Development and Application of Luminescence to Earth and Planetary Sciences: Some Landmarks

Article Preview

Abstract:

Luminescence, mainly thermoluminescence (TL) and optically stimulated luminescence (OSL), has been researched for more than five decades towards its application to earth and planetary sciences. Luminescence production mechanism has been understood through several theoretical studies, like analytical kinetic theory, numerical models along with the experimental results. Instrument development has progressed with aim from user friendly TL/OSL reader dedicated for dating to challenging reader for in-situ Martian sediment dating. Since the development of optical dating in 1985, the technique revolutionised the research in earth sciences. And since then to recent, many methodologies have been developed and some are in developing stage using different signals, like, single grain OSL, red TL, time resolved OSL, thermally transferred OSL (TT-OSL), post infrared-infrared stimulated luminescence (pIR-IRSL), violet light stimulated luminescence (VSL), infrared radioluminescence (IRRL), etc. with an objective to improve the accuracy and precision and to extend the dating range. The wide range of application in different environment, e.g. aeolian, fluvial, marine, glacier, soil, volcanic materials, heated materials, shocked materials, meteorites, etc. have made the technique successful to understand the quaternary history of earth and planetary information like terrestrial and cosmic ray exposure ages of meteorite, meteoroid orbit, thermal metamorphism history of meteorite etc. The aim of this present paper is to discuss some landmarks and recent trends in the development and application in these areas. Contents of the Paper

You might also be interested in these eBooks

Info:

Periodical:

Pages:

217-243

Citation:

Online since:

July 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Grogler, F.G. Houtermans, H. Stauffer, Ueber die datierung von Keramik und Ziegel durch Thermolumineszenz. Helv. Phys. Acta 33 (1960) 595-596.

Google Scholar

[2] G.C. Kennedy, L. Knopff, Dating by thermoluminescence. Archaeology 13 (1960) 147-148.

Google Scholar

[3] M.S. Tite, J. Waine, Thermoluminescent dating: a re-appraisal. Archaeometry 5 (1962) 53-79.

DOI: 10.1111/j.1475-4754.1962.tb00554.x

Google Scholar

[4] M.J. Aitken, M.S. Tite, J. Reid, Thermoluminescent dating of ancient ceramics. Nature 202 (1964) 1032-1033.

DOI: 10.1038/2021032b0

Google Scholar

[5] M.J. Aitken, D.W. Zimmerman, S.J. Fleming, Thermoluminescent dating of ancient pottery. Nature 219 (1968) 442-445.

DOI: 10.1038/219442a0

Google Scholar

[6] M.J. Aitken, Thermoluminescence Dating, Academic Press, London, (1985), p.359.

Google Scholar

[7] D.W. Zimmerman, Thermoluminescence dating using Fine grain from pottery. Archaeometry 13 (1971) 29-52.

DOI: 10.1111/j.1475-4754.1971.tb00028.x

Google Scholar

[8] D.W. Zimmerman, Thermoluminescence from fine grains from ancient pottery. Archaeometry 10 (1967) 26-28.

DOI: 10.1111/j.1475-4754.1967.tb00610.x

Google Scholar

[9] S.J. Fleming, Thermoluminescence dating: refinement of quartz inclusion method. Archaeometry 12 (1970) 135-145.

Google Scholar

[10] S.J. Fleming, Study of thermoluminescence of crystalline extracts from pottery. Archaeometry 9 (1966) 170-173.

DOI: 10.1111/j.1475-4754.1966.tb00916.x

Google Scholar

[11] A.G. Wintle, D.J. Huntley, Thermoluminescence dating of a deep-sea sediment core. Nature 279 (1979) 710-712.

DOI: 10.1038/279710a0

Google Scholar

[12] A.K. Singhvi, Y.P. Sharma, D.P. Agarwal, Thermoluminescence dating of sand dunes in Rajasthan, India. Nature 295 (1982) 313-315.

DOI: 10.1038/295313a0

Google Scholar

[13] D.J. Huntley, On the zeroing of the thermoluminescence of sediments. Phys. Chem. Miner. 12 (1985) 122-127.

Google Scholar

[14] D.J. Huntley, D.I. Godfrey-Smith, M.L.W. Thewalt, Optical dating of sediments. Nature 313 (1985) 105-107.

DOI: 10.1038/313105a0

Google Scholar

[15] M.J. Aitken, An Introduction to Optical Dating, Oxford University Press, Oxford, (1998), p.267.

Google Scholar

[16] A.G. Wintle, Fifty years of luminescence dating. Archaeometry 50 (2008) 276-312.

DOI: 10.1111/j.1475-4754.2008.00392.x

Google Scholar

[17] J.E. Geake, A. Dollfus, G.F.J. Garlick, W. Lamb, C. Walker, G.A. Steigmann, C. Titulaer, Luminescence, electron paramagnetic resonance, and optical properties of lunar material. Science 167 (1970) 717-720.

