[1]
T. Hyodo, K. Wada, A. Yagishita, T. Kosuge, Y. Saito, T. Kurihara, T. Kikuchi, A. Shirakawa, T. Sanami, M. Ikeda, S. Ohsawa, K. Kakihara, and T. Shidara, "KEK-IMSS slow positron facility," J. Phys.: Conf. Ser., vol. 262, no. 1, p.012026, 2011.
DOI: 10.1088/1742-6596/262/1/012026
Google Scholar
[2]
K. Wada, T. Hyodo, A. Yagishita, M. Ikeda, S. Ohsawa, T. Shidara, K. Michishio, T. Tachibana, Y. Nagashima, Y. Fukaya, M. Maekawa, and A. Kawasuso, "Increase in the beam intensity of the linac-based slow positron beam and its application at the slow positron facility, KEK," Euro. Phys. J. D, 2012.
DOI: 10.1140/epjd/e2012-20641-4
Google Scholar
[3]
K. Wada, T. Hyodo, T. Kosuge, Y. Saito, M. Ikeda, S. Ohsawa, T. Shidara, K. Michishio, T. Tachibana, H. Terabe, R. H. Suzuki, Y. Nagashima, Y. Fukaya, M. Maekawa, I. Mochizuki, and A. Kawasuso, "New experiment stations at KEK slow positron facility," J. Phys.: Conf. Ser., vol. 443, no. 1, p.012082
DOI: 10.1088/1742-6596/443/1/012082
Google Scholar
[5]
C. Hugenschmidt, B. Löwe, J. Mayer, C. Piochacz, P. Pikart, R. Repper, M. Stadlbauer, and K. Schreckenbach, "Unprecedented intensity of a low-energy positron beam," Nucl. Instr. Meth. A, vol. 593, no. 3, pp.616-618, 2008.
DOI: 10.1016/j.nima.2008.05.038
Google Scholar
[6]
C. Hugenschmidt, H. Ceeh, T. Gigl, F. Lippert, C. Piochacz, P. Pikart, M. Reiner, J. Weber, and S. Zimnik, "The upgrade of the neutron induced positron source NEPOMUC," J. Phys.: Conf. Ser., vol. 443, no. 1, p.012079, 2013.
DOI: 10.1088/1742-6596/443/1/012079
Google Scholar
[7]
C. Hugenschmidt, International School of Physics "E. Fermi" Course CLXXIV: Physics with many positrons. Chapter: Positron Sources and Positron Beams. IOS press Amsterdam, 2010.
Google Scholar
[8]
A. Dupasquier, A. Mills, and R. Brusa, eds., International School of Physics "Enrico Fermi" Course CLXXIV: Physics with many positrons. IOS press Amsterdam, 2010.
Google Scholar
[9]
A. Mills, International School of Physics "E. Fermi" Course CLXXIV: Physics with many positrons. Chapter: Physics with many positrons. IOS press Amsterdam, 2010.
Google Scholar
[10]
D. B. Cassidy and A. P. Mills, "The production of molecular positronium," Nature, vol. 449, p.195, 2007.
Google Scholar
[11]
A. Kawasuso and S. Okada, "Reflection high energy positron diffraction from a Si(111) surface," Phys. Rev. Lett., vol. 81, pp.2695-2698, Sep 1998.
DOI: 10.1103/physrevlett.81.2695
Google Scholar
[12]
J. Mayer, C. Hugenschmidt, and K. Schreckenbach, "Direct observation of the surface segregation of Cu in Pd by time-resolved positron-annihilation-induced Auger electron spectroscopy," Phys. Rev. Lett., vol. 105, p.207401, Nov 2010.
DOI: 10.1103/physrevlett.105.207401
Google Scholar
[13]
J. Major, Chapter 9 in Positron beams and their applications. World Scientific, 2000.
Google Scholar
[14]
C. Hugenschmidt, "Positrons in Surface Physics," Surf. Sci. Rep., vol. 71, no. 4, pp.547-594, 2016.
Google Scholar
[15]
K. G. Lynn, B. Nielsen, and J. H. Quateman, "Development and use of a thin-film transmission positron moderator," Appl. Phys. Lett., vol. 47, no. 3, pp.239-240, 1985.
DOI: 10.1063/1.96231
Google Scholar
[16]
B. Straßer, C. Hugenschmidt, and K. Schreckenbach, "Set-up of a slow positron beam for Auger spectroscopy," Mat. Sci. For., vol. 363-365, pp.686-688, 2001.
DOI: 10.4028/www.scientific.net/msf.363-365.686
Google Scholar
[17]
T. van der Walt and C. Vermeulen, "Thick targets for the production of some radionuclides and the chemical processing of these targets at ithemba labs," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 521, no. 1, pp.171-175, 2004. Accelerator Target Technology for the 21st Century. Proceedings of the 21st World Conference of the International Nuclear Target Society.
