[1]
A. Fert, The present and the future of spintronics, Thin Solid Films 517(2008), 2-5.
Google Scholar
[2]
I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2004), 323.
DOI: 10.1103/revmodphys.76.323
Google Scholar
[3]
M. W. Wu, J. H. Jiang, and M. Q. Weng, Spin dynamics in semiconductors, Physics Reports 493(2010), 61.
Google Scholar
[4]
A. Kamra, B. Ghosh and T.K. Ghosh, Spin relaxation due to electron-electron magnetic interaction in high Lande g-factor semiconductors, J. Appl. Phys. 108(2010), 054505.
DOI: 10.1063/1.3481063
Google Scholar
[5]
D. Sanchez, C. Gould, G. Schmidt and L. W. Molenkamp, Spin-tunneling devices, IEEE Trans. Electron Devices 54(2007), 984.
DOI: 10.1109/ted.2007.894373
Google Scholar
[6]
H. Ohno, H. Munekata, T. Penney, S. von Moln´ar, and L. L. Chang, Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semiconductors, Phys. Rev. Lett. 68(1992), 2664.
DOI: 10.1103/physrevlett.68.2664
Google Scholar
[7]
D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszyski, S. Kole´snik, T. Dietl, et al., Manipulation with spin ordering in ferromagnetic semiconductors Phys. Rev. B 63(2001), 085201.
DOI: 10.1016/s0921-4526(99)02603-4
Google Scholar
[8]
S. Patibandla, S. Pramanik, S. Bandyopadhyay and G. C. Tepper, Spin relaxation in a germanium nanowire, J. Appl. Phys. 100(2006), 044303.
DOI: 10.1063/1.2230012
Google Scholar
[9]
C. Tahan, R. Joynt. Rashba spin-orbit coupling and spin relaxation in silicon quantum wells, Phys. Rev. B 71 (2005), 075315.
DOI: 10.1103/physrevb.71.075315
Google Scholar
[10]
Saroj P. Dash, Sandeep Sharma, Ram S. Patel, Michel P. de Jong & Ron Jansen, Electrical creation of spin polarization in silicon at room temperature, Nature 462 (2009), 491-494.
DOI: 10.1038/nature08570
Google Scholar
[11]
E. Durgun, D. Cakır, N. Akman, and S. Ciraci. Half-metallic silicon nanowires: First-Principles Calculations. Phys. Rev. Lett. 99 (2007), 256806.
DOI: 10.1103/physrevlett.99.256806
Google Scholar
[12]
W.E. Pickett and J. S. Moodera, Half metallic magnets, Phys. Today 54(2001), 39.
Google Scholar
[13]
H. W. Wu, C. J. Tsai, and L. J. Chen. Room temperature ferromagnetism in Mn+-implanted Si nanowires. Appl. Phys. Let. 90 (2007), 043121.
DOI: 10.1063/1.2432273
Google Scholar
[14]
Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long, First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Phys. Sin. , Vol. 592010, Issue (11): 8071-8077.
DOI: 10.7498/aps.59.8071
Google Scholar
[15]
A.A. Druzhinin, I.P. Ostrovskii. Investigation of Si-Ge whiskers growth by CVD, Phys. Stat. Sol. (C), Vol. 1, No. 2, (2004), 333-336.
DOI: 10.1002/pssc.200303948
Google Scholar
[16]
A. Druzhinin, A. Evtukh, I. Ostrovskii, Yu. Khoverko, S. Nichkalo, and Dvornytskyi S., Technological approaches for growth of Silicon Nanowire arrays, Springer Proceedings in Physics, (2015), 301-308.
DOI: 10.1007/978-3-319-06611-0_24
Google Scholar
[17]
A. Druzhinin, Yu. Khoverko, I. Kogut, R. Koretskii, Properties of low-dimentional polysilicon in SOI structures for low temperature sensors, Advanced Materials Research 854 (2014), 49–55.
DOI: 10.4028/www.scientific.net/amr.854.49
Google Scholar
[18]
V. Osinniy, K. Misiuk, M. Szot, K. Świątek. Magnetic properties of silicon crystals implanted with manganese Materials Science-Poland, Vol. 26, No. 3 (2008), 751-757.
