Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: October 2024
Authors: Alwiyah Nurhayati, Kasarapu Venkataramana, C. Vishnuvardhan Reddy
Fig. 1. represents powder x-ray diffractograms for all materials.
The evaluated structure parameters are listed in Table 1.
References [1] J.
Alloys Compd., vol. 490, no. 1–2, pp. 472–479, 2010, doi: 10.1016/j.jallcom.2009.10.048
Technol., vol. 1, pp. 26–35, 2014, doi: 10.1016/j.susmat.2014.11.002
The evaluated structure parameters are listed in Table 1.
References [1] J.
Alloys Compd., vol. 490, no. 1–2, pp. 472–479, 2010, doi: 10.1016/j.jallcom.2009.10.048
Technol., vol. 1, pp. 26–35, 2014, doi: 10.1016/j.susmat.2014.11.002
Online since: July 2014
Authors: R.H. Biswas
Improving the accuracy and precision
3.1.1.
Application of luminescence to planetary sciences 5.1 Meteorite 5.1.1 Terrestrial age 5.1.2 Cosmic ray exposure age 5.1.3 Thermal metamorphism history 5.1.4 Meteoroid orbit 5.2 Mars References 1.
Improving the accuracy and precision 3.1.1.
Quaternary Geochronology 6 (2011) 468-479
Radiation Measurements 32 (2000) 479-485
Application of luminescence to planetary sciences 5.1 Meteorite 5.1.1 Terrestrial age 5.1.2 Cosmic ray exposure age 5.1.3 Thermal metamorphism history 5.1.4 Meteoroid orbit 5.2 Mars References 1.
Improving the accuracy and precision 3.1.1.
Quaternary Geochronology 6 (2011) 468-479
Radiation Measurements 32 (2000) 479-485
Online since: March 2023
Authors: Amer Lafhal, El Mostafa Jalal, Abdellatif Hasnaoui, Hasnae Saadi, Nabil Hachem, Mohamed Madani, Mohammed El Bouziani
Fig. 1 A transverse section of a cubic nanowire consisting of mixed spins: S=1 (Blue circles) and σ=2 (Brown circles).
In the following, KB=1 for simplicity. 3.
References [1] B.
Dev. 52 (2008) 465–479. https://doi.org/10.1147/rd.524.0465
Badarneh, Compensation and critical behavior of Ising mixed spin (1-1/2-1) three layers system of cubic structure, Phys.
In the following, KB=1 for simplicity. 3.
References [1] B.
Dev. 52 (2008) 465–479. https://doi.org/10.1147/rd.524.0465
Badarneh, Compensation and critical behavior of Ising mixed spin (1-1/2-1) three layers system of cubic structure, Phys.
Online since: March 2016
Authors: Jiang Li Ning, Yun Li Feng, Jie Li
Literatures
Corrected ky
parameters
using Eq. (3)
and Eq. (24)
Samples
H-P predictions
(∆σHP)
Predicted yield stresses
(∆σHP
+ ∆σOA)
Difference between measured LYS
and
(∆σHP
+ ∆σOA)
Morrison [18]
20.7
20.5
21.0
20.3
21.0
20.7
21.0
20.7
S1-1
S2-1
S1-2
S2-2
S1-4
S2-4
S1-8
S2-8
639
569
640
513
573
508
558
479
670
598
664
538
601
538
591
514
31
-6
23
42
50
23
35
30
Gurland
&
Anand
[2, 17]
22.4 / 20.1
22.2 / 19.9
22.7 / 20.4
22.0 / 19.8
22.8 / 20.4
22.4 / 20.1
22.7 / 20.4
22.5 / 20.2
S1-1
S2-1
S1-2
S2-2
S1-4
S2-4
S1-8
S2-8
691 / 614
614 / 545
690 / 614
555 / 493
620 / 549
548 / 486
602 / 535
519 / 460
722 / 645
643 / 574
714 / 638
579 / 518
648 / 577
578 / 516
635 / 568
554 / 495
-21 / 56
-51 / 18
-27 / 49
1 / 62
2 / 73
-17 / 45
-9 / 58
-10 / 49
Pickering
[19, 20];
Iza-
Mendia & Gutiérrez [22]
19.9
19.7
20.1
19.5
20.2
19.9
20.1
19.9
S1-1
S2-1
S1-2
S2-2
S1-4
S2-4
S1-8
S2-8
647
579
References [1] L.
Sci. 24(1) (1989) 281-287
A 441 (2006) 1-17
Trans. 1 (1970) 1161-1167
References [1] L.
