Positron Lifetime Spectroscopy to Study Defects in Solids

Article Preview

Abstract:

Positron lifetime spectroscopy is a powerful non-destructive technique for characterizing open-volume lattice defects in solids at the atomic scale. This technique enables the identification of defects and the determination of defect concentration. This article provides a brief overview of the current state of development of positron lifetime spectrometers used for defect studies of bulk materials. It discusses advanced data analysis and recent methodological developments in positron lifetime spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 373)

Pages:

3-25

Citation:

Online since:

July 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Hautojärvi, Introduction to positron annihilation, in: P. Hautojärvi (Ed.), Positrons in Solids, Springer-Verlag, Berlin, 1979, p.1–24.

DOI: 10.1007/978-3-642-81316-0_1

Google Scholar

[2] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, Springer-Verlag, Berlin, 1999.

DOI: 10.1007/978-3-662-03893-2_3

Google Scholar

[3] P. Hautojärvi, C. Corbel, Positron spectroscopy of solids, in: A. Dupasquier, A.P. Mills (Eds.), Proc. Int. School of Physics 'Enrico Fermi'(Varenna), IOS Press, Amsterdam, 1995, p.491–532.

Google Scholar

[4] F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85 (2013) 1583–1631.

Google Scholar

[5] F.A. Selim, Mater. Char. 174 (2021) 110952.

Google Scholar

[6] J. Čížek, J. Mater. Sci. Technol. 34 (2018) 577–598.

Google Scholar

[7] M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66 (1994) 841–897.

Google Scholar

[8] S. Valkealahti, R.M. Nieminen, Appl. Phys. A 32 (1983) 95-106.

Google Scholar

[9] S. Valkealahti, R.M. Nieminen, Appl. Phys. A 35 (1984) 51-59.

Google Scholar

[10] P.G. Coleman, L. Albrecht, K.O. Jensen, A.B. Walker, J. Phys.: Condens. Matter 4 (1992) 10311-10322.

DOI: 10.1088/0953-8984/4/50/018

Google Scholar

[11] P.G. Coleman, J.A. Baker, N.B. Chilton, J. Phys.: Condens. Matter 5 (1993) 8117-8128.

Google Scholar

[12] J. Mäkinen, S. Palko, J. Martikainen, P. Hautojärvi, J. Phys.: Condens. Matter 4 (1992) L503-508.

Google Scholar

[13] K.O. Jensen, A.B. Walker, Surf. Sci. 292 (1993) 83-97.

Google Scholar

[14] K.A. Ritley, K.G. Lynn, V.J. Ghosh, D.O. Welch, M. McKeown, J. Appl. Phys. 74 (1993) 3479-3496.

Google Scholar

[15] P.A.M. Dirac, Proc. Cambridge Philos. Soc. 26 (1930) 361-375.

Google Scholar

[16] H. Saito, T. Hyodo, Phys. Rev. Lett. 90 (2003) 193401.

Google Scholar

[17] H. Saito, Y. Nagashima, T. Kurihara, T. Hyodo, Nucl. Instr. Meth. Phys. Res. A 487 (2002) 612-617.

Google Scholar

[18] K. Rytsölä, J. Nissilä, J. Kokkonen, A. Laakso, R. Aavikko, K. Saarinen, Appl. Surface Sci. 194 (2002) 260-263.

DOI: 10.1016/s0169-4332(02)00128-9

Google Scholar

[19] J. Nissilä, K. Rytsölä, R. Aavikko, A. Laakso, K. Saarinen, P. Hautojärvi, Nucl. Instr. Meth. Phys. Res. A 538 (2005) 778-789.

DOI: 10.1016/j.nima.2004.08.102

Google Scholar

[20] F. Bečvář, J. Čížek, I. Procházka, J. Janotová, Nucl. Instr. Meth. Phys. Res. A 539 (2005) 372-385.

Google Scholar

[21] F. Bečvář, J. Čížek, I. Procházka, Appl. Surf. Sci. 255 (2008) 111-114.

Google Scholar

[22] L. Hui, S.Yundong, Z. Kai, P. Jingbiao, W. Zhu, Nucl. Intr. Meth. Phys. Res. A 625 (2011) 29-34.

