Hole and Cusp Formalism in Electron-Positron Density Functional Theory

Article Preview

Abstract:

We investigate the hole formalism and positron screening within the framework of Den sity Functional Theory (DFT). This study revisits the Local Density Approximation (LDA) and its extensions - such as semilocal functionals and the Weighted Density Approximation (WDA), show ing their importance in modeling exchange and correlation potentials. We further examine the two-component density functional approach to describe electron-positron interactions, with particular em phasis on the formation of the electron screening cloud around the positron site. The performance of various computational techniques in describing charge inhomogeneities and positron surface states is critically assessed. Moreover, we identify the limitations of conventional models in low-dimensional systems and propose a novel method based on the electronic dielectric response to improve the accu racy of positron screening predictions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 373)

Pages:

145-153

Citation:

Online since:

July 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Pribram-Jones, D. A. Gross, and K. Burke, Annu. Rev. Phys. Chem. 66 (2015), 283.

Google Scholar

[2] B. Barbiellini, Positron States in Materials: DFT and QMC Studies. In: Surko, C.M., Gianturco, F.A. (eds) New Directions in Antimatter Chemistry and Physics. Springer (2001), Dordrecht

DOI: 10.1007/0-306-47613-4_9

Google Scholar

[3] B. Barbiellini and A. Bansil, J. Phys. Chem. Solids 66 (2005), 2192

Google Scholar

[4] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964), B 864

Google Scholar

[5] W. Kohn and L. J. Sham, Phys. Rev. 140 (1965), A 1133

Google Scholar

[6] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys 61 (1989), 689

Google Scholar

[7] S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, (1980), 1200

Google Scholar

[8] J. P. Perdew and A. Zunger, Phys. Rev. B 23 (1981), 5048

Google Scholar

[9] B. Barbiellini, Phys. Lett. A 134 (1989), 330

Google Scholar

[10] H. Stachowiak, Phys. Stat. Sol. (b) 52 (1972), 313

Google Scholar

[11] J. A. Alonso and L. A. Girifalco, Phys. Rev. B 17 (1978), 3735

Google Scholar

[12] O. Gunnarsson, M. Jonson and B.I. Lundqvist, Phys. Rev. B 19 (1979), 673

Google Scholar

[13] M. Vanzini, A. Aouina, M. Panholzer, M. Gatti, and L. Reining. npj Computational Materials 8 (2022), 98

DOI: 10.1038/s41524-022-00762-2

Google Scholar

[14] J. C. Slater, Phys. Rev. 81 (1951), 385

Google Scholar

[15] J. C. Slater, Intern. J. Quantum Chem. 1 (1967), 783

Google Scholar

[16] R. McWeeny, Intern. J. Quantum Chem. 1 (1967), 351

Google Scholar

[17] J. L. Gázquez and J. Keller, Phys. Rev. A 16 (1977), 1358; J. Keller and J. L. Gázquez, Phys. Rev. A 20 (1979), 1289

DOI: 10.1103/physreva.16.1358

Google Scholar

[18] O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 10 (1976), 4274

Google Scholar

[19] L. Lantto, Phys. Rev. B 22 (1980), 1380

Google Scholar

[20] K. Utsumi and S. Ichimaru, Phys. Rev. B 28 (1983), 1792

Google Scholar

[21] H. Przybylski and G. Borstel, Solid State Commun. 49 (1984), 381; 52 (1984), 713

Google Scholar

[22] B. Barbiellini and T. Jarlborg, Phys. Lett. A 139 (1990) 75

Google Scholar

[23] G. Borstel, M. Neumann and W. Braun, Phys. Rev. B 23 (1981), 3113

Google Scholar

[24] C.S. Wang, J. Magn. Mag. Mater. 31-34 (1983), 95

Google Scholar

[25] G. P. Kerker, Phys. Rev. B. 24 (1981), 3468

Google Scholar

[26] F. Manghi, G. Riegler, C.M. Bertoni, C. Calandra and G.B. Bachelet, Phys. Rev. B. 28 (1983), 6157

DOI: 10.1103/physrevb.28.6157

Google Scholar

[27] M. S. Hybertsen and S.G. Louie, Phys. Rev. B. 30 (1984), 5777

Google Scholar

[28] Y. T. Shen, D. M. Bylander and L. Kleinman, Phys. Rev. B. 36 (1987), 3465

Google Scholar

[29] E. Chacón and P. Tarazona, Phys. Rev. B 37 (1988), 4013

Google Scholar

[30] L. C. Balbas, G. Borstel and J.A. Alonso, Phys. Lett. A 114 (1986), 236

Google Scholar

[31] L. C. Balbas, A. Rubio, J.A. Alonso and G. Borstel, J. Chim. Phys. 86 (1989), 799

Google Scholar

[32] A. Rubio, L. C. Balbas and J. A. Alonso, Phisica B 168 (1991),32; L. C. Balbas, J. A. Alonso and A. Rubio, Europhys. Lett. 14 (1991), 323

