Coincidence Doppler Broadening to Study the Chemical Environment at Positron Annihilation Sites

Article Preview

Abstract:

This paper introduces a Coincidence Doppler Broadening (CDB) analysis method, as presented during the Alfredo Dupasquier [1] Summer School held in Brunate preceding the 2024 International Workshop on Positron Studies of Defects (PSD-24) in Como. CDB spectroscopy provides quantitative information on the chemical environment surrounding defects in various materials, including metal alloys, oxides, and polymers. Reference materials were analyzed to estimate the average chemical environment around defects, voids and porosities. The methodology is applied not only to homogeneous materials, such as metallic alloys, but also to investigate depth profiles in thin films of various materials. The statistical accuracy of element separation is also examined, along with the necessity to refine the method’s calibration through theoretical calculations and the integration of direct observation techniques.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 373)

Pages:

27-38

Citation:

Online since:

July 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Ferragut, Remembering Alfredo Dupasquier. AIP Conf. Proc. 2182 (2019) 020002-1-020002-5.

DOI: 10.1063/1.5135822

Google Scholar

[2] R. Beringer, C.G. Montgomery, The Angular Distribution of Positron Annihilation Radiation, Phys. Rev. 61 (1942) 222-224.

DOI: 10.1103/physrev.61.222

Google Scholar

[3] Positron Annihilation, in: R.R. Hasiguti, K. Fujiwara (Eds.), Proc. Fifth Conf. Positron Annihilation, Lake Yamanaka, Japan Inst. of Metals, Sendai, 1979.

Google Scholar

[4] S. Berko, Momentum density and Fermi-surface measurements in metals by positron annihilation, in: W. Brandt, A. Dupasquier (Eds.), Positrons Solid-Sate Physics, North-Holland Publ. Co, Amsterdam, 1983, pp.64-145.

Google Scholar

[5] K.G. Lynn, A.N. Goland, Solid. State Comm. 18 (1976) 1549-1552.

Google Scholar

[6] K.G. Lynn, J.R. MacDonald, R.A. Boie, L.C. Feldman, J.D. Gabbe, M.F. Robbins, E. Bonderup, J. Golovchenko, Positron-Annihilation Momentum Profiles in Aluminum: Core Contribution and the Independent-Particle Model, Phys. Rev. Lett. 38 (1977) 241-244.

DOI: 10.1103/physrevlett.38.241

Google Scholar

[7] J. R. MacDonald, K.G. Lynn, R.A. Boie, M.F. Robbins, Nucl. Instrum. Methods 153 (1978) 189-194.

Google Scholar

[8] F. Tuomisto, I. Makkonen, Defect identification in semiconductors with positron annihilation: Experiment and theory, Rev. Mod. Phys. 85 (2013) 1583-1631.

DOI: 10.1103/revmodphys.85.1583

Google Scholar

[9] M. Biasini, G. Ferro, P. Folegati, G. Riontino, Vacancy-solute aggregates in Al-Cu-Mg alloys studied by positron annihilation techniques, Phys. Rev. B 63 (2001) 092202.

DOI: 10.1103/physrevb.63.092202

Google Scholar

[10] A. Somoza, M.P. Petkov, K.G. Lynn, A. Dupasquier, Stability of vacancies during solute clustering in Al-Cu-based alloys, Phys. Rev. B 65 (2002) 094107.

DOI: 10.1103/physrevb.65.094107

Google Scholar

[11] A. Calloni, A. Dupasquier, R. Ferragut, P. Folegati, M.M. Iglesias, I. Makkonen, M.J. Puska, Positron localization effects on the Doppler broadening of the annihilation line: Aluminum as a case study, Phys. Rev. B 72 (2005) 054112.

DOI: 10.1103/physrevb.72.054112

Google Scholar

[12] R. Ferragut, Atomic fraction around defects associated with nanoparticles in Al-Cu-Mg alloys, Physica B: Condensed Matter 407 (2012) 2676-2683.

DOI: 10.1016/j.physb.2012.02.008

Google Scholar

[13] A. Dupasquier, R. Ferragut, M.M. Iglesias, M. Massazza, G. Riontino, P. Mengucci, G. Barucca, C.E. Macchi, A. Somoza, Hardening nanostructures in an AlZnMg alloy, Phil. Mag. A 87 (2007) 3297-3323.

DOI: 10.1080/14786430701271959

Google Scholar

[14] R. Ferragut, A. Dupasquier, C.E. Macchi, A. Somoza, R.N. Lumley, I.J. Polmear, Vacancy-solute interactions during multiple-step ageing of an Al-Cu-Mg-Ag alloy, Scripta Mater. 60 (2009) 137.

DOI: 10.1016/j.scriptamat.2008.09.011

Google Scholar

[15] P. Folegati, I. Makkonen, R. Ferragut, M.J. Puska, Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations, Phys. Rev. B 75 (2007) 054201.

DOI: 10.1103/physrevb.75.054201

Google Scholar

[16] R.K.W. Marceau, G. Sha, R. Ferragut, A. Dupasquier, S.P. Ringer, Solute clustering in Al-Cu-Mg alloys during the early stages of elevated temperature ageing, Acta Mater. 58 (2010) 4923.

DOI: 10.1016/j.actamat.2010.05.020

Google Scholar

[17] G. Barucca, R. Ferragut, D. Lussana, P. Mengucci, F. Moia, G. Riontino, Phase transformations in QE22 Mg alloy, Acta Mater. 57 (2009) 4416.

DOI: 10.1016/j.actamat.2009.06.003

Google Scholar

[18] G. Riontino, D. Lussana, M. Massazza, G. Barucca, P. Mengucci, R. Ferragut: Structure evolution of EV31 Mg alloy, J. Alloy. Compd. 463 (2008) 200-206.

