Low-Energy Positron Beams: Positron Sources, Moderation and Beam Setups

Article Preview

Abstract:

Low-energy positron beams are essential tools for a large variety of experiments in solid state and surface physics, materials science, and fundamental research. In university scale laborato ries, positron beams β+ emitters are used as positron source, whereas at large-scale facilities such as electron linacs or research reactors positrons are created by pair production. In this contribution, we first focus on β+ sources and nuclear reactors for positron production. Then the process of positron moderation for the brightness enhancement of beams is described using phase space considerations. The properties of moderator materials and different geometries of experimental setups for positron (re-)moderation are also discussed. Among numerous positron beam setups, which are employed around the world either on a lab scale or at large scale facilities, four layouts will be presented as examples: a positron micro-beam, a pulsed beam, a trap-based beam, and a spin-polarized positron beam. Fi nally, we discuss prospects for producing a high-intensity polarized positron beam via absorption of a γ-beam which in turn was generated by inverse Compton scattering.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 373)

Pages:

49-63

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Hyodo, K. Wada, A. Yagishita, T. Kosuge, Y. Saito, T. Kurihara, T. Kikuchi, A. Shirakawa, T. Sanami, M. Ikeda, S. Ohsawa, K. Kakihara, and T. Shidara, "KEK-IMSS slow positron facility," J. Phys.: Conf. Ser., vol. 262, no. 1, p.012026, 2011.

DOI: 10.1088/1742-6596/262/1/012026

Google Scholar

[2] K. Wada, T. Hyodo, A. Yagishita, M. Ikeda, S. Ohsawa, T. Shidara, K. Michishio, T. Tachibana, Y. Nagashima, Y. Fukaya, M. Maekawa, and A. Kawasuso, "Increase in the beam intensity of the linac-based slow positron beam and its application at the slow positron facility, KEK," Euro. Phys. J. D, 2012.

DOI: 10.1140/epjd/e2012-20641-4

Google Scholar

[3] K. Wada, T. Hyodo, T. Kosuge, Y. Saito, M. Ikeda, S. Ohsawa, T. Shidara, K. Michishio, T. Tachibana, H. Terabe, R. H. Suzuki, Y. Nagashima, Y. Fukaya, M. Maekawa, I. Mochizuki, and A. Kawasuso, "New experiment stations at KEK slow positron facility," J. Phys.: Conf. Ser., vol. 443, no. 1, p.012082

DOI: 10.1088/1742-6596/443/1/012082

Google Scholar

[5] C. Hugenschmidt, B. Löwe, J. Mayer, C. Piochacz, P. Pikart, R. Repper, M. Stadlbauer, and K. Schreckenbach, "Unprecedented intensity of a low-energy positron beam," Nucl. Instr. Meth. A, vol. 593, no. 3, pp.616-618, 2008.

DOI: 10.1016/j.nima.2008.05.038

Google Scholar

[6] C. Hugenschmidt, H. Ceeh, T. Gigl, F. Lippert, C. Piochacz, P. Pikart, M. Reiner, J. Weber, and S. Zimnik, "The upgrade of the neutron induced positron source NEPOMUC," J. Phys.: Conf. Ser., vol. 443, no. 1, p.012079, 2013.

DOI: 10.1088/1742-6596/443/1/012079

Google Scholar

[7] C. Hugenschmidt, International School of Physics "E. Fermi" Course CLXXIV: Physics with many positrons. Chapter: Positron Sources and Positron Beams. IOS press Amsterdam, 2010.

Google Scholar

[8] A. Dupasquier, A. Mills, and R. Brusa, eds., International School of Physics "Enrico Fermi" Course CLXXIV: Physics with many positrons. IOS press Amsterdam, 2010.

Google Scholar

[9] A. Mills, International School of Physics "E. Fermi" Course CLXXIV: Physics with many positrons. Chapter: Physics with many positrons. IOS press Amsterdam, 2010.

