Steep-Slope Devices: Prospects and Challenges

Abstract:

Article Preview

In this work, an overview is given on the prospects and challenges of two novel device concepts,namely the Tunnel FET (TFET) and the Superlattice FET (SL-FET). The optimization effort ofhomo- and hetero-junction TFETs carried out so far shows that these devices can provide an advantageover CMOS FETs only for very-low power and low-performance niche applications, so long asthe supply voltage is scaled below 300 mV. The required materials for homojunction TFETs are lowbandgap semiconductors, such as InAs and InGaAs; for heterojunction TFETs the best semiconductorpair appears to be (Al)GaSb-InAs. Several technological problems are still unsolved: poor qualityof the oxide interface with III-V materials and device variability are probably the most important. The SL-FET represents in principle a better device concept, as it provides outstanding performance and meets nearly all targets of the high performance (HP), low operating power (LOP) and low standby power (LSTP) of the ITRS at VDD = 0.4V. A suitably-designedInGaAs-InAlAs SL-FET has turned out to provide the best simulation results. However, the fabricationprocess of SL-FETs is much more complex, as it requires molecular epitaxy to deposit multiplelayers with a very strict control of their nanometric thickness. Besides, vertical devices can poseunexpected problems as far as layout organization and parasitics are concerned.

Info:

Periodical:

Edited by:

Prof. Alexei N. Nazarov, Prof. Volodymyr S. Lysenko, Prof. Denis Flandre, Dr. Yuri V. Gomeniuk

Pages:

3-16

Citation:

E. Gnani et al., "Steep-Slope Devices: Prospects and Challenges", Journal of Nano Research, Vol. 39, pp. 3-16, 2016

Online since:

February 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] K. Gopalakrishnan, P. A. Griffin, and J. D. Plummer, I-MOS a Novel Semiconductor Device with a Subthreshold Slope lower than kT/q, in International Electron Devices Meeting (IEDM2002), Technical Digest, 2002, pp.289-292.

DOI: https://doi.org/10.1109/iedm.2002.1175835

[2] H. Kam, D. T. Lee, R. T. Howe, and T. -J. King, A new Nano-Electromechanical Field-Effect Transistor (NEMFET) Design for Low-Power Electronics, in International Electron Devices Meeting (IEDM-2005), Technical Digest, 2005, pp.477-480.

DOI: https://doi.org/10.1109/iedm.2005.1609380

[3] N. Abelé, R. Fritschi, K. Boucart, F. Casset, P. Ancey, and A. M. Ionescu, Suspended-Gate MOSFET; bringing new MEMS functionality into solid-state mos transistor, in International Electron Devices Meeting (IEDM-2005), Technical Digest, 2005, pp.1075-1077.

DOI: https://doi.org/10.1109/iedm.2005.1609384

[4] S. Salahuddin and S. Datta, Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices, Nano Letts., vol. 8, no. 2, pp.405-410, July (2008).

DOI: https://doi.org/10.1021/nl071804g

[5] A.M. Ionescu, and H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches, Nature, 479, (2011) pp.329-337.

DOI: https://doi.org/10.1038/nature10679

[6] E. Gnani, S. Reggiani, A. Gnudi, G. Baccarani, Steep-slope nanowire FET with a superlattice in the source extension,, Solid-State Electronics, vol. 65, (2011) pp.108-113.

DOI: https://doi.org/10.1016/j.sse.2011.06.008

[7] E. Gnani, P. Maiorano, S. Reggiani, A. Gnudi, G. Baccarani, Performance limits of superlatticebased steep-slope nanowire FETs, in emphInternational Electron Devices Meeting (IEDM-2005), Technical Digest, 2011, p.5. 1. 1-5. 1. 4.

DOI: https://doi.org/10.1109/iedm.2011.6131491

[8] B. A. Foreman, Elimination of spurious solutions from eight-band k·p theory, Phys. Rev. B 56 (20) (1997) R12748-R12751.

DOI: https://doi.org/10.1103/physrevb.56.r12748

[9] R. Lake, G. Klimeck, R. C. Bowen, D. Jovanovic, Single and multiband modeling of quantum electron transport through layered semiconductor devices, J. Appl. Phys. 81 (12) (1997) 7845- 7869.

DOI: https://doi.org/10.1063/1.365394

[10] I. Vurgaftman, J. R. Meyer, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys. 89 (11) (2001) 5815-5875.