Google Scholar
[19]
Shengqiang Zhou, Danilo Bürger, Arndt Mücklich, Christine Baumgart Hysteresis in the magnetotransport of manganese-doped germanium: Evidence for carrier-mediated ferromagnetism, Phys. Rev. B 81 (2010), 165204.
DOI: 10.1103/physrevb.81.165204
Google Scholar
[20]
A.A. Druzhinin, I.P. Ostrovskii, Yu.M. Khoverko, Iu.R. Kogut, S.I. Nichkalo, J.K. Warchulska. Magnetic susceptibility of doped Si nanowhiskers, Journal of Nanoscience and Nanotechnology, Vol. 12 (2012), 8690–8693.
DOI: 10.1166/jnn.2012.6804
Google Scholar
[21]
A. Druzhinin, I. Ostrovskii, Yu. Khoverko, S. Nichkalo, R. Koretskyy, Iu. Kogut Variable-range hopping conductance in Si whiskers, Phys. Status Solidi A 211, No. 2(2014), 504–508.
DOI: 10.1002/pssa.201300162
Google Scholar
[22]
N.F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 1971), p.472.
Google Scholar
[23]
R.F. Konopleva, Galvanomagnetic properties of disordered semiconductors (Moscow Publishing House, Moscow, 1980), p.25. (in Russian).
Google Scholar
[24]
A.A. Druzhinin, I.P. Ostrovskii, Yu. M Khoverko, K. Rogacki, P.G. Litovchenko, N.T. Pavlovska, Yu.V. Pavlovskyy, Yu.O. Ugrin. Magnetic susceptibility and magnetoresistance of neutron-irradiated doped Si whiskers, Journal of Magnetism and Magnetic Materials", 393, (2015).
DOI: 10.1016/j.jmmm.2015.05.073
Google Scholar
[25]
V.M. Tsmots, P.G. Litovchenko, N.T. Pavlovska. Y.V. Pavlovskyy, I.P. Ostrovskyy, Study and simulation of magnetic susceptibility of Si and Si0. 95Ge0. 05 whiskers, Semiconductors. Vol. 44, Issue. 5, (2010), 649.
DOI: 10.1134/s1063782610050131
Google Scholar
[26]
A. Kaminski, S. Das Sarma, Magnetic and transport percolation in diluted magnetic semiconductors, Phys. Rev. B 68 (2003), 235210.
DOI: 10.1103/physrevb.68.235210
Google Scholar
[27]
A. Kaminski, S. Das Sarma, Polaron Percolation in Diluted Magnetic Semiconductors, Phys. Rev. Lett. 88 (2002), 247202.
DOI: 10.1103/physrevlett.88.247202
Google Scholar
[28]
S. Das Sarma, E.H. Hwang, A. Kaminski, Phys. Rev. B 67 (2003), 155201.
Google Scholar
[29]
L. Morresi, N. Pinto, M. Ficcadenti, R. Murri, F. D'Orazio, F. Lucari Magnetic and transport polaron percolation in diluted GeMn films, Materials Sc. and Engineering B126 (2006), 197–201.
DOI: 10.1016/j.mseb.2005.09.025
Google Scholar
[30]
D. Sharma, G. Motayed, S. Krylyuk, Li. Qiliang. Detection of Deep-Levels in Doped Silicon Nanowires Using Low-Frequency Noise Spectroscopy Electron Devices, IEEE Transactions 2013 Vol. 60 , No. 12 P(2013), 4206 – 4212.
DOI: 10.1109/ted.2013.2285154
Google Scholar
[31]
A. Druzhinin, E. Lavitska, I. Maryamova. Medical pressure sensors on the basis of silicon microcrystals and SOI layers. Sensors and Actuators, B58 (1999), 415-419.
DOI: 10.1016/s0925-4005(99)00121-5
Google Scholar
[32]
A. Druzhinin, I. Maryamova, I. Kogut, Yu. Khoverko Polysilicon on insulator structures for sensor application at electron irradiation & magnetic fields, Advanced Materials Research 276 (2011), 109-116.
DOI: 10.4028/www.scientific.net/amr.276.109
Google Scholar