DOI: 10.1016/j.nima.2003.11.410
Google Scholar
[18]
L.-M. Krug, L. Chryssos, J. Bundesmann, A. Dittwald, G. Kourkafas, A. Denker, and C. Hugenschmidt, "Proton beam based production of positron emitters by exploiting the 27Al(p,x)22Na reaction," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 555, p.165488, 2024.
DOI: 10.1016/j.nimb.2024.165488
Google Scholar
[19]
A. van Veen, H. Schut, J. de Roode, F. Labohm, C. Falub, S. Eijt, and P. Mijnarends, "Performance of an intense nuclear-reactor based positron beam," Mat. Sci. For., vol. 363-365, pp.415-419, 2001.[20] A. van Veen, F. Labohm, H. Schut, J. de Roode, T. Heijenga, and P. E. Mijnarends, "Testing of a nuclear-reactor-based positron beam," Appl. Surf. Sci., vol. 116, pp.39-44, 1997.
DOI: 10.1016/s0169-4332(96)00971-3
Google Scholar
[21]
C. Hugenschmidt, G. Kögel, R. Repper, K. Schreckenbach, P. Sperr, B. Straßer, and W. Triftshäuser, "Monoenergetic positron beam at the reactor based positron source at FRM-II," Nucl. Instr. Meth. B, vol. 192, no. 1-2, pp.97-101, 2002.
DOI: 10.1016/s0168-583x(02)00788-7
Google Scholar
[22]
C. Hugenschmidt, G. Kögel, R. Repper, K. Schreckenbach, P. Sperr, and W. Triftshäuser, "First platinum moderated positron beam based on neutron capture," Nucl. Instr. Meth. B, vol. 198, pp.220-229, 2002.
DOI: 10.1016/s0168-583x(02)01527-6
Google Scholar
[23]
C. Hugenschmidt, K. Schreckenbach, M. Stadlbauer, and B. Straßer, "Low-energy positrons of high intensity at the new positron beam facility NEPOMUC," Nucl. Instr. Meth. A, vol. 554, pp.384-391, 2005.
DOI: 10.1016/j.nima.2005.07.069
Google Scholar
[24]
C. Hugenschmidt, T. Brunner, S. Legl, J. Mayer, C. Piochacz, M. Stadlbauer, and K. Schreckenbach, "Positron experiments at the new positron beam facility NEPOMUC at FRM II," phys. stat. sol. (c), vol. 4, pp.3947-3952, 2007.
DOI: 10.1002/pssc.200675757
Google Scholar
[25]
A. Hathaway, M. Skalsey, W. Frieze, R. Vallery, D. Gidley, A. Hawari, and J. Xu, "Implementation of a prototype slow positron beam at the NC state university PULSTAR reactor," Nucl. Instr. Meth. A, vol. 579, no. 1, pp.538-541, 2007.
DOI: 10.1016/j.nima.2007.03.036
Google Scholar
[26]
A. I. Hawari, D. W. Gidley, J. Moxom, A. G. Hathaway, and S. Mukherjee, "Operation and testing of the pulstar reactor intense slow positron beam and pals spectrometers," J. Phys.: Conf. Ser., vol. 262, no. 1, p.012024, 2011.
DOI: 10.1088/1742-6596/262/1/012024
Google Scholar
[27]
H. Saitoh, J. Stanja, E. V. Stenson, U. Hergenhahn, H. Niemann, T. S. Pedersen, M. R. Stoneking, C. Piochacz, and C. Hugenschmidt, "Efficient injection of an intense positron beam into a dipole magnetic field," New J. Phys., vol. 17, no. 10, p.103038, 2015.
DOI: 10.1088/1367-2630/17/10/103038
Google Scholar
[28]
https://nuclear.mcmaster.ca/facilities-equipment/facility-list/ mcmaster-intense-positron-beam-facility/.
Google Scholar
[29]
P. Schultz and K. Lynn, "Interaction of positron beams with surfaces, thin films, and interfaces," Rev. Mod. Phys., vol. 60, pp.701-779, Jul 1988.
DOI: 10.1103/revmodphys.60.701
Google Scholar
[30]
P. Coleman, Positron beams and their applications. Singapore: World Scientific, 2000.
Google Scholar
[31]
A. P. Mills, "Brightness enhancement of slow positron beams," Appl. Phys., vol. 23, pp.189-191, Oct. 1980.
Google Scholar
[32]
C. Hugenschmidt, K. Schreckenbach, D. Habs, and P. Thirolf, "High-intensity and highbrightness source of moderated positrons using a brilliant γ beam," Appl. Phys. B, vol. 106, pp.241-249, 2012.
DOI: 10.1007/s00340-011-4594-0
Google Scholar
[33]
E. M. Gullikson, A. P. Mills, W. S. Crane, and B. L. Brown, "Absence of energy loss in positron emission from metal surfaces," Phys. Rev. B, vol. 32, pp.5484-5486, Oct 1985.
