[1]
P. Hautojärvi, Introduction to positron annihilation, in: P. Hautojärvi (Ed.), Positrons in Solids, Springer-Verlag, Berlin, 1979, p.1–24.
DOI: 10.1007/978-3-642-81316-0_1
Google Scholar
[2]
R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, Springer-Verlag, Berlin, 1999.
DOI: 10.1007/978-3-662-03893-2_3
Google Scholar
[3]
P. Hautojärvi, C. Corbel, Positron spectroscopy of solids, in: A. Dupasquier, A.P. Mills (Eds.), Proc. Int. School of Physics 'Enrico Fermi'(Varenna), IOS Press, Amsterdam, 1995, p.491–532.
Google Scholar
[4]
F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85 (2013) 1583–1631.
Google Scholar
[5]
F.A. Selim, Mater. Char. 174 (2021) 110952.
Google Scholar
[6]
J. Čížek, J. Mater. Sci. Technol. 34 (2018) 577–598.
Google Scholar
[7]
M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66 (1994) 841–897.
Google Scholar
[8]
S. Valkealahti, R.M. Nieminen, Appl. Phys. A 32 (1983) 95-106.
Google Scholar
[9]
S. Valkealahti, R.M. Nieminen, Appl. Phys. A 35 (1984) 51-59.
Google Scholar
[10]
P.G. Coleman, L. Albrecht, K.O. Jensen, A.B. Walker, J. Phys.: Condens. Matter 4 (1992) 10311-10322.
DOI: 10.1088/0953-8984/4/50/018
Google Scholar
[11]
P.G. Coleman, J.A. Baker, N.B. Chilton, J. Phys.: Condens. Matter 5 (1993) 8117-8128.
Google Scholar
[12]
J. Mäkinen, S. Palko, J. Martikainen, P. Hautojärvi, J. Phys.: Condens. Matter 4 (1992) L503-508.
Google Scholar
[13]
K.O. Jensen, A.B. Walker, Surf. Sci. 292 (1993) 83-97.
Google Scholar
[14]
K.A. Ritley, K.G. Lynn, V.J. Ghosh, D.O. Welch, M. McKeown, J. Appl. Phys. 74 (1993) 3479-3496.
Google Scholar
[15]
P.A.M. Dirac, Proc. Cambridge Philos. Soc. 26 (1930) 361-375.
Google Scholar
[16]
H. Saito, T. Hyodo, Phys. Rev. Lett. 90 (2003) 193401.
Google Scholar
[17]
H. Saito, Y. Nagashima, T. Kurihara, T. Hyodo, Nucl. Instr. Meth. Phys. Res. A 487 (2002) 612-617.
Google Scholar
[18]
K. Rytsölä, J. Nissilä, J. Kokkonen, A. Laakso, R. Aavikko, K. Saarinen, Appl. Surface Sci. 194 (2002) 260-263.
DOI: 10.1016/s0169-4332(02)00128-9
Google Scholar
[19]
J. Nissilä, K. Rytsölä, R. Aavikko, A. Laakso, K. Saarinen, P. Hautojärvi, Nucl. Instr. Meth. Phys. Res. A 538 (2005) 778-789.
DOI: 10.1016/j.nima.2004.08.102
Google Scholar
[20]
F. Bečvář, J. Čížek, I. Procházka, J. Janotová, Nucl. Instr. Meth. Phys. Res. A 539 (2005) 372-385.
Google Scholar
[21]
F. Bečvář, J. Čížek, I. Procházka, Appl. Surf. Sci. 255 (2008) 111-114.
Google Scholar
[22]
L. Hui, S.Yundong, Z. Kai, P. Jingbiao, W. Zhu, Nucl. Intr. Meth. Phys. Res. A 625 (2011) 29-34.
Google Scholar
[23]
E. Hirschmann, M. Butterling, U. Hernandez Acosta, M.O. Liedke, A.G. Attallah, P. Petring, M. Görler, R. Krause-Rehberg, A. Wagner, JINST 16 (2021) P08001.