DOI: 10.1016/j.jallcom.2007.09.046

Google Scholar

[19] G. Pagot, V. Di Noto, K. Vezzù, B. Barbiellini, V. Toso, A. Caruso, M. Zheng, X. Li, R. Ferragut, Quantum view of Li-ion high mobility at carbon-coated cathode interfaces. iScience 26 (2023) 105794.

DOI: 10.1016/j.isci.2022.105794

Google Scholar

[20] G. Panzarasa, S. Aghion, G. Soliveri, G. Consolati, R. Ferragut, Positron annihilation spectroscopy: a new frontier for understanding nanoparticle loaded polymer brushes, Nanotechnology 27 (2016) 02LT03.

DOI: 10.1088/0957-4484/27/2/02lt03

Google Scholar

[21] F. Cavalca, R. Ferragut, S. Aghion, A. Eilert, O. Diaz-Morales, C. Liu, A.L. Koh, T.W. Hansen, L.G.M. Pettersson, A. Nilsson, Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO2 Reduction J. Phys. Chem. C 121 (2017) 25003–25009.

DOI: 10.1021/acs.jpcc.7b08278

Google Scholar

[22] E.V. Canesi, M. Binda, A. Abate, S. Guarnera, L. Moretti, V. D'Innocenzo, R. Sai Santosh Kumar, C. Bertarelli, A. Abrusci, H. Snaith, A. Calloni, A. Brambilla, F. Ciccacci, S. Aghion, F. Moia, R. Ferragut, C. Melis, G. Malloci, A. Mattoni, G. Lanzani, A. Petrozza, The effect of selective interactions at the interface of polymer-oxide hybrid solar cells, Energy & Environ. Sci. 5 (2012) 9068–9076.

DOI: 10.1039/c2ee22212d

Google Scholar

[23] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, Solid-State Sciences, Vol. 127, Springer, Berlin, 1999.

DOI: 10.1007/978-3-662-03893-2_4

Google Scholar

[24] L. Chryssos, C. Hugenschmidt, Novel data analysis tool for the evaluation of Coincidence Doppler Broadening Spectra of the positron–electron annihilation line, Nucl. Instrum. Methods A 1050 (2023) 168171.

DOI: 10.1016/j.nima.2023.168171

Google Scholar

[25] Y. Hori, Electrochemical CO2 Reduction on Metal Electrodes, in C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco, (Eds.), Modern Aspects of Electrochemistry; Springer, New York, 2008, p.89–189.

DOI: 10.1007/978-0-387-49489-0_3

Google Scholar

[26] N.S. Lewis, D.G. Nocera, Powering the Planet: Chemical Challenges in Solar Energy Utilization. PNAS 103 (2006) 15729–15735.

DOI: 10.1073/pnas.0603395103

Google Scholar

[27] W. Tang, A.A. Peterson, A.S. Varela, Z.P. Jovanov, L. Bech, W.J. Durand, S. Dahl, J.K. Nørskov, I. Chorkendorff, The Importance of Surface Morphology in Controlling the Selectivity of Polycrystalline Copper for CO2 Electroreduction. Phys. Chem. Chem. Phys. 14 (2012) 76–81.

DOI: 10.1039/c1cp22700a

Google Scholar

[28] A.P. Druzhkov, B.A. Gizhevskii, V.L. Arbuzov, E.A. Kozlov, K.V. Shalnov, S.V Naumov, D.A. Perminov, Electronic and Structural Properties of Micro-and Nanometre-Sized Crystalline Copper Monoxide Ceramics Investigated by Positron Annihilation. J. Phys. Condens. Matter 14 (2002) 7981–7990.

DOI: 10.1088/0953-8984/14/34/317

Google Scholar

[29] A. Van Veen, H. Schut, J. de Vries, R.A. Hakvoort, M.R. Jipma, Analysis of positron profiling data by means of "Vepfit". AIP Conference Proceedings 218 (1991) 171-196.

DOI: 10.1063/1.40182

Google Scholar

[30] M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 133 (2011) 16414-16417.

DOI: 10.1021/ja207826q

Google Scholar

[31] W. Brandt, R. Paulin, Positron Diffusion in Solids, Phys. Rev. B 5 (1972) 2430-2435.

DOI: 10.1103/physrevb.5.2430

Google Scholar

[32] O.M. Osiele, D.T. Britton, M. Härting, P. Sperr, M. Topi, S.E. Shaheen, H.M. Branz, Defect structural characterization of organic polymer layers. J. Non-Cryst. Solids 338-340 (2004) 612-616.

DOI: 10.1016/j.jnoncrysol.2004.03.053

Google Scholar

[33] S. Lotfimarangloo, H. Mahdy, P. Sau, P.A. Sterne, R.W. Gladen, J. Driscoll, M. Rooks, M. Chrysler, A.R. Koymen and J. Asaadi, V.A. Chirayath, A.H. Weiss, Measurement and analysis of the Doppler broadened energy spectra of gamma radiation originating from the annihilation of positrons incident on clean and adsorbate-covered surfaces. Appl. Surf. Sci. 689 (2025) 162372.

DOI: 10.1016/j.apsusc.2025.162372

Google Scholar

[34] M. Zheng, I. Makkonen, R. Ferragut, J. Kuriplach, E. Laakso, V. Di Noto, G. Pagot, B. Barbiellini. First-principles study of positron interface states in graphene-stacked LiCoO2 Cathodes. Electrochim. Acta 526 (2025) 146128.

DOI: 10.1016/j.electacta.2025.146128

Google Scholar