DOI: 10.1126/science.167.3918.717

Google Scholar

[18] G.F.J. Garlick, J.E. Robinson, The thermoluminescence of lunar sample. In the Moon (Edited by Runcorn S.K. and Urrey H.). International astronomical unit (1972) 324-329.

Google Scholar

[19] J.T. Randall, M.H.F. Wilkinson, Phosphorescence and electron traps. Proc. Roy. Soc. 184 (1945) 366.

Google Scholar

[20] G.F.J. Garlick, A.F. Gibson, The electron trap mechanism of luminescence in sulphide and silicate phosphor. Proc. Roy. Soc. Lond. 60 (1948) 574-590.

DOI: 10.1088/0959-5309/60/6/308

Google Scholar

[21] R. Chen, Glow curves with general order kinetics. Journal of Electro-chemical Society 116 (1969) 1254-1257.

Google Scholar

[22] R.M. Bailey, Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiation Measurements 33 (2001) 17-45.

DOI: 10.1016/s1350-4487(00)00100-1

Google Scholar

[23] R.M. Bailey, B.W. Smith, E.J. Rhodes, Partial bleaching and the decay form characteristics of quartz OSL. Radiation Measurements 27 (1997) 123-136.

DOI: 10.1016/s1350-4487(96)00157-6

Google Scholar

[24] M. Jain, A.S. Murray, L. Bøtter-Jensen, Characterisation of blue-light stimulated luminescence components in different quartz samples: Implications for dose measurement. Radiation Measurements 37 (2003) 441-449.

DOI: 10.1016/s1350-4487(03)00052-0

Google Scholar

[25] G. Hütt, I. Jaek, J. Tchonka, Optical dating: K-feldspars optical response stimulation spectra. Quaternary Science Reviews 7 (1988) 381-385.

DOI: 10.1016/0277-3791(88)90033-9

Google Scholar

[26] I.K. Bailiff, N.R.J. Poolton, Studies of charge transfer mechanisms in feldspars. International Journal of Radiation Applications and Instrumentation. Part 18 (1991) 111-118.

DOI: 10.1016/1359-0189(91)90101-m

Google Scholar

[27] I.K. Bailiff, S.M. Barnett, Characteristics of infrared-stimulated luminescence from a feldspar at low temperatures. Radiation Measurements 23 (1994) 541-545.

DOI: 10.1016/1350-4487(94)90096-5

Google Scholar

[28] M.J. Aitken, B.W. Smith, Optical dating: Recuperation after bleaching. Quaternary Science Reviews 7 (1988) 387-393.

DOI: 10.1016/0277-3791(88)90034-0

Google Scholar

[29] X.L. Wang, A.G. Wintle, Y.C. Lu, Thermally transferred luminescence in fine-grained quartz from Chinese loess: Basic observations. Radiation Measurements 41 (2006) 649-658.

DOI: 10.1016/j.radmeas.2006.01.001

Google Scholar

[30] E. Bulur, An alternative technique for optically stimulated luminescence (OSL) experiment. Radiation Measurements 26 (1996) 701-709.

DOI: 10.1016/s1350-4487(97)82884-3

Google Scholar

[31] E. Bulur, L. Bøtter-Jensen, A.S. Murray, Optically stimulated luminescence from quartz measured using the linear modulation technique. Radiation Measurements 32 (2000) 407-411.

DOI: 10.1016/s1350-4487(00)00115-3

Google Scholar

[32] T. Trautmann, M.R. Krbetschek, A. Dietrich, W. Stolz, Feldspar radioluminescence: A new dating method and its physical background. Journal of Luminescence 85 (1999) 45-58.

DOI: 10.1016/s0022-2313(99)00152-0

Google Scholar

[33] T. Trautmann, M.R. Krbetschek, A. Dietrich, W. Stolz, Basic principle of radioluminescence dating and a localized transition model. Radiation Measurements 32 (2000) 487-492.

DOI: 10.1016/s1350-4487(00)00119-0

Google Scholar

[34] T. Trautmann, M.R. Krbetschek, A. Dietrich, W. Stolz, Investigations of feldspar radioluminescence: Potential for a new dating technique. Radiation Measurements 29 (1998) 421-425.

DOI: 10.1016/s1350-4487(98)00012-2

Google Scholar

[35] M.R. Krbetschek, T. Trautmann, A. Dietrich, W. Stolz, Radioluminescence dating of sediments: methodological aspects. Radiation Measurements 32 (2000) 493-498.

DOI: 10.1016/s1350-4487(00)00122-0

Google Scholar

[36] A.K. Singhvi, D. Banerjee, R. Ramesh, S.N. Rajaguru, V. Gogte, A luminescence method for dating 'dirty' pedogenic carbonates for paleoenvironmental reconstruction. Earth and Planetary Science Letters 139 (1996) 321-332.