Google Scholar

[10] D. B. Cassidy and A. P. Mills, "The production of molecular positronium," Nature, vol. 449, p.195, 2007.

Google Scholar

[11] A. Kawasuso and S. Okada, "Reflection high energy positron diffraction from a Si(111) surface," Phys. Rev. Lett., vol. 81, pp.2695-2698, Sep 1998.

DOI: 10.1103/physrevlett.81.2695

Google Scholar

[12] J. Mayer, C. Hugenschmidt, and K. Schreckenbach, "Direct observation of the surface segregation of Cu in Pd by time-resolved positron-annihilation-induced Auger electron spectroscopy," Phys. Rev. Lett., vol. 105, p.207401, Nov 2010.

DOI: 10.1103/physrevlett.105.207401

Google Scholar

[13] J. Major, Chapter 9 in Positron beams and their applications. World Scientific, 2000.

Google Scholar

[14] C. Hugenschmidt, "Positrons in Surface Physics," Surf. Sci. Rep., vol. 71, no. 4, pp.547-594, 2016.

Google Scholar

[15] K. G. Lynn, B. Nielsen, and J. H. Quateman, "Development and use of a thin-film transmission positron moderator," Appl. Phys. Lett., vol. 47, no. 3, pp.239-240, 1985.

DOI: 10.1063/1.96231

Google Scholar

[16] B. Straßer, C. Hugenschmidt, and K. Schreckenbach, "Set-up of a slow positron beam for Auger spectroscopy," Mat. Sci. For., vol. 363-365, pp.686-688, 2001.

DOI: 10.4028/www.scientific.net/msf.363-365.686

Google Scholar

[17] T. van der Walt and C. Vermeulen, "Thick targets for the production of some radionuclides and the chemical processing of these targets at ithemba labs," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 521, no. 1, pp.171-175, 2004. Accelerator Target Technology for the 21st Century. Proceedings of the 21st World Conference of the International Nuclear Target Society.

DOI: 10.1016/j.nima.2003.11.410

Google Scholar

[18] L.-M. Krug, L. Chryssos, J. Bundesmann, A. Dittwald, G. Kourkafas, A. Denker, and C. Hugenschmidt, "Proton beam based production of positron emitters by exploiting the 27Al(p,x)22Na reaction," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 555, p.165488, 2024.

DOI: 10.1016/j.nimb.2024.165488

Google Scholar

[19] A. van Veen, H. Schut, J. de Roode, F. Labohm, C. Falub, S. Eijt, and P. Mijnarends, "Performance of an intense nuclear-reactor based positron beam," Mat. Sci. For., vol. 363-365, pp.415-419, 2001.[20] A. van Veen, F. Labohm, H. Schut, J. de Roode, T. Heijenga, and P. E. Mijnarends, "Testing of a nuclear-reactor-based positron beam," Appl. Surf. Sci., vol. 116, pp.39-44, 1997.

DOI: 10.1016/s0169-4332(96)00971-3

Google Scholar

[21] C. Hugenschmidt, G. Kögel, R. Repper, K. Schreckenbach, P. Sperr, B. Straßer, and W. Triftshäuser, "Monoenergetic positron beam at the reactor based positron source at FRM-II," Nucl. Instr. Meth. B, vol. 192, no. 1-2, pp.97-101, 2002.

DOI: 10.1016/s0168-583x(02)00788-7

Google Scholar

[22] C. Hugenschmidt, G. Kögel, R. Repper, K. Schreckenbach, P. Sperr, and W. Triftshäuser, "First platinum moderated positron beam based on neutron capture," Nucl. Instr. Meth. B, vol. 198, pp.220-229, 2002.

DOI: 10.1016/s0168-583x(02)01527-6

Google Scholar

[23] C. Hugenschmidt, K. Schreckenbach, M. Stadlbauer, and B. Straßer, "Low-energy positrons of high intensity at the new positron beam facility NEPOMUC," Nucl. Instr. Meth. A, vol. 554, pp.384-391, 2005.