DOI: https://doi.org/10.1063/1.1368156

[11] E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, Drain-conductance optimization in nanowire TFETs by means of a physics-based analytical model, Solid-State Electron., 84, pp.96-102, (2013).

DOI: https://doi.org/10.1016/j.sse.2013.02.012

[12] A. Seabaugh and Q. Zhang, Low-Voltage Tunnel Transistors for Beyond CMOS Logic, Proc. of IEEE, 98, 12, pp.2095-2110 (2010).

DOI: https://doi.org/10.1109/jproc.2010.2070470

[13] S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, On Enhanced Miller Capacitance Effect in Interband Tunnel Transistors, IEEE Electron Device Letters 30 (10) (2009) 1102-1104.

DOI: https://doi.org/10.1109/led.2009.2028907

[14] Y. Yang, X. Tong, L. -T. Yang, P. -F. Guo, L. Fan, Y. -C. Yeo, Tunneling Field-Effect Transistor: Capacitance Components and Modeling, IEEE Electron Device Letters 31 (7) (2010) 752-754.

DOI: https://doi.org/10.1109/led.2010.2047240

[15] J. Zhuge, A. S. Verhulst, W. G. Vandenberghe, W. Dehaene, R. Huang, Y. Wang, G. Groeseneken, Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications, Semiconductor Science and Technology 26 (8) (2011) 085001.

DOI: https://doi.org/10.1088/0268-1242/26/8/085001

[16] E. Gnani, E. Baravelli, A. Gnudi, S. Reggiani, G. Baccarani, Capacitance estimation for InAs Tunnel FETs by means of full-quantum k · p simulation, Solid State Electronics, vol. 108, pp.104-109, (2015).

DOI: https://doi.org/10.1109/ulis.2014.6813895

[17] G. Zhou, R. Li, T. Vasen, M. Qi, S. Chae, Y. Lu, Q. Zhang, H. Zhu, J. -M. Kuo, T. Kosel, M. Wistey, P. Fay, A. Seabaugh, and H. Xing, Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180 µA/µm at VDS = 0. 5 V, in emphInternational Electron Devices Meeting (IEDM-2005), Technical Digest, 2011, pp.777-780.

DOI: https://doi.org/10.1109/iedm.2012.6479154

[18] E. Baravelli, E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, TFET Inverters With n-/pDevices on the Same Technology Platform for Low-Voltage/Low-Power Applications, IEEE Trans. Electron Devices, vol. 61, pp.473-478, (2014).

DOI: https://doi.org/10.1109/ted.2013.2294792

[19] E. Baravelli, E. Gnani, R. Grassi, A. Gnudi, S. Reggiani, and G. Baccarani, Optimization of nand p-type TFETs integrated on the same InAs/AlxGa1−xSb technology platform, IEEE Trans. Electron Devices, vol. 61, pp.178-185, (2014).

DOI: https://doi.org/10.1109/ted.2013.2289739

[20] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao, Exploring sub-20nm FinFET design with predictive technology models, in Proc. DAC, 2012, pp.283-288.

DOI: https://doi.org/10.1145/2228360.2228414

[21] Semiconductor Industry Association (SIA), The International Technology Roadmap for Semiconductors (ITRS), 2012. [Online]. Available: http: /www. itrs. net.

[22] P. Maiorano, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani, Design and optimization of impurity- and electrostatically-doped superlattice FETs to meet all the ITRS power targets at VDD = 0. 4 V, Solid-State Electronics, vol. 101, pp.70-78, (2014).

DOI: https://doi.org/10.1016/j.sse.2014.06.020

[23] E. Gnani, P. Maiorano, S. Reggiani, A. Gnudi and G. Baccarani, An Investigation on SteepSlope and Low-Power Nanowire FETs, in Proc. of the ESSDERC Conference, 2011, pp.289-292.

DOI: https://doi.org/10.1109/essderc.2011.6044175

[24] P. Maiorano, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani, Effects of Dit-induced degradation on InGaAs/InAlAs Nanowire Superlattice-FET using Al2O3 and HfO2/La2O3 as gate stacks, Proc. of the EUROSOI-ULIS Conference, pp.57-60, (2015).

DOI: https://doi.org/10.1109/ulis.2015.7063772

Fetching data from Crossref.
This may take some time to load.