DOI: 10.1016/0012-821x(95)00227-4

Google Scholar

[37] Y.C. Nagar, M.D. Sastry, B. Bhushan, A. Kumar, K.P. Mishra, A. Shastri, M.N. Deo, G. Kocurek, J.W. Magee, S.K. Wadhawan, N. Juyal, M.S. Pandian, A.D. Shukla, A.K. Singhvi, Chronometry and formation pathways of gypsum using Electron Spin Resonance and Fourier Transform Infrared Spectroscopy. Quaternary Geochronology 5 (2010) 691-704.

DOI: 10.1016/j.quageo.2010.05.001

Google Scholar

[38] R.H. Templer, B.W. Smith, Auto-regenerative TL dating with zircon inclusions from fired materials. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14 (1988) 329-332.

DOI: 10.1016/1359-0189(88)90084-2

Google Scholar

[39] R.M. Bailey, G. Adamiec, E.J. Rhodes, OSL properties of NaCl relative to dating and dosimetry. Radiation Measurements 32 (2000) 717-723.

DOI: 10.1016/s1350-4487(00)00087-1

Google Scholar

[40] M.R. Krbetschek, J. Götze, A. Dietrich, T. Trautmann, Spectral information from minerals relevant for luminescence dating. Radiation Measurements 27 (1997) 695-748.

DOI: 10.1016/s1350-4487(97)00223-0

Google Scholar

[41] S.W.S. McKeever, Thermoluminescence of solids, Cambridge Univ. Press, Cambridge, UK, (1985), p.376.

Google Scholar

[42] L. Bøtter-Jensen, S.W.S. McKeever, A.G. Wintle, Optically stimulated luminescence dosimetry, Elsevier Science, Amsterdam, Netherlands, 2003.

DOI: 10.1016/b978-044450684-9/50091-x

Google Scholar

[43] F. Preusser, M.L. Chithambo, T. Götte, M. Martini, K. Ramseyer, E.J. Sendezera, G.J. Susino, A.G. Wintle, Quartz as a natural luminescence dosimeter. Earth-Science Reviews 97 (2009) 184-214.

DOI: 10.1016/j.earscirev.2009.09.006

Google Scholar

[44] A.G. Wintle, Thermal quenching of thermoluminescence in quartz. Geophysical Journal - Royal Astronomical Society 41 (1975) 107-113.

DOI: 10.1111/j.1365-246x.1975.tb05487.x

Google Scholar

[45] R. Kuhn, T. Trautmann, A.K. Singhvi, M.R. Krbetschek, G.A. Wagner, W. Stolz, A study of thermoluminescence emission spectra and optical stimulation spectra of quartz from different provenances. Radiation Measurements 32 (2000) 653-657.

DOI: 10.1016/s1350-4487(00)00090-1

Google Scholar

[46] D.J. Huntley, D.I. Godfrey-Smith, E.H. Haskell, Light-induced emission spectra from some quartz and feldspars. International Journal of Radiation Applications and Instrumentation. Part 18 (1991) 127-131.

DOI: 10.1016/1359-0189(91)90104-p

Google Scholar

[47] B.W. Smith, E.J. Rhodes, S. Stokes, N.A. Spooner, The optical dating of sediments using quartz. Radiation Protection Dosimetry 34 (1990) 75-78.

DOI: 10.1093/oxfordjournals.rpd.a080851

Google Scholar

[48] N. Itoh, D. Stoneham, A.M. Stoneham, Ionic and electronic processes in quartz:Mechanisms of thermoluminescence and optically stimulated luminescence. Journal of Applied Physics 92 (2002) 5036-5044.

DOI: 10.1063/1.1510951

Google Scholar

[49] M.R. Baril, Spectral investigations of luminescence in feldspar, Ph.D. thesis, Deapartment of Physiscs, Simon Fraser University, British Columbia, (2002), p.278.

Google Scholar

[50] A.K. Singhvi, G.A. Wagner, (Eds.) Thermoluminescence and its application to young sedimentary deposits, CCOP Technical Secretariat, Bangkok, 1986.

Google Scholar

[51] M. Jain, L. Bøtter-Jensen, A.K. Singhvi, Dose evaluation using multiple-aliquot quartz OSL: Test of methods and a new protocol for improved accuracy and precision. Radiation Measurements 37 (2003) 67-80.

DOI: 10.1016/s1350-4487(02)00165-8

Google Scholar

[52] S. Chawla, T.K. Gundu Rao, A.K. Singhvi, Quartz thermoluminescence: Dose and dose-rate effects and their implications. Radiation Measurements 29 (1998) 53-63.

DOI: 10.1016/s1350-4487(97)00200-x

Google Scholar

[53] G.W. Berger, Estimating the error in equivalent dose values obtained from SAR. Ancient TL 28 (2010) 55-66.

Google Scholar

[54] G.W. Berger, Error analysis and modelling of double saturating exponential dose response curves from SAR OSL dating. Ancient TL 29 (2011) 9-14.

Google Scholar

[55] D. Banerjee, Supralinearity and sensitivity changes in optically stimulated luminescence of annealed quartz. Radiation Measurements 33 (2001) 47-57.

DOI: 10.1016/s1350-4487(00)00133-5

Google Scholar

[56] A.S. Murray, A.G. Wintle, Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32 (2000) 57-73.