DOI: 10.1016/j.nima.2005.07.069

Google Scholar

[24] C. Hugenschmidt, T. Brunner, S. Legl, J. Mayer, C. Piochacz, M. Stadlbauer, and K. Schreckenbach, "Positron experiments at the new positron beam facility NEPOMUC at FRM II," phys. stat. sol. (c), vol. 4, pp.3947-3952, 2007.

DOI: 10.1002/pssc.200675757

Google Scholar

[25] A. Hathaway, M. Skalsey, W. Frieze, R. Vallery, D. Gidley, A. Hawari, and J. Xu, "Implementation of a prototype slow positron beam at the NC state university PULSTAR reactor," Nucl. Instr. Meth. A, vol. 579, no. 1, pp.538-541, 2007.

DOI: 10.1016/j.nima.2007.03.036

Google Scholar

[26] A. I. Hawari, D. W. Gidley, J. Moxom, A. G. Hathaway, and S. Mukherjee, "Operation and testing of the pulstar reactor intense slow positron beam and pals spectrometers," J. Phys.: Conf. Ser., vol. 262, no. 1, p.012024, 2011.

DOI: 10.1088/1742-6596/262/1/012024

Google Scholar

[27] H. Saitoh, J. Stanja, E. V. Stenson, U. Hergenhahn, H. Niemann, T. S. Pedersen, M. R. Stoneking, C. Piochacz, and C. Hugenschmidt, "Efficient injection of an intense positron beam into a dipole magnetic field," New J. Phys., vol. 17, no. 10, p.103038, 2015.

DOI: 10.1088/1367-2630/17/10/103038

Google Scholar

[28] https://nuclear.mcmaster.ca/facilities-equipment/facility-list/ mcmaster-intense-positron-beam-facility/.

Google Scholar

[29] P. Schultz and K. Lynn, "Interaction of positron beams with surfaces, thin films, and interfaces," Rev. Mod. Phys., vol. 60, pp.701-779, Jul 1988.

DOI: 10.1103/revmodphys.60.701

Google Scholar

[30] P. Coleman, Positron beams and their applications. Singapore: World Scientific, 2000.

Google Scholar

[31] A. P. Mills, "Brightness enhancement of slow positron beams," Appl. Phys., vol. 23, pp.189-191, Oct. 1980.

Google Scholar

[32] C. Hugenschmidt, K. Schreckenbach, D. Habs, and P. Thirolf, "High-intensity and highbrightness source of moderated positrons using a brilliant γ beam," Appl. Phys. B, vol. 106, pp.241-249, 2012.

DOI: 10.1007/s00340-011-4594-0

Google Scholar

[33] E. M. Gullikson, A. P. Mills, W. S. Crane, and B. L. Brown, "Absence of energy loss in positron emission from metal surfaces," Phys. Rev. B, vol. 32, pp.5484-5486, Oct 1985.

DOI: 10.1103/physrevb.32.5484

Google Scholar

[34] D. A. Fischer, K. G. Lynn, and D. W. Gidley, "High-resolution angle-resolved positron reemission spectra from metal surfaces," Phys. Rev. B, vol. 33, pp.4479-4492, Apr 1986.

DOI: 10.1103/physrevb.33.4479

Google Scholar

[35] A. P. Mills, "Positron moderation and remoderation techniques for producing cold positron and positronium sources," Hyperfine Interactions, vol. 44, pp.107-124, 1988.[36] F. Saito, Y. Nagashima, L. Wei, Y. Itoh, A. Goto, and T. Hyodo, "A high-efficiency positron moderator using electro-polished tungsten meshes," Applied Surface Science, vol. 194, no. 1-4, pp.13-15, 2002. 9th International Workshop on Slow Positron Beam Techniques for Solids and Surfaces.

DOI: 10.1016/s0169-4332(02)00103-4

Google Scholar

[37] C. Piochacz, E. Erdnüß, T. Gigl, N. Grill, and C. Hugenschmidt, "Enhancement and transformation of the phase space density of the NEPOMUC positron beam," J. Phys.: Conf. Ser., vol. 505, no. 1, p.012027, 2014.

