Steep-Slope Devices: Prospects and Challenges

Article Preview

Abstract:

In this work, an overview is given on the prospects and challenges of two novel device concepts,namely the Tunnel FET (TFET) and the Superlattice FET (SL-FET). The optimization effort ofhomo- and hetero-junction TFETs carried out so far shows that these devices can provide an advantageover CMOS FETs only for very-low power and low-performance niche applications, so long asthe supply voltage is scaled below 300 mV. The required materials for homojunction TFETs are lowbandgap semiconductors, such as InAs and InGaAs; for heterojunction TFETs the best semiconductorpair appears to be (Al)GaSb-InAs. Several technological problems are still unsolved: poor qualityof the oxide interface with III-V materials and device variability are probably the most important. The SL-FET represents in principle a better device concept, as it provides outstanding performance and meets nearly all targets of the high performance (HP), low operating power (LOP) and low standby power (LSTP) of the ITRS at VDD = 0.4V. A suitably-designedInGaAs-InAlAs SL-FET has turned out to provide the best simulation results. However, the fabricationprocess of SL-FETs is much more complex, as it requires molecular epitaxy to deposit multiplelayers with a very strict control of their nanometric thickness. Besides, vertical devices can poseunexpected problems as far as layout organization and parasitics are concerned.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-16

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Gopalakrishnan, P. A. Griffin, and J. D. Plummer, I-MOS a Novel Semiconductor Device with a Subthreshold Slope lower than kT/q, in International Electron Devices Meeting (IEDM2002), Technical Digest, 2002, pp.289-292.

DOI: 10.1109/iedm.2002.1175835

Google Scholar

[2] H. Kam, D. T. Lee, R. T. Howe, and T. -J. King, A new Nano-Electromechanical Field-Effect Transistor (NEMFET) Design for Low-Power Electronics, in International Electron Devices Meeting (IEDM-2005), Technical Digest, 2005, pp.477-480.

DOI: 10.1109/iedm.2005.1609380

Google Scholar

[3] N. Abelé, R. Fritschi, K. Boucart, F. Casset, P. Ancey, and A. M. Ionescu, Suspended-Gate MOSFET; bringing new MEMS functionality into solid-state mos transistor, in International Electron Devices Meeting (IEDM-2005), Technical Digest, 2005, pp.1075-1077.

DOI: 10.1109/iedm.2005.1609384

Google Scholar

[4] S. Salahuddin and S. Datta, Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices, Nano Letts., vol. 8, no. 2, pp.405-410, July (2008).

DOI: 10.1021/nl071804g

Google Scholar

[5] A.M. Ionescu, and H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches, Nature, 479, (2011) pp.329-337.

DOI: 10.1038/nature10679

Google Scholar

[6] E. Gnani, S. Reggiani, A. Gnudi, G. Baccarani, Steep-slope nanowire FET with a superlattice in the source extension,, Solid-State Electronics, vol. 65, (2011) pp.108-113.

DOI: 10.1016/j.sse.2011.06.008

Google Scholar

[7] E. Gnani, P. Maiorano, S. Reggiani, A. Gnudi, G. Baccarani, Performance limits of superlatticebased steep-slope nanowire FETs, in emphInternational Electron Devices Meeting (IEDM-2005), Technical Digest, 2011, p.5. 1. 1-5. 1. 4.

DOI: 10.1109/iedm.2011.6131491

Google Scholar

[8] B. A. Foreman, Elimination of spurious solutions from eight-band k·p theory, Phys. Rev. B 56 (20) (1997) R12748-R12751.

DOI: 10.1103/physrevb.56.r12748

Google Scholar

[9] R. Lake, G. Klimeck, R. C. Bowen, D. Jovanovic, Single and multiband modeling of quantum electron transport through layered semiconductor devices, J. Appl. Phys. 81 (12) (1997) 7845- 7869.

DOI: 10.1063/1.365394

Google Scholar

[10] I. Vurgaftman, J. R. Meyer, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys. 89 (11) (2001) 5815-5875.

DOI: 10.1063/1.1368156

Google Scholar

[11] E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, Drain-conductance optimization in nanowire TFETs by means of a physics-based analytical model, Solid-State Electron., 84, pp.96-102, (2013).