DOI: 10.1016/s1350-4487(99)00253-x

Google Scholar

[57] A.S. Murray, R.G. Roberts, Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol. Radiation Measurements 29 (1998) 503-515.

DOI: 10.1016/s1350-4487(98)00044-4

Google Scholar

[58] A.G. Wintle, A.S. Murray, A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41 (2006) 369-391.

DOI: 10.1016/j.radmeas.2005.11.001

Google Scholar

[59] J. Wallinga, A. Murray, A. Wintle, Single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiation Measurements 32 (2000) 529-533.

DOI: 10.1016/s1350-4487(00)00091-3

Google Scholar

[60] A.K. Singhvi, S. Stokes, N. Chauhan, Y.C. Nagar, M. Jaiswal, Changes in natural OSL sensitivity during single aliquot regeneration procedure and their implications for equivalent dose determination. Geochronometria 38 (2011) 231-241.

DOI: 10.2478/s13386-011-0028-3

Google Scholar

[61] A.K. Singhvi, N. Chauhan, R.H. Biswas, A survey of some new approaches in extending the maximum age limit and accuracy of luminescence application to archeological chronometry. Mediterranean Archaeology and Archaeometry 4 (2010) 9-15.

Google Scholar

[62] A.S. Murray, R.G. Roberts, Determining the burial time of single grains of quartz using optically stimulated luminescence. Earth and Planetary Science Letters 152 (1997) 163-180.

DOI: 10.1016/s0012-821x(97)00150-7

Google Scholar

[63] J.M. Olley, G.G. Caitcheon, R.G. Roberts, The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiation Measurements 30 (1999) 207-217.

DOI: 10.1016/s1350-4487(99)00040-2

Google Scholar

[64] L. Botter-Jensen, E. Bulur, G.A.T. Duller, A.S. Murray, Advances in luminescence instrument systems. Radiation Measurements 32 (2000) 523-528.

DOI: 10.1016/s1350-4487(00)00039-1

Google Scholar

[65] R.F. Galbraith, R.G. Roberts, G.M. Laslett, H. Yoshida, J.M. Olley, Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41 (1999) 339-364.

DOI: 10.1111/j.1475-4754.1999.tb00987.x

Google Scholar

[66] L.J. Arnold, R.G. Roberts, R.F. Galbraith, S.B. DeLong, A revised burial dose estimation procedure for optical dating of youngand modern-age sediments. Quaternary Geochronology 4 (2009) 306-325.

DOI: 10.1016/j.quageo.2009.02.017

Google Scholar

[67] R.M. Bailey, L.J. Arnold, Statistical modelling of single grain quartz D<sub>e</sub> distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25 (2006) 2475-2502.

DOI: 10.1016/j.quascirev.2005.09.012

Google Scholar

[68] Y.S. Mayya, P. Morthekai, M.K. Murari, A.K. Singhvi, Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution. Radiation Measurements 41 (2006) 1032-1039.

DOI: 10.1016/j.radmeas.2006.08.004

Google Scholar

[69] N. Chauhan, A.K. Singhvi, Distribution of SAR paleodoses due to spatial heterogeniety of natural beta dose. Geochronometria 38 (2011) 190-198.

DOI: 10.2478/s13386-011-0024-7

Google Scholar

[70] G. Adamiec, M.J. Aitken, Dose-rate conversion factors: update. Ancient TL 16 (1998) 37-50.

Google Scholar

[71] J.M. Olley, A. Murray, R.G. Roberts, The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews 15 (1996) 751-760.

DOI: 10.1016/0277-3791(96)00026-1

Google Scholar

[72] V. Mejdahl, Thermoluminescence dating: beta dose attenuation in quartz grains. Archaeometry 21 (1979) 61-73.

DOI: 10.1111/j.1475-4754.1979.tb00241.x

Google Scholar

[73] R.P. Nathan, P.J. Thomas, M. Jain, A.S. Murray, E.J. Rhodes, Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation. Radiation Measurements 37 (2003) 305-313.

DOI: 10.1016/s1350-4487(03)00008-8

Google Scholar

[74] D.W. Zimmerman, Relative thermoluminescence effect of alpha and beta radiation. Radiation Effects and Defects in Solids 14 (1972) 81-92.

DOI: 10.1080/00337577208230476

Google Scholar

[75] Z.P. Lai, L. Zöller, M. Fuchs, H. Brückner, Alpha efficiency determination for OSL of quartz extracted from Chinese loess. Radiation Measurements 43 (2008) 767-770.

DOI: 10.1016/j.radmeas.2008.01.022

Google Scholar

[76] B. Mauz, S. Packman, A. Lang, The alpha effectiveness in silt-sized quartz: New data obtained by single and multiple aliquot protocols. Ancient TL 24 (2006) 47-52.

Google Scholar

[77] R.H. Biswas, M.A.J. Williams, R. Raj, N. Juyal, A.K. Singhvi, Methodological studies on luminescence dating of volcanic ashes. Quaternary Geochronology 17 (2013) 14-25.