Sci. 24(1) (1989) 281-287
A 441 (2006) 1-17
Trans. 1 (1970) 1161-1167
Online since: March 2023
Authors: R. Sudhakaran, P.S. Sivasakthivel, K.M. Eazhil, S. Narayanan, B. Balamurali
Fig. 1.
The ranges of the process parameters are shown in Table 1 Table 1.
Central Composite Rotatable Design and Experimental Values Specimen No Process Variables (Welding Parameters) Observed value of α (degrees) Predicted value of α (degrees) % error Welding current, I Welding speed, V Plate length, L Welding gun angle, θ Shielding gas flow rate, Q 01 -1 -1 -1 -1 1 3.55 3.494 1.602748 02 1 -1 -1 -1 -1 8.85 8.86 -0.11287 03 -1 1 -1 -1 -1 3.35 3.266 2.571953 04 1 1 -1 -1 1 3.22 3.028 6.340819 05 -1 -1 1 -1 -1 7.88 7.96 -1.00503 06 1 -1 1 -1 1 5.83 5.954 -2.08263 07 -1 1 1 -1 1 3.51 3.392 3.478774 08 1 1 1 -1 -1 5.68 5.774 -1.62799 09 -1 -1 -1 1 -1 5.88 6.042 -2.68123 10 1 -1 -1 1 1 4.55 4.48 1.5625 11 -1 1 -1 1 1 5.32 5.282 0.719424 12 1 1 -1 1 -1 7.32 7.22 1.385042 13 -1 -1 1 1 1 6.15 6.188 -0.61409 14 1 -1 1 1 -1 6.32 6.446 -1.9547 15 -1 1 1 1 -1 4.97 4.976 -0.12058 16 1 1 1 1 1 9.92 9.846 0.751574 17 -2 0 0 0 0 6.38 6.379 0.015676 18 2 0 0 0 0 9.1 9.131 -0.3395 19 0 -2 0 0 0 5.51 5.297 4.021144 20 0 2 0 0 0 3.39 3.637 -6.79131 21 0 0 -2 0 0 5.08 5.255
The results led to the following conclusions. 1.
Process. 813 (2015) 474 – 479
The ranges of the process parameters are shown in Table 1 Table 1.
Central Composite Rotatable Design and Experimental Values Specimen No Process Variables (Welding Parameters) Observed value of α (degrees) Predicted value of α (degrees) % error Welding current, I Welding speed, V Plate length, L Welding gun angle, θ Shielding gas flow rate, Q 01 -1 -1 -1 -1 1 3.55 3.494 1.602748 02 1 -1 -1 -1 -1 8.85 8.86 -0.11287 03 -1 1 -1 -1 -1 3.35 3.266 2.571953 04 1 1 -1 -1 1 3.22 3.028 6.340819 05 -1 -1 1 -1 -1 7.88 7.96 -1.00503 06 1 -1 1 -1 1 5.83 5.954 -2.08263 07 -1 1 1 -1 1 3.51 3.392 3.478774 08 1 1 1 -1 -1 5.68 5.774 -1.62799 09 -1 -1 -1 1 -1 5.88 6.042 -2.68123 10 1 -1 -1 1 1 4.55 4.48 1.5625 11 -1 1 -1 1 1 5.32 5.282 0.719424 12 1 1 -1 1 -1 7.32 7.22 1.385042 13 -1 -1 1 1 1 6.15 6.188 -0.61409 14 1 -1 1 1 -1 6.32 6.446 -1.9547 15 -1 1 1 1 -1 4.97 4.976 -0.12058 16 1 1 1 1 1 9.92 9.846 0.751574 17 -2 0 0 0 0 6.38 6.379 0.015676 18 2 0 0 0 0 9.1 9.131 -0.3395 19 0 -2 0 0 0 5.51 5.297 4.021144 20 0 2 0 0 0 3.39 3.637 -6.79131 21 0 0 -2 0 0 5.08 5.255
The results led to the following conclusions. 1.
Process. 813 (2015) 474 – 479
Online since: June 2021
Authors: Cheng Zhang, Qing Shan Gao, Lu Yun Jiao, Laura Bogen, Nicole Forte, Elizabeth Nestler
Minor peaks at 2450 cm-1, 2950 cm-1 and 3242 cm-1 made up the second order region.
References [1].
Rep. 4 (2014) 1-11
Sci. 464 (2019) 479-487
Rep. 70 (2010) 1-28
References [1].
Rep. 4 (2014) 1-11
Sci. 464 (2019) 479-487
Rep. 70 (2010) 1-28
Online since: February 2011
Authors: John Ågren, Anders Engström, Ping Fang Shi, Bo Sundman
Table 1.
Figure 1.