Google Scholar

[23] E. Hirschmann, M. Butterling, U. Hernandez Acosta, M.O. Liedke, A.G. Attallah, P. Petring, M. Görler, R. Krause-Rehberg, A. Wagner, JINST 16 (2021) P08001.

DOI: 10.1088/1748-0221/16/08/p08001

Google Scholar

[24] Q.H. Zhao, R. Ye, H.B. Wang, L.H. Cong, J.D. Liu, H.J. Zhang, B.J. Ye, Nucl. Intr. Meth. Phys. Res. A 1023 (2022) 165974.

Google Scholar

[25] J.J. Ge, L.H. Cong, Z.W. Xue, H. Liang, Nucl. Intr. Meth. Phys. Res. A 1033 (2022) 166687.

Google Scholar

[26] Y.H. Li, Q.H. Zhao, Y. Dong, W. Xu, Z.W. Pan, J.D. Liu, H.J. Zhang, B.J. Ye, Nucl. Intr. Meth. Phys. Res. A 1058 (2024) 168772.

Google Scholar

[27] P. Schotanus, C.W.E. Van Eijk, R.W. Hollander, J. Pijpelink, Nucl. Intr. Meth. Phys. Res. A 259 (1987) 586-588.

Google Scholar

[28] P.Lecoq, A.Annenkov, A.Gektin, M.Korzhik, C.Pedrini, Inorganic Scintillators for Detector Systems, Springer, Berlin, Heidelberg, 2006.

Google Scholar

[29] P. Sperr, Nucl. Intr. Meth. Phys. Res. A 254 (1987) 635-636.

Google Scholar

[30] Information on https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/ documents/99_SALES_LIBRARY/etd/R2083_R3377_TPMH1227E.pdf

Google Scholar

[31] Information on https://www.spdevices.com/what-we-do/products/hardware/14-bit-digitizers/adq7dc

Google Scholar

[32] Information on https://www.teledynelecroy.com/oscilloscope/hdo6000.aspx

Google Scholar

[33] Information on https://www.keysight.com/us/en/products/oscilloscopes/infiniium-real-time-oscilloscopes/infiniium-mxr-series-real-time-oscilloscopes.html

DOI: 10.1016/b978-075064757-1/50004-7

Google Scholar

[34] A.s Wagner, M. Butterling, M.O. Liedke, K. Potzger, R. Krause-Rehberg, AIP Conference Proceedings 1970 (2018) 040003.

DOI: 10.1063/1.5040215

Google Scholar

[35] C. Hugenschmidt, G. Dollinger, W. Egger, G. Kögel, B. Löwe, J. Mayer, P. Pikart, C. Piochacz, R. Repper, K. Schreckenbach, P. Sperr, M. Stadlbauer, Appl. Surf. Sci. 255 (2008) 29-32.

DOI: 10.1016/j.apsusc.2008.05.304

Google Scholar

[36] L. Van Hoorebeke, A. Fabry, E. van Walle, J. Van de Velde, D. Segers, L. Dorikens Vanpraet, Nucl. Instr. Meth. Phys. Res. A 371 (1996) 566-571.

DOI: 10.1016/0168-9002(95)01007-6

Google Scholar

[37] J. Čížek, F. Bečvář, I. Procházka, Nucl. Intr. Meth. Phys. Res. A 450 (2000) 325-337.

Google Scholar

[38] R. Bes, A. Vancraeyenest, Nucl. Intr. Meth. Phys. Res. A 1052 (2023) 168265.

Google Scholar

[39] X.G. Peng, F.Y. Liu, L. Wang, P. Zhang, P. Kuang, X.Z. Cao, R.S. Yu, B.Y. Wang, Nucl. Intr. Meth. Phys. Res. A 1060 (2024) 169039.

Google Scholar

[40] J. Kočík, E. Keilová, J. Čížek, I. Procházka, J. Nucl. Mater. 303 (2002) 52-64.

Google Scholar

[41] F. Bečvář, Nucl. Intr. Meth. Phys. Res. B 261 (2007) 871-874.