DOI: 10.1088/1748-0221/16/08/p08001
Google Scholar
[24]
Q.H. Zhao, R. Ye, H.B. Wang, L.H. Cong, J.D. Liu, H.J. Zhang, B.J. Ye, Nucl. Intr. Meth. Phys. Res. A 1023 (2022) 165974.
Google Scholar
[25]
J.J. Ge, L.H. Cong, Z.W. Xue, H. Liang, Nucl. Intr. Meth. Phys. Res. A 1033 (2022) 166687.
Google Scholar
[26]
Y.H. Li, Q.H. Zhao, Y. Dong, W. Xu, Z.W. Pan, J.D. Liu, H.J. Zhang, B.J. Ye, Nucl. Intr. Meth. Phys. Res. A 1058 (2024) 168772.
Google Scholar
[27]
P. Schotanus, C.W.E. Van Eijk, R.W. Hollander, J. Pijpelink, Nucl. Intr. Meth. Phys. Res. A 259 (1987) 586-588.
Google Scholar
[28]
P.Lecoq, A.Annenkov, A.Gektin, M.Korzhik, C.Pedrini, Inorganic Scintillators for Detector Systems, Springer, Berlin, Heidelberg, 2006.
Google Scholar
[29]
P. Sperr, Nucl. Intr. Meth. Phys. Res. A 254 (1987) 635-636.
Google Scholar
[30]
Information on https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/ documents/99_SALES_LIBRARY/etd/R2083_R3377_TPMH1227E.pdf
Google Scholar
[31]
Information on https://www.spdevices.com/what-we-do/products/hardware/14-bit-digitizers/adq7dc
Google Scholar
[32]
Information on https://www.teledynelecroy.com/oscilloscope/hdo6000.aspx
Google Scholar
[33]
Information on https://www.keysight.com/us/en/products/oscilloscopes/infiniium-real-time-oscilloscopes/infiniium-mxr-series-real-time-oscilloscopes.html
DOI: 10.1016/b978-075064757-1/50004-7
Google Scholar
[34]
A.s Wagner, M. Butterling, M.O. Liedke, K. Potzger, R. Krause-Rehberg, AIP Conference Proceedings 1970 (2018) 040003.
DOI: 10.1063/1.5040215
Google Scholar
[35]
C. Hugenschmidt, G. Dollinger, W. Egger, G. Kögel, B. Löwe, J. Mayer, P. Pikart, C. Piochacz, R. Repper, K. Schreckenbach, P. Sperr, M. Stadlbauer, Appl. Surf. Sci. 255 (2008) 29-32.
DOI: 10.1016/j.apsusc.2008.05.304
Google Scholar
[36]
L. Van Hoorebeke, A. Fabry, E. van Walle, J. Van de Velde, D. Segers, L. Dorikens Vanpraet, Nucl. Instr. Meth. Phys. Res. A 371 (1996) 566-571.
DOI: 10.1016/0168-9002(95)01007-6
Google Scholar
[37]
J. Čížek, F. Bečvář, I. Procházka, Nucl. Intr. Meth. Phys. Res. A 450 (2000) 325-337.
Google Scholar
[38]
R. Bes, A. Vancraeyenest, Nucl. Intr. Meth. Phys. Res. A 1052 (2023) 168265.
Google Scholar
[39]
X.G. Peng, F.Y. Liu, L. Wang, P. Zhang, P. Kuang, X.Z. Cao, R.S. Yu, B.Y. Wang, Nucl. Intr. Meth. Phys. Res. A 1060 (2024) 169039.
Google Scholar
[40]
J. Kočík, E. Keilová, J. Čížek, I. Procházka, J. Nucl. Mater. 303 (2002) 52-64.
Google Scholar
[41]
F. Bečvář, Nucl. Intr. Meth. Phys. Res. B 261 (2007) 871-874.
Google Scholar
[42]
J. Čížek, M. Vlček, I. Procházka, Nucl. Intr. Meth. Phys. Res. A 623 (2010) 982-994.
Google Scholar
[43]
F. Bečvář, J. Čížek, L. Lešták, I. Novotný, I. Procházka, F. Šebesta, Nucl. Intr. Meth. Phys. Res. A 443 (2000) 557-577.
Google Scholar
[44]
T.E.M. Staab, B. Somieski, R. Krause-Rehberg, Nucl. Intr. Meth. Phys. Res. A 381 (1996) 141-151.