DOI: 10.1016/j.quageo.2013.03.004

Google Scholar

[78] A.K. Singhvi, M.J. Aitken, Americium-241 for alpha-irradiation. Ancient TL, Issue 3 (1978) 2-9.

Google Scholar

[79] J. Rees-Jones, Optical Dating Of Young Sediments Using Fine-Grain Quartz. Ancient TL 13 (1995) 9-14.

Google Scholar

[80] X.L. Wang, Y.C. Lu, A.G. Wintle, Recuperated OSL dating of fine-grained quartz in Chinese loess. Quaternary Geochronology 1 (2006) 89-100.

DOI: 10.1016/j.quageo.2006.05.020

Google Scholar

[81] G. Adamiec, R.M. Bailey, X.L. Wang, A.G. Wintle, The mechanism of thermally transferred optically stimulated luminescence in quartz. Journal of Physics D: Applied Physics 41 (2008).

DOI: 10.1088/0022-3727/41/13/135503

Google Scholar

[82] V. Pagonis, A.G. Wintle, R. Chen, X.L. Wang, A theoretical model for a new dating protocol for quartz based on thermally transferred OSL (TT-OSL). Radiation Measurements 43 (2008) 704-708.

DOI: 10.1016/j.radmeas.2008.01.025

Google Scholar

[83] X.L. Wang, A.G. Wintle, Y.C. Lu, Testing a single-aliquot protocol for recuperated OSL dating. Radiation Measurements 42 (2007) 380-391.

DOI: 10.1016/j.radmeas.2006.12.015

Google Scholar

[84] G.A.T. Duller, A.G. Wintle, A review of the thermally transferred optically stimulated luminescence signal from quartz for dating sediments. Quaternary Geochronology 7 (2012) 6-20.

DOI: 10.1016/j.quageo.2011.09.003

Google Scholar

[85] A.G. Wintle, Anomalous fading of thermo-luminescence in mineral samples. Nature 245 (1973) 143-144.

DOI: 10.1038/245143a0

Google Scholar

[86] A.G. Wintle, Detailed study of a thermoluminescent mineral exhibiting anomalous fading. Journal of Luminescence 15 (1977) 385-393.

DOI: 10.1016/0022-2313(77)90037-0

Google Scholar

[87] N.A. Spooner, The anomalous fading of infrared-stimulated luminescence from feldspars. Radiation Measurements 23 (1994) 625-632.

DOI: 10.1016/1350-4487(94)90111-2

Google Scholar

[88] R. Visocekas, Tunnelling radiative recombination in labradorite: Its association with anomalous fading of thermoluminescence. Nuclear Tracks and Radiation Measurements (1982) 10 (1985) 521-529.

DOI: 10.1016/0735-245x(85)90053-5

Google Scholar

[89] R.H. Templer, The localized transition model of anomalous fading. Radiation Protection Dosimetry 17 (1986) 493-497.

DOI: 10.1093/oxfordjournals.rpd.a079867

Google Scholar

[90] N.R.J. Poolton, J. Wallinga, A.S. Murray, E. Bulur, L. Bøtter-Jensen, Electrons in feldspar I: On the wavefunction of electrons trapped at simple lattice defects. Phys. Chem. Miner. 29 (2002) 210-216.

DOI: 10.1007/s00269-001-0217-3

Google Scholar

[91] C.J. Delbecq, Y. Toyozawa, P.H. Yuster, Tunneling recombination of trapped electrons and holes in KCl:AgCl and KCl:TlCl. Physical Review B 9 (1974) 4497-4505.

DOI: 10.1103/physrevb.9.4497

Google Scholar

[92] D.J. Huntley, An explanation of the power-law decay of luminescence. Journal of Physics Condensed Matter 18 (2006) 1359-1365.

DOI: 10.1088/0953-8984/18/4/020

Google Scholar

[93] M. Tachiya, A. Mozumder, Decay of trapped electrons by tunnelling to scavenger molecules in low-temperature glasses. Chemical Physics Letters 28 (1974) 87-89.

DOI: 10.1016/0009-2614(74)80022-9

Google Scholar

[94] D.J. Huntley, M. Lamothe, Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38 (2001) 1093-1106.

DOI: 10.1139/e01-013

Google Scholar

[95] D.J. Huntley, O.B. Lian, Some observations on tunnelling of trapped electrons in feldspars and their implications for optical dating. Quaternary Science Reviews 25 (2006) 2503-2512.

DOI: 10.1016/j.quascirev.2005.05.011

Google Scholar

[96] I. Jaek, A. Molodkov, V. Vasilchenko, Possible reasons for anomalous fading in alkali feldspars used for luminescence dating of quaternary deposits. Estonian Journal of Earth Sciences 56 (2007) 167-178.

DOI: 10.3176/earth.2007.19

Google Scholar

[97] F.A. Hasan, B.D. Keck, C. Hartmetz, D.W.G. Sears, Anomalous fading of thermoluminescence in meteorites. Journal of Luminescence 34 (1986) 327-335.