DOI: 10.1103/physrevb.32.5484
Google Scholar
[34]
D. A. Fischer, K. G. Lynn, and D. W. Gidley, "High-resolution angle-resolved positron reemission spectra from metal surfaces," Phys. Rev. B, vol. 33, pp.4479-4492, Apr 1986.
DOI: 10.1103/physrevb.33.4479
Google Scholar
[35]
A. P. Mills, "Positron moderation and remoderation techniques for producing cold positron and positronium sources," Hyperfine Interactions, vol. 44, pp.107-124, 1988.[36] F. Saito, Y. Nagashima, L. Wei, Y. Itoh, A. Goto, and T. Hyodo, "A high-efficiency positron moderator using electro-polished tungsten meshes," Applied Surface Science, vol. 194, no. 1-4, pp.13-15, 2002. 9th International Workshop on Slow Positron Beam Techniques for Solids and Surfaces.
DOI: 10.1016/s0169-4332(02)00103-4
Google Scholar
[37]
C. Piochacz, E. Erdnüß, T. Gigl, N. Grill, and C. Hugenschmidt, "Enhancement and transformation of the phase space density of the NEPOMUC positron beam," J. Phys.: Conf. Ser., vol. 505, no. 1, p.012027, 2014.
DOI: 10.1088/1742-6596/505/1/012027
Google Scholar
[38]
C. Piochacz, G. Kögel, W. Egger, C. Hugenschmidt, J. Mayer, K. Schreckenbach, P. Sperr, M. Stadlbauer, and G. Dollinger, "A positron remoderator for the high intensity positron source NEPOMUC," Appl. Surf. Sci., vol. 255, no. 1, pp.98-100, 2008.
DOI: 10.1016/j.apsusc.2008.05.286
Google Scholar
[39]
M. Fujinami, S. Jinno, M. Fukuzumi, T. Kawaguchi, K. Oguma, and T. Akahane, "Production of a positron microprobe using a transmission remoderator," Anal. Sci., vol. 24, no. 1, pp.73-79, 2008.
DOI: 10.2116/analsci.24.73
Google Scholar
[40]
T. Gigl, L. Beddrich, M. Dickmann, B. Rienäcker, M. Thalmayr, S. Vohburger, and C. Hugenschmidt, "Defect imaging and detection of precipitates using a new scanning positron microbeam," New Journal of Physics, vol. 19, no. 12, p.123007, 2017.
DOI: 10.1088/1367-2630/aa915b
Google Scholar
[41]
H. Greif, M. Haaks, U. Holzwarth, U. Männig, M. Tongbhoyai, T. Wider, K. Maier, J. Bihr, and B. Huber, "High resolution positron-annihilation spectroscopy with a new positron microprobe," Appl. Phys. Lett., vol. 71, no. 15, pp.2115-2117, 1997.
DOI: 10.1063/1.120451
Google Scholar
[42]
P. Sperr, W. Egger, G. Kögel, G. Dollinger, C. Hugenschmidt, R. Repper, and C. Piochacz, "Status of the pulsed low energy positron beam system (PLEPS) at the Munich research reactor FRM-II," Appl. Surf. Sci., vol. 255, no. 1, pp.35-38, 2008.
DOI: 10.1016/j.apsusc.2008.05.307
Google Scholar
[43]
M. Maekawa, Y. Fukaya, A. Yabuuchi, I. Mochizuki, and A. Kawasuso, "Development of spinpolarized slow positron beam using a 68Ge-68Ga positron source," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 308, pp.9-14, 2013.
DOI: 10.1016/j.nimb.2013.04.015
Google Scholar
[44]
C. M. Surko, G. F. Gribakin, and S. J. Buckman, "Low-energy positron interactions with atoms and molecules," J. Phys. B: At., Mol. Opt. Phys., vol. 38, no. 6, pp. R57-R126, 2005.
DOI: 10.1088/0953-4075/38/6/r01
Google Scholar
[45]
T. Hayakawa, N. Kikuzawa, R. Hajima, T. Shizuma, N. Nishimori, M. Fujiwara, and M. Seya, "Nondestructive assay of plutonium and minor actinide in spent fuel using nuclear resonance fluorescence with laser compton scattering [gamma]-rays," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 621, no. 1-3, pp.695-700, 2010.
DOI: 10.1016/j.nima.2010.06.096
Google Scholar
[46]
T. Omori, M. Fukuda, T. Hirose, Y. Kurihara, R. Kuroda, M. Nomura, A. Ohashi, T. Okugi, K. Sakaue, T. Saito, J. Urakawa, M. Washio, and I. Yamazaki, "Efficient propagation of polarization from laser photons to positrons through Compton scattering and electron-positron pair creation," Phys. Rev. Lett., vol. 96, p.114801, Mar 2006.
DOI: 10.1103/physrevlett.96.114801
Google Scholar
[47]
N. Djourelov, A. Oprisa, and V. Leca, "Source of slow polarized positrons using the brilliant gamma beam at eli-np. converter design and simulations," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 806, pp.146-153, 2016.
DOI: 10.1016/j.nima.2015.10.009
Google Scholar