Google Scholar
[45]
N. Djourelov, M. Misheva, J. Phys.: Condens. Matter 8 (1996) 2081–2087.
Google Scholar
[46]
S. McGuire, D.J. Keeble, J. Phys. D: Appl. Phys. 39 (2006) 3388–3393.
Google Scholar
[47]
G.S. Kanda, D.J. Keeble, Nucl. Intr. Meth. Phys. Res. A 808 (2016) 54-59.
Google Scholar
[48]
J. Dryzek, Nucl. Intr. Meth. Phys. Res. B 521 (2022) 1-6.
Google Scholar
[49]
J. Čížek, O. Melikhova, T. Vlasák, P. Hruška, D. Starý, F. Lukáč, Materialia 23 (2022) 101450.
DOI: 10.1016/j.mtla.2022.101450
Google Scholar
[50]
S.D. Bass, S. Mariazzi, P. Moskal, E. Stępień, Rev. Mod. Phys. 95 (2023) 021002.
Google Scholar
[51]
G.S. Kanda, L. Ravelli, B. Löwe, W. Egger, D.J. Keeble, J. Phys. D: Appl. Phys. 49 (2016) 025305.
DOI: 10.1088/0022-3727/49/2/025305
Google Scholar
[52]
J.P. Foley, J.G. Dorsey, J. Chromatogr. Sci. 22 (1984) 40–46.
Google Scholar
[53]
Y. Kalambeta, Y. Kozmin, K. Mikhailova, I. Nagaev, P. Tikhonov, J. Chemometrics 25 (2011) 352–356.
Google Scholar
[54]
Information on https://docs.scipy.org/doc/scipy/reference/stats.html
Google Scholar
[55]
P. Kirkegaard, M. Eldrup, Computer Phys. Commun. 3 (1972) 240–255.
Google Scholar
[56]
P. Kirkegaard, M. Eldrup, O. E. Mogensen, N. J. Pedersen, Computer Phys. Commun. 23 (1981) 307–335.
Google Scholar
[57]
P. Kirkegaard, J.V. Olsen, M.M. Eldrup, N.J. Pedersen, PALSfit: A computer program for analysing positron lifetime spectra. Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi.Denmark. Forskningscenter Risoe. Risoe-R No. 1652 (2009).
Google Scholar
[58]
J.V. Olsen, P. Kirkegaard, N.J. Pedersen, M. Eldrup, Phys. Stat. Sol. C 4 (2007) 4004-4006.
Google Scholar
[59]
J. Kansy, Nucl. Intr. Meth. Phys. Res. A 374 (1996) 235-244.
Google Scholar
[60]
D. Giebel, J. Kansy, Mater. Sci. Forum 666 (2010) 138-141.
Google Scholar
[61]
J. Čížek, Acta Phys. Pol. A 137 (2020) 177-187.
Google Scholar
[62]
Information on https://physics.mff.cuni.cz/kfnt/pas/?page=plrf
Google Scholar
[63]
F. James, Function Minimization and Error Analysis Reference Manual, CERN, Geneva, 2004.
Google Scholar
[64]
F, James, F. Roos, Computer Physics Communications 10 (1975) 343-367.
Google Scholar
[65]
Information on https://root.cern.ch/.
Google Scholar
[66]
F. James, in: Monte Carlo for Particle Physics in: Methods in Subnuclear Physics, Ed. M. Nikolic, Gordon and Breach Publ., Vol. IV, part 3, 1968.
Google Scholar
[67]
J.A. Nelder, R. Mead, Comput. J. 7 (1965) 308-313.
Google Scholar
[68]
R. Fletcher, Comput. J. 13 (1970) 317-322.
Google Scholar