DOI: 10.1016/0022-2313(86)90076-1

Google Scholar

[98] S. Tyler, S.W.S. McKeever, Anomalous fading of thermoluminescence in oligoclase. International Journal of Radiation Applications and Instrumentation. Part 14 (1988) 149-154.

DOI: 10.1016/1359-0189(88)90056-8

Google Scholar

[99] R. Visocekas, Tunnelling in afterglow, its coexistence and interweaving with thermally stimulated luminescence. Radiation Protection Dosimetry 100 (2002) 45-54.

DOI: 10.1093/oxfordjournals.rpd.a005911

Google Scholar

[100] R. Biswas, A. Singhvi, Anomalous fading and crystalline structure: Studies on individual chondrules from the same parent body. Geochronometria 40 (2013) 250-257.

DOI: 10.2478/s13386-013-0114-9

Google Scholar

[101] R.H. Kars, J. Wallinga, K.M. Cohen, A new approach towards anomalous fading correction for feldspar IRSL dating - tests on samples in field saturation. Radiation Measurements 43 (2008) 786-790.

DOI: 10.1016/j.radmeas.2008.01.021

Google Scholar

[102] J.P. Buylaert, M. Jain, A.S. Murray, K.J. Thomsen, C. Thiel, R. Sohbati, A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41 (2012) 435-451.

DOI: 10.1111/j.1502-3885.2012.00248.x

Google Scholar

[103] K.J. Thomsen, A.S. Murray, M. Jain, L. Bøtter-Jensen, Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43 (2008) 1474-1486.

DOI: 10.1016/j.radmeas.2008.06.002

Google Scholar

[104] J.P. Buylaert, A.S. Murray, K.J. Thomsen, M. Jain, Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44 (2009) 560-565.

DOI: 10.1016/j.radmeas.2009.02.007

Google Scholar

[105] A.S. Murray, J.P. Buylaert, K.J. Thomsen, M. Jain, The effect of preheating on the IRSL signal from feldspar. Radiation Measurements 44 (2009) 554-559.

DOI: 10.1016/j.radmeas.2009.02.004

Google Scholar

[106] C. Thiel, J.P. Buylaert, A. Murray, B. Terhorst, I. Hofer, S. Tsukamoto, M. Frechen, Luminescence dating of the Stratzing loess profile (Austria) - Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234 (2011) 23-31.

DOI: 10.1016/j.quaint.2010.05.018

Google Scholar

[107] B. Li, S.H. Li, Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction. Quaternary Geochronology 6 (2011) 468-479.

DOI: 10.1016/j.quageo.2011.05.001

Google Scholar

[108] N.R.J. Poolton, K.B. Ozanyan, J. Wallinga, A.S. Murray, L. Bøtter-Jensen, Electrons in feldspar II: A consideration of the influence of conduction band-tail states on luminescence processes. Phys. Chem. Miner. 29 (2002) 217-225.

DOI: 10.1007/s00269-001-0218-2

Google Scholar

[109] N.R.J. Poolton, R.H. Kars, J. Wallinga, A.J.J. Bos, Direct evidence for the participation of band-tails and excited-state tunnelling in the luminescence of irradiated feldspars. Journal of Physics: Condensed Matter 21 (2009) 485505.

DOI: 10.1088/0953-8984/21/48/485505

Google Scholar

[110] M. Jain, C. Ankjærgaard, Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence. Radiation Measurements 46 (2011) 292-309.

DOI: 10.1016/j.radmeas.2010.12.004

Google Scholar

[111] G. Erfurt, M.R. Krbetschek, Studies on the physics of the infrared radioluminescence of potassium feldspar and on the methodology of its application to sediment dating. Radiation Measurements 37 (2003) 505-510.

DOI: 10.1016/s1350-4487(03)00058-1

Google Scholar

[112] J.P. Buylaert, M. Jain, A.S. Murray, K.J. Thomsen, T. Lapp, IR-RF dating of sand-sized K-feldspar extracts: A test of accuracy. Radiation Measurements 47 (2012) 759-765.

DOI: 10.1016/j.radmeas.2012.06.021

Google Scholar

[113] V. Varma, R. Biswas, A. Singhvi, Aspects of Infrared Radioluminescence dosimetry in K-feldspar. Geochronometria 40 (2013) 266-273.

DOI: 10.2478/s13386-013-0125-6

Google Scholar

[114] A.J.C. Zink, R. Visocekas, Datability of sanidine feldspars using the near-infrared TL emission. Radiation Measurements 27 (1997) 251-261.

DOI: 10.1016/s1350-4487(96)00141-2

Google Scholar

[115] M. Fattahi, S. Stokes, Red luminescence from potassium feldspar for dating applications: A study of some properties relevant for dating. Radiation Measurements 37 (2003) 647-660.