DOI: 10.1016/j.sse.2013.02.012

Google Scholar

[12] A. Seabaugh and Q. Zhang, Low-Voltage Tunnel Transistors for Beyond CMOS Logic, Proc. of IEEE, 98, 12, pp.2095-2110 (2010).

DOI: 10.1109/jproc.2010.2070470

Google Scholar

[13] S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, On Enhanced Miller Capacitance Effect in Interband Tunnel Transistors, IEEE Electron Device Letters 30 (10) (2009) 1102-1104.

DOI: 10.1109/led.2009.2028907

Google Scholar

[14] Y. Yang, X. Tong, L. -T. Yang, P. -F. Guo, L. Fan, Y. -C. Yeo, Tunneling Field-Effect Transistor: Capacitance Components and Modeling, IEEE Electron Device Letters 31 (7) (2010) 752-754.

DOI: 10.1109/led.2010.2047240

Google Scholar

[15] J. Zhuge, A. S. Verhulst, W. G. Vandenberghe, W. Dehaene, R. Huang, Y. Wang, G. Groeseneken, Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications, Semiconductor Science and Technology 26 (8) (2011) 085001.

DOI: 10.1088/0268-1242/26/8/085001

Google Scholar

[16] E. Gnani, E. Baravelli, A. Gnudi, S. Reggiani, G. Baccarani, Capacitance estimation for InAs Tunnel FETs by means of full-quantum k · p simulation, Solid State Electronics, vol. 108, pp.104-109, (2015).

DOI: 10.1016/j.sse.2014.12.005

Google Scholar

[17] G. Zhou, R. Li, T. Vasen, M. Qi, S. Chae, Y. Lu, Q. Zhang, H. Zhu, J. -M. Kuo, T. Kosel, M. Wistey, P. Fay, A. Seabaugh, and H. Xing, Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180 µA/µm at VDS = 0. 5 V, in emphInternational Electron Devices Meeting (IEDM-2005), Technical Digest, 2011, pp.777-780.

DOI: 10.1109/iedm.2012.6479154

Google Scholar

[18] E. Baravelli, E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, TFET Inverters With n-/pDevices on the Same Technology Platform for Low-Voltage/Low-Power Applications, IEEE Trans. Electron Devices, vol. 61, pp.473-478, (2014).

DOI: 10.1109/ted.2013.2294792

Google Scholar

[19] E. Baravelli, E. Gnani, R. Grassi, A. Gnudi, S. Reggiani, and G. Baccarani, Optimization of nand p-type TFETs integrated on the same InAs/AlxGa1−xSb technology platform, IEEE Trans. Electron Devices, vol. 61, pp.178-185, (2014).

DOI: 10.1109/ted.2013.2289739

Google Scholar

[20] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao, Exploring sub-20nm FinFET design with predictive technology models, in Proc. DAC, 2012, pp.283-288.

DOI: 10.1145/2228360.2228414

Google Scholar

[21] Semiconductor Industry Association (SIA), The International Technology Roadmap for Semiconductors (ITRS), 2012. [Online]. Available: http: /www. itrs. net.

Google Scholar

[22] P. Maiorano, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani, Design and optimization of impurity- and electrostatically-doped superlattice FETs to meet all the ITRS power targets at VDD = 0. 4 V, Solid-State Electronics, vol. 101, pp.70-78, (2014).

DOI: 10.1016/j.sse.2014.06.020

Google Scholar

[23] E. Gnani, P. Maiorano, S. Reggiani, A. Gnudi and G. Baccarani, An Investigation on SteepSlope and Low-Power Nanowire FETs, in Proc. of the ESSDERC Conference, 2011, pp.289-292.

DOI: 10.1109/essderc.2011.6044175

Google Scholar

[24] P. Maiorano, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani, Effects of Dit-induced degradation on InGaAs/InAlAs Nanowire Superlattice-FET using Al2O3 and HfO2/La2O3 as gate stacks, Proc. of the EUROSOI-ULIS Conference, pp.57-60, (2015).

DOI: 10.1109/ulis.2015.7063772

Google Scholar