References [1] G.B.
Ågren: Materials Science Forum, Vol. 475-479 (2005), p. 3339-3346
Hald: Energy Materials, 1 (2006), p. 106-115
Figure 1.
References [1] G.B.
Ågren: Materials Science Forum, Vol. 475-479 (2005), p. 3339-3346
Hald: Energy Materials, 1 (2006), p. 106-115
Online since: October 2023
Authors: Akshat Mahajan, Sahil Jaggi, Banda Lakshmi Sai Karthik
(Hamad & Dawi, 2017) (Güneyisi et al., 2012; Megat Johari et al., 2011) [1,2, 3].
Coarse aggregates used in this study were evaluated by the standard procedures of IS 2386 Part 1.
Table 1: Physical Property of Ordinary Portland Cement S.No Physical properties Results obtained 1 Specific gravity 3.11 2 Standard consistency (%) 31.3 3 Initial Setting time (min) 56 4 Final Setting time (min) 247 Fig. 1: Metakaolin Fig. 2: Silica Fume Table 2: Typical Properties of Normal and Coarse Granite Aggregates S.No Properties Normal Aggregates Granite Aggregates 1.
References [1] Mazloom, M., Ramezanianpour, A.
Construction and Building Materials, 30, 470–479. https://doi.org/10.1016/j.conbuildmat.2011.12.050 [4] Güneyisi, E., Gesoǧlu, M., Karaoǧlu, S., & Mermerdaş, K. (2012).
Coarse aggregates used in this study were evaluated by the standard procedures of IS 2386 Part 1.
Table 1: Physical Property of Ordinary Portland Cement S.No Physical properties Results obtained 1 Specific gravity 3.11 2 Standard consistency (%) 31.3 3 Initial Setting time (min) 56 4 Final Setting time (min) 247 Fig. 1: Metakaolin Fig. 2: Silica Fume Table 2: Typical Properties of Normal and Coarse Granite Aggregates S.No Properties Normal Aggregates Granite Aggregates 1.
References [1] Mazloom, M., Ramezanianpour, A.
Construction and Building Materials, 30, 470–479. https://doi.org/10.1016/j.conbuildmat.2011.12.050 [4] Güneyisi, E., Gesoǧlu, M., Karaoǧlu, S., & Mermerdaş, K. (2012).
Online since: June 2009
Authors: Koushik Biswas
Table 1.
References [1] A.
Soc., 68 (1985) 479-482
Ott, ibid., 63 (1926) 1
Microsc., 144 (1978) 1-18
References [1] A.
Soc., 68 (1985) 479-482
Ott, ibid., 63 (1926) 1
Microsc., 144 (1978) 1-18
Online since: February 2016
Authors: Emanuele Baravelli, Pasquale Maiorano, Antonio Gnudi, Susanna Reggiani, Giorgio Baccarani, Elena Gnani
Eq. (1) shows that
the drain conductance can be close to its maximum value (2q2/h) Tsc only if (ηvs − µs) ≫ 1 and if
(η(0)cd − µs) ≪ 1.
On the other hand, the subthreshold swing SS can be expressed as SS = ln(10) kBT q ln (T−1 sc ) ηcs − ηcc + f(ηcc − µs) − f(ηcc − µd) ln (1 + exp(µs − ηcc) 1 + exp(µs − ηvs) 1 + exp(µd − ηvs) 1 + exp(µd − ηcc)) −1 (2) Eq. (2) shows that, if the factor in braces is substantially higher than 1, the subthreshold swing SS can be smaller than 60 mV/dec.
(ηvs −µs) ≫ 1 and ηcc is close to ηvs, the second term in braces tends to 1 and SS can be at most 60 mV/dec.
References [1] K.
Riel, "Tunnel field-effect transistors as energy-efficient electronic switches", Nature, 479, (2011) pp. 329-337
On the other hand, the subthreshold swing SS can be expressed as SS = ln(10) kBT q ln (T−1 sc ) ηcs − ηcc + f(ηcc − µs) − f(ηcc − µd) ln (1 + exp(µs − ηcc) 1 + exp(µs − ηvs) 1 + exp(µd − ηvs) 1 + exp(µd − ηcc)) −1 (2) Eq. (2) shows that, if the factor in braces is substantially higher than 1, the subthreshold swing SS can be smaller than 60 mV/dec.
(ηvs −µs) ≫ 1 and ηcc is close to ηvs, the second term in braces tends to 1 and SS can be at most 60 mV/dec.
References [1] K.
Riel, "Tunnel field-effect transistors as energy-efficient electronic switches", Nature, 479, (2011) pp. 329-337