DOI: 10.1016/s1350-4487(03)00246-4

Google Scholar

[116] M. Fattahi, S. Stokes, Extending the time range of luminescence dating using red TL (RTL) from volcanic quartz. Radiation Measurements 32 (2000) 479-485.

DOI: 10.1016/s1350-4487(00)00105-0

Google Scholar

[117] J.S. Singarayer, R.M. Bailey, E.J. Rhodes, Potential of the slow component of quartz OSL for age determination of sedimentary samples. Radiation Measurements 32 (2000) 873-880.

DOI: 10.1016/s1350-4487(00)00074-3

Google Scholar

[118] M. Jain, L. Bøtter-Jensen, A.S. Murray, P.M. Denby, S. Tsukamoto, M.R. Gibling, Revisiting TL: Dose measurement beyond the OSL range using SAR. Ancient TL 23 (2005) 9-24.

Google Scholar

[119] M. Jain, Extending the dose range: Probing deep traps in quartz with 3.06 eV photons. Radiation Measurements 44 (2009) 445-452.

DOI: 10.1016/j.radmeas.2009.03.011

Google Scholar

[120] G.W. Berger, D.J. Huntley, Dating volcanic ash by thermoluminescence. PACT 9 (1983) 581-592.

Google Scholar

[121] G.W. Berger, J.O. Davis, Dating volcanic ash by thermoluminescence: Test and application. Quaternary International 13-14 (1992) 127-130.

DOI: 10.1016/1040-6182(92)90018-w

Google Scholar

[122] G.W. Berger, D.J. Huntley, Tests for optically stimulated luminescence from tephar glass. Quaternary Science Reviews 13 (1994) 509-511.

DOI: 10.1016/0277-3791(94)90067-1

Google Scholar

[123] S. Tsukamoto, G.A.T. Duller, A.G. Wintle, M. Frechen, Optical dating of a Japanese marker tephra using plagioclase. Quaternary Geochronology 5 (2010) 274-278.

DOI: 10.1016/j.quageo.2009.02.002

Google Scholar

[124] S. Tsukamoto, A.S. Murray, S. Huot, T. Watanuki, P.M. Denby, L. Bøtter-Jensen, Luminescence property of volcanic quartz and the use of red isothermal TL for dating tephras. Radiation Measurements 42 (2007) 190-197.

DOI: 10.1016/j.radmeas.2006.07.008

Google Scholar

[125] M. Fattahi, S. Stokes, Dating volcanic and related sediments by luminescence methods: A review. Earth-Science Reviews 62 (2003) 229-264.

DOI: 10.1016/s0012-8252(02)00159-9

Google Scholar

[126] F. Herman, E.J. Rhodes, J. Braun, L. Heiniger, Uniform erosion rates and relief amplitude during glacial cycles in the Southern Alps of New Zealand, as revealed from OSL-thermochronology. Earth and Planetary Science Letters 297 (2010) 183-189.

DOI: 10.1016/j.epsl.2010.06.019

Google Scholar

[127] B. Li, S.-H. Li, Determining the cooling age using luminescence-thermochronology. Tectonophysics 580 (2012) 242-248.

DOI: 10.1016/j.tecto.2012.09.023

Google Scholar

[128] J.R. Prescott, G.B. Robertson, Sediment dating by luminescence: a review. Radiation Measurements 27 (1997) 893-922.

DOI: 10.1016/s1350-4487(97)00204-7

Google Scholar

[129] F. Preusser, D. Degering, M. Fuchs, A. Hilgers, A. Kadereit, N. Klasen, M. Krbetschek, D. Richter, J.Q.G. Spencer, Luminescence dating: basics, methods and applications. Eiszeitalter und Gegenwart Quaternary Science Journal 57 (2008) 95-149.

DOI: 10.3285/eg.57.1-2.5

Google Scholar

[130] E.J. Rhodes, Optically Stimulated Luminescence Dating of Sediments over the Past 200,000 Years. Annual Review of Earth and Planetary Sciences 39 (2011) 461-488.

DOI: 10.1146/annurev-earth-040610-133425

Google Scholar

[131] A.G. Wintle, Luminescence dating: Where it has been and where it is going. Boreas 37 (2008) 471-482.

DOI: 10.1111/j.1502-3885.2008.00059.x

Google Scholar

[132] A.G. Wintle, Luminescence dating of Quaternary sediments - Introduction. Boreas 37 (2008) 469-470.

DOI: 10.1111/j.1502-3885.2008.00060.x

Google Scholar

[133] J. Wallinga, Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31 (2002) 303-322.

DOI: 10.1080/030094802320942536

Google Scholar

[134] M. Fuchs, L.A. Owen, Luminescence dating of glacial and associated sediments: review, recommendations and future directions. Boreas 37 (2008) 636-659.

DOI: 10.1111/j.1502-3885.2008.00052.x

Google Scholar

[135] S. Nawaz Ali, R.H. Biswas, A.D. Shukla, N. Juyal, Chronology and climatic implications of Late Quaternary glaciations in the Goriganga valley, central Himalaya, India. Quaternary Science Reviews 73 (2013) 59-76.