Google Scholar

[42] J. Čížek, M. Vlček, I. Procházka, Nucl. Intr. Meth. Phys. Res. A 623 (2010) 982-994.

Google Scholar

[43] F. Bečvář, J. Čížek, L. Lešták, I. Novotný, I. Procházka, F. Šebesta, Nucl. Intr. Meth. Phys. Res. A 443 (2000) 557-577.

Google Scholar

[44] T.E.M. Staab, B. Somieski, R. Krause-Rehberg, Nucl. Intr. Meth. Phys. Res. A 381 (1996) 141-151.

Google Scholar

[45] N. Djourelov, M. Misheva, J. Phys.: Condens. Matter 8 (1996) 2081–2087.

Google Scholar

[46] S. McGuire, D.J. Keeble, J. Phys. D: Appl. Phys. 39 (2006) 3388–3393.

Google Scholar

[47] G.S. Kanda, D.J. Keeble, Nucl. Intr. Meth. Phys. Res. A 808 (2016) 54-59.

Google Scholar

[48] J. Dryzek, Nucl. Intr. Meth. Phys. Res. B 521 (2022) 1-6.

Google Scholar

[49] J. Čížek, O. Melikhova, T. Vlasák, P. Hruška, D. Starý, F. Lukáč, Materialia 23 (2022) 101450.

DOI: 10.1016/j.mtla.2022.101450

Google Scholar

[50] S.D. Bass, S. Mariazzi, P. Moskal, E. Stępień, Rev. Mod. Phys. 95 (2023) 021002.

Google Scholar

[51] G.S. Kanda, L. Ravelli, B. Löwe, W. Egger, D.J. Keeble, J. Phys. D: Appl. Phys. 49 (2016) 025305.

DOI: 10.1088/0022-3727/49/2/025305

Google Scholar

[52] J.P. Foley, J.G. Dorsey, J. Chromatogr. Sci. 22 (1984) 40–46.

Google Scholar

[53] Y. Kalambeta, Y. Kozmin, K. Mikhailova, I. Nagaev, P. Tikhonov, J. Chemometrics 25 (2011) 352–356.

Google Scholar

[54] Information on https://docs.scipy.org/doc/scipy/reference/stats.html

Google Scholar

[55] P. Kirkegaard, M. Eldrup, Computer Phys. Commun. 3 (1972) 240–255.

Google Scholar

[56] P. Kirkegaard, M. Eldrup, O. E. Mogensen, N. J. Pedersen, Computer Phys. Commun. 23 (1981) 307–335.

Google Scholar

[57] P. Kirkegaard, J.V. Olsen, M.M. Eldrup, N.J. Pedersen, PALSfit: A computer program for analysing positron lifetime spectra. Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi.Denmark. Forskningscenter Risoe. Risoe-R No. 1652 (2009).

Google Scholar

[58] J.V. Olsen, P. Kirkegaard, N.J. Pedersen, M. Eldrup, Phys. Stat. Sol. C 4 (2007) 4004-4006.

Google Scholar

[59] J. Kansy, Nucl. Intr. Meth. Phys. Res. A 374 (1996) 235-244.

Google Scholar

[60] D. Giebel, J. Kansy, Mater. Sci. Forum 666 (2010) 138-141.

Google Scholar

[61] J. Čížek, Acta Phys. Pol. A 137 (2020) 177-187.

Google Scholar

[62] Information on https://physics.mff.cuni.cz/kfnt/pas/?page=plrf

Google Scholar

[63] F. James, Function Minimization and Error Analysis Reference Manual, CERN, Geneva, 2004.

Google Scholar

[64] F, James, F. Roos, Computer Physics Communications 10 (1975) 343-367.

Google Scholar

[65] Information on https://root.cern.ch/.

Google Scholar

[66] F. James, in: Monte Carlo for Particle Physics in: Methods in Subnuclear Physics, Ed. M. Nikolic, Gordon and Breach Publ., Vol. IV, part 3, 1968.

Google Scholar

[67] J.A. Nelder, R. Mead, Comput. J. 7 (1965) 308-313.

Google Scholar

[68] R. Fletcher, Comput. J. 13 (1970) 317-322.

Google Scholar