[1]
R.H. Fowler, The analysis of photoelectric sensitivity curves for clean metals at various temperatures, Phys. Rev. 38 (1931) 45-56.
DOI: 10.1103/physrev.38.45
Google Scholar
[2]
G.W. Gobeli, F.G. Allen, Direct and indirect excitation processes in photoelectric emission from silicon, Phys. Rev. 127 (1962) 141-149.
DOI: 10.1103/physrev.127.141
Google Scholar
[3]
F.G. Allen, G.W. Gobeli, Work function, photoelectric threshold and surface states of atomically clean silicon, Phys. Rev. 127 (1962) 150-158.
DOI: 10.1103/physrev.127.150
Google Scholar
[4]
E.O. Kane, Theory of photoelectric emission from semiconductors, Phys. Rev. 127 (1962) 131-141.
DOI: 10.1103/physrev.127.131
Google Scholar
[5]
E.O. Kane, Simple model for collision effects in photoemission, Phys. Rev 147 (1966) 335-339.
DOI: 10.1103/physrev.147.335
Google Scholar
[6]
E.O. Kane, Structure due to transport effects in photoelectric energy distributions, J. Phys. Soc. Jap. 21 (1966) 37-45.
Google Scholar
[7]
J.M. Ballantyne, Effect of phonon energy loss on photoemissive yield near threshold, Phys. Rev. B 6 (1972) 1436-1455.
DOI: 10.1103/physrevb.6.1436
Google Scholar
[8]
R.J. Powell, Photoinjection into SiO2: Use of optical interference to determine electron and hole contributions, J. Appl. Phys. 40 (1969) 5093-5101.
DOI: 10.1063/1.1657358
Google Scholar
[9]
R.J. Powell, Interface barrier energy determination from voltage dependence of photoinjection currents, J. Appl. Phys. 41 (1970) 2424-2432.
DOI: 10.1063/1.1659238
Google Scholar
[10]
C.N. Berglund, R.J. Powell, Photoinjection into SiO2: Electron scattering in the image force potential well, J. Appl. Phys. 42 (1971) 573-579.
DOI: 10.1063/1.1660066
Google Scholar
[11]
V.V. Afanas'ev, Internal Photoemission Spectroscopy, Principles and Applications, Elsevier, Amsterdam, (2008).
Google Scholar
[12]
H.M. Przewlocki, D. Brzezinska, O. Engstrom, Photoemission yield and the electron escape depth determination in metal-oxide-semiconductor structures on N+-type and P+-type silicon substrates, J. Appl. Phys. 111, (2012), 114510.
DOI: 10.1063/1.4722275
Google Scholar
[13]
H.M. Przewlocki, Photoelectric phenomena in Metal-Insulator-Semiconductor (MIS) structures at low electric fields in the insulator, J. Appl. Phys. 78, (1995), 2550.
DOI: 10.1063/1.360112
Google Scholar
[14]
H.M. Przewlocki, Internal photoemission characteristics of metal-insulator-semiconductor structures at low electric fields in the insulator, J. Appl. Phys. 85, (1999), 6610.
DOI: 10.1063/1.370169
Google Scholar
[15]
H.M. Przewlocki, Theory and applications of internal photoemission in the MOS system at low electric fields, Solid State Electronics 45, (2001), 1241.
DOI: 10.1016/s0038-1101(00)00274-4
Google Scholar
[16]
T. Gutt, H.M. Przewlocki, K. Piskorski, A. Mikhaylov, M. Bakowski, PECVD and thermal gate oxides on 3C vs. 4H SiC: Impact on leakage, traps and energy offsets, ECS Journal of Solid State Science and Technology 4(9), (2015), M60.
DOI: 10.1149/2.0101509jss
Google Scholar
[17]
I.Z. Mitrovic, H.M. Przewlocki, K. Piskorski, G. Simutis, V.R. Dhanak, N. Sedghi, S. Hall, Effect of oxygen on tuning the TiNx metal gate work function on LaLuO3, Thin Solid Films 520, (2012), 6959.
DOI: 10.1016/j.tsf.2012.07.082
Google Scholar
[18]
H.M. Przewlocki, T. Gutt, K. Piskorski, M. Bakowski, Band diagrams and trap distributions in metal-SiO2-SiC(3C) structures with different metal gates, ECS Transactions 50(3), (2012), 231.
DOI: 10.1149/05003.0231ecst
Google Scholar