Low-Energy Positron Beams, New Developments

Article Preview

Abstract:

Low energy positron beams have become a valuable tool for depth dependent characterization of defects and micro- and mesoscale porosities, as well as for fundamental positron and positronium interactions. Some of the recent developments in the generation of secondary positron beams using particle accelerators are presented and the underlying physics and technologies are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 373)

Pages:

65-71

Citation:

Online since:

July 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Wenskat et al., Vacancy-Hydrogen Interaction in Niobium during Low-Temperature Baking, Scientific Reports 10 (2020) 8300

DOI: 10.1038/s41598-020-65083-0

Google Scholar

[2] L. Chiari, et al, Formation and time dynamics of hydrogen-induced vacancies in nickel, Acta Materialia 219 (2021) 117264

DOI: 10.1016/j.actamat.2021.117264

Google Scholar

[3] D.B. Cassidy, et al., Positron beam production with a deuteron accelerator, Nucl. Instr. Meth. B 195 (2002) 442-448

Google Scholar

[4] R. Xie, et al., Production of a low energy positron beam using the 12C(d,n)13N reaction, Nucl. Instr. Meth. B 195 (1993) 98-102

Google Scholar

[5] Experimental Nuclear Reaction Data (EXFOR) Database: https://www-nds.iaea.org/exfor/

Google Scholar

[6] R. H. Howell, et al., Production and Use of Low-Energy, Monoenergetic Positron Beams from Electron LINACS, Appl. Phys. A 43 (1987) 247-255

DOI: 10.1007/bf00635179

Google Scholar

[7] F. Ebel, et al., Production of Slow Positrons with the Giessen 65 MeV LINAC, Appl. Phys. A 44 (1987) 119-121

DOI: 10.1007/bf00626411

Google Scholar

[8] T. Akahane, et al., Stretching of Slow Positron Pulses Generated with an Electron Linac, Appl. Phys. A 51 (1990) 146-150

DOI: 10.1007/bf00324279

Google Scholar

[9] D. Segers, et al., Creation of slow positrons at the Ghent 90 MeV linac, Nucl. Instr. Meth. B 56/57 (1991) 572-574

DOI: 10.1016/0168-583x(91)96098-6

Google Scholar

[10] A. Wagner, et al., Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility, AIP Conf. Proc. 1970 (2018) 040003

DOI: 10.1063/1.5040215

Google Scholar

[11] P. F. Paradis, et al., Thermophysical Properties of Molten Tungsten Measured with an Electrostatic Levitator, Heat Transfer – Asian Research 35 (2006) 152-164

DOI: 10.1002/htj.20101

Google Scholar

[12] M. Maekawa, et al., Development of spin-polarized slow positron beam using a 68Ge–68Ga positron source, Nucl. Instr. Meth. B 308 (2013) 9-14

DOI: 10.1016/j.nimb.2013.04.015

Google Scholar

[13] D. Abbott et al. (PEPPo Collaboration), Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies, Phys. Rev. Lett. 116 (2016) 214801

Google Scholar

[14] G4beamline. https://www.muonsinc.com/Website1/G4beamline

Google Scholar

[15] S. Agostinelli, et al., Geant4—a simulation toolkit, Nucl. Instr. Meth. A 506 (2003) 250-303, https://geant4.web.cern.ch/; https://geant4.web.cern.ch/

Google Scholar

[16] J. Allison, et al., Recent developments in Geant4, Nucl. Instr. Meth. A 835 (2016) 186-225

Google Scholar