DOI: 10.1088/1742-6596/505/1/012027

Google Scholar

[38] C. Piochacz, G. Kögel, W. Egger, C. Hugenschmidt, J. Mayer, K. Schreckenbach, P. Sperr, M. Stadlbauer, and G. Dollinger, "A positron remoderator for the high intensity positron source NEPOMUC," Appl. Surf. Sci., vol. 255, no. 1, pp.98-100, 2008.

DOI: 10.1016/j.apsusc.2008.05.286

Google Scholar

[39] M. Fujinami, S. Jinno, M. Fukuzumi, T. Kawaguchi, K. Oguma, and T. Akahane, "Production of a positron microprobe using a transmission remoderator," Anal. Sci., vol. 24, no. 1, pp.73-79, 2008.

DOI: 10.2116/analsci.24.73

Google Scholar

[40] T. Gigl, L. Beddrich, M. Dickmann, B. Rienäcker, M. Thalmayr, S. Vohburger, and C. Hugenschmidt, "Defect imaging and detection of precipitates using a new scanning positron microbeam," New Journal of Physics, vol. 19, no. 12, p.123007, 2017.

DOI: 10.1088/1367-2630/aa915b

Google Scholar

[41] H. Greif, M. Haaks, U. Holzwarth, U. Männig, M. Tongbhoyai, T. Wider, K. Maier, J. Bihr, and B. Huber, "High resolution positron-annihilation spectroscopy with a new positron microprobe," Appl. Phys. Lett., vol. 71, no. 15, pp.2115-2117, 1997.

DOI: 10.1063/1.120451

Google Scholar

[42] P. Sperr, W. Egger, G. Kögel, G. Dollinger, C. Hugenschmidt, R. Repper, and C. Piochacz, "Status of the pulsed low energy positron beam system (PLEPS) at the Munich research reactor FRM-II," Appl. Surf. Sci., vol. 255, no. 1, pp.35-38, 2008.

DOI: 10.1016/j.apsusc.2008.05.307

Google Scholar

[43] M. Maekawa, Y. Fukaya, A. Yabuuchi, I. Mochizuki, and A. Kawasuso, "Development of spinpolarized slow positron beam using a 68Ge-68Ga positron source," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 308, pp.9-14, 2013.

DOI: 10.1016/j.nimb.2013.04.015

Google Scholar

[44] C. M. Surko, G. F. Gribakin, and S. J. Buckman, "Low-energy positron interactions with atoms and molecules," J. Phys. B: At., Mol. Opt. Phys., vol. 38, no. 6, pp. R57-R126, 2005.

DOI: 10.1088/0953-4075/38/6/r01

Google Scholar

[45] T. Hayakawa, N. Kikuzawa, R. Hajima, T. Shizuma, N. Nishimori, M. Fujiwara, and M. Seya, "Nondestructive assay of plutonium and minor actinide in spent fuel using nuclear resonance fluorescence with laser compton scattering [gamma]-rays," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 621, no. 1-3, pp.695-700, 2010.

DOI: 10.1016/j.nima.2010.06.096

Google Scholar

[46] T. Omori, M. Fukuda, T. Hirose, Y. Kurihara, R. Kuroda, M. Nomura, A. Ohashi, T. Okugi, K. Sakaue, T. Saito, J. Urakawa, M. Washio, and I. Yamazaki, "Efficient propagation of polarization from laser photons to positrons through Compton scattering and electron-positron pair creation," Phys. Rev. Lett., vol. 96, p.114801, Mar 2006.

DOI: 10.1103/physrevlett.96.114801

Google Scholar

[47] N. Djourelov, A. Oprisa, and V. Leca, "Source of slow polarized positrons using the brilliant gamma beam at eli-np. converter design and simulations," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 806, pp.146-153, 2016.

DOI: 10.1016/j.nima.2015.10.009

Google Scholar