. Granberg, F. Djurabekova, K. Nordlund, G. Velisa, H. Bei, H. Xue, W.J. Weber, Segregation of Ni at early stages of radiation damage in NiCoFeCr solid solution alloys, Acta Materialia. 196 (2020) 44–51.

DOI: 10.1016/j.actamat.2020.06.024

Google Scholar

[111] F.J. Ye, T. Zhu, Q.Q. Wang, Y.M. Song, H.Q. Zhang, P. Zhang, P. Kuang, R.S. Yu, X.Z. Cao, B.Y. Wang, Positron annihilation study of open volume defects and Cr segregation in deformed CoCrFeMnNi alloy, Intermetallics. 149 (2022) 107670.

DOI: 10.1016/j.intermet.2022.107670

Google Scholar

[112] G. Dlubek, R. Krause, O. Brummer, Z. Michno, T. Gorecki, Impurity-induced vacancy clustering in cold-rolled nickel alloys as studied by positron annihilation techniques, Journal of Physics F: Metal Physics. 17 (1987) 1333.

DOI: 10.1088/0305-4608/17/6/008

Google Scholar