DOI: 10.1016/j.quascirev.2013.05.016

Google Scholar

[136] G.A.T. Duller, Single grain optical dating of glacigenic deposits. Quaternary Geochronology 1 (2006) 296-304.

DOI: 10.1016/j.quageo.2006.05.018

Google Scholar

[137] L.J. Arnold, R.M. Bailey, G.E. Tucker, Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2 (2007) 162-167.

DOI: 10.1016/j.quageo.2006.05.003

Google Scholar

[138] A.K. Singhvi, N. Porat, Impact of luminescence dating on geomorphological and palaeoclimate research in drylands. Boreas 37 (2008) 536-558.

DOI: 10.1111/j.1502-3885.2008.00058.x

Google Scholar

[139] M. Fattahi, Dating past earthquakes and related sediments by thermoluminescence methods: A review. Quaternary International 199 (2009) 104-146.

DOI: 10.1016/j.quaint.2008.06.015

Google Scholar

[140] A.K. Singhvi, A. Bluszcz, M.D. Bateman, M.S. Rao, Luminescence dating of loess-palaeosol sequences and coversands: Methodological aspects and palaeoclimatic implications. Earth-Science Reviews 54 (2001) 193-211.

DOI: 10.1016/s0012-8252(01)00048-4

Google Scholar

[141] D.W.G. Sears, K. Ninagawa, A.K. Singhvi, Luminescence studies of extraterrestrial materials: Insights into their recent radiation and thermal histories and into their metamorphic history. Chemie der Erde - Geochemistry 73 (2013) 1-37.

DOI: 10.1016/j.chemer.2012.12.001

Google Scholar

[142] C.L. Melcher, Thermoluminescence of meteorites and their orbits. Earth and Planetary Science Letters 52 (1981) 39-54.

DOI: 10.1016/0012-821x(81)90206-5

Google Scholar

[143] C.L. Melcher, Thermoluminescence studies of the thermal and radiation histories of chondritic meteorites, in, Department of Physics, Washington University, Washington, USA, 1980, p.163.

Google Scholar

[144] R.H. Biswas, P. Morthekai, R.K. Gartia, S. Chawla, A.K. Singhvi, Thermoluminescence of the meteorite interior: A possible tool for the estimation of cosmic ray exposure ages. Earth and Planetary Science Letters 304 (2011) 36-44.

DOI: 10.1016/j.epsl.2011.01.012

Google Scholar

[145] D.W. Sears, J.N. Grossman, C.L. Melcher, L.M. Ross, A.A. Mills, Measuring metamorphic history of unequilibrated ordinary chondrites. Nature 287 (1980) 791-795.

DOI: 10.1038/287791a0

Google Scholar

[146] D.W. Sears, S.A. Durrani, Thermoluminescence and the terrestrial age of meteorites: Some recent results. Earth and Planetary Science Letters 46 (1980) 159-166.

DOI: 10.1016/0012-821x(80)90002-3

Google Scholar

[147] D.W.G. Sears, Thermoluminescence of meteorites: Shedding light on the cosmos. International Journal of Radiation Applications and Instrumentation. Part 14 (1988) 5-17.

DOI: 10.1016/1359-0189(88)90036-2

Google Scholar

[148] R.K. Guimon, D.W. Sears, The thermoluminescence sensitivity - metamorphism relationship in ordinary chondrites: experimental data on the mechanism and implications for terrestrial systems. Geophysical Research Letters 13 (1986) 969-972.

DOI: 10.1029/gl013i009p00969

Google Scholar

[149] D. Stöffler, K. Keil, S. Edward R.D, Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55 (1991) 3845-3867.

DOI: 10.1016/0016-7037(91)90078-j

Google Scholar

[150] C.L. Melcher, R.M. Walker, Thermoluminescence (TL) and meteorite orbit. Meteoritics 12 (1977) 309-310.

Google Scholar

[151] http://www.aber.ac.uk/en/iges/research-groups/quaternary/luminescence-research laboratory/ recent -research-projects/luminescence-mars/.

Google Scholar

[152] R. DeWitt, S.W.S. McKeever, ODIN - A prototype Mars in-situ luminescence reader for geochronology and radiation measurements, in, 44th Lunar and Planetary Science Conference, (2013), p.1665.

Google Scholar

[153] S. Tsukamoto, G.A.T. Duller, Anomalous fading of various luminescence signals from terrestrial basaltic samples as Martian analogues. Radiation Measurements 43 (2008) 721-725.

DOI: 10.1016/j.radmeas.2007.10.025

Google Scholar

[154] M. Jain, C.E. Andersen, L. Bøtter-Jensen, A.S. Murray, H. Haack, J.C. Bridges, Luminescence dating on Mars: OSL characteristics of Martian analogue materials and GCR dosimetry. Radiation Measurements 41 (2006) 755-761.

DOI: 10.1016/j.radmeas.2006.05.018

Google Scholar

[155] P. Morthekai, M. Jain, L. Dartnell, A.