DOI: 10.1016/0921-4526(91)90187-j

Google Scholar

[33] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996), 3865

Google Scholar

[34] J. P. Perdew, Physica B 172 (1991), 1

Google Scholar

[35] T. Jarlborg, Adv. Condens. Matter Phys. 2010 (2009), 912067

Google Scholar

[36] J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys Rev. Lett. 115 (2015), 036402

Google Scholar

[37] J. W. F., Yubo Zhang, C. Lane, I. G. Buda, B. Barbiellini, R. S. Markiewicz, A. Bansil, and J. Sun, Communications Physics 1 (2018), 11

Google Scholar

[38] Y. Zhang, C. Lane, J.W. Furness, B. Barbiellini, J. P. Perdew, R. S. Markiewicz, A. Bansil,and J. Sun, Proceedings of the National Academy of Sciences 117 (2020), 68

DOI: 10.1073/pnas.1910411116

Google Scholar

[39] R. Zhang, C. Lane, J. Nokelainen, B. Singh, B. Barbiellini, R. S. Markiewicz, A. Bansil, and J. Sun, Phys. Rev. Lett. 133 (2024) 066401

DOI: 10.1103/physrevlett.133.066401

Google Scholar

[40] J. C. Kimball, Phys. Rev. A. 7 (1973), 1648

Google Scholar

[41] A.W. Overhauser, Phys. Rev. B. 3 (1971), 1888

Google Scholar

[42] B. Barbiellini in: New Directions in Antimatter Chemistry and Physics , edited by C. M. Surko and F. A. Gianturco , chapter, 9, Dordrecht: Springer Netherlands (2001)

Google Scholar

[43] S. Fahy, X. W. Wang and S. G. Louie, Phys. Rev. Lett. 65 (1990), 1478

Google Scholar

[44] E. Boronski and R. N. Nieminen, Phys. Rev. B 34 (1986), 3820

Google Scholar

[45] B. Chakraborty, Phys. Rev. B 24 (1981), 7423(R)

Google Scholar

[46] K. A. Simula, J. E. Muff, I. Makkonen, and N. D. Drummond, Phys. Rev. Lett. 129 (2022), 166403

Google Scholar

[47] D. Bressanini and G. Morosi, J. Chem. Phys 119 (2003), 7037

Google Scholar

[48] Y. Dong, L. Deng, Y. H. Li, M. Luo, J. D. Liu, H. J. Zhang, and B. J. Ye, Phys. Rev. 109 (2024), 04104

Google Scholar

[49] B. Barbiellini, and J. Kuriplach. Phys. Rev. Lett. 114 (2015), 147401

Google Scholar

[50] A. C. L. Jones, H. J. Rutbeck-Goldman, T. H. Hisakado, A. M. Piñeiro, H. W. K. Tom, A. P. Mills Jr, B. Barbiellini, and J. Kuriplach, Phys. Rev. Lett. 117(2016), 216402

DOI: 10.1103/physrevlett.117.216402

Google Scholar

[51] K.O. Jensen and A.B. Walker, J. Phys. F: Met. Phys. 18 (1988), L277

Google Scholar

[52] V. Callewaert, R. Saniz, B. Barbiellini, A. Bansil, and B. Partoens, Phys. Rev. B 96 (2017), 085135

Google Scholar

[53] V. A. Chirayath, V. Callewaert, A. J. Fairchild, M. D. Chrysler, R. W. Gladen, A. D. Mcdonald, S. K. Imam, K. Shastry, A. R. Koymen, R. Saniz, B. Barbiellini, K. Rajeshwar, B. Partoens, and A. H. Weiss , Nature Communications 8 (2017), 16116

DOI: 10.1038/ncomms16116

Google Scholar

[54] M. Zheng, J. Kuriplach, I. Makkonen, R. Ferragut, V. Di Noto, G. Pagot, E. Laakso, and B. Barbiellini, Communications Materials 5 (2024), 138

DOI: 10.1038/s43246-024-00561-w

Google Scholar

[55] Yung Jui Wang, B. Barbiellini, Hsin Lin, Tanmoy Das, Susmita Basak, P. E. Mijnarends, S. Kaprzyk, R. S. Markiewicz, and A. Bansil. Phys. Rev. B 85 (2012), 224529

DOI: 10.1103/physrevb.85.224529

Google Scholar

[56] B. Uchoa, J. P Reed, Y. Gan, Y. I. Joe, E. Fradkin, P. Abbamonte and D. Casa, Physica Scripta T 146 (2012), 014014

DOI: 10.1088/0031-8949/2012/t146/014014

Google Scholar

[57] P. Abbamonte, K. D. Finkelstein, M. D. Collins, and S. M. Gruner, Phys. Rev. Lett. 92 (2004), 237401

Google Scholar

[58] J. P. Reed, B. Uchoa, Y. I. Joe, Y. Gan, D. Casa, E. Fradkin, and P. Abbamonte, Science 330 (2010), 805

DOI: 10.1126/science.1190920

Google Scholar

[59] J. P. Reed, Ph. D. Dissertation (2009) University of Illinois at Urbana-Champaign http://hdl.handle. net/2142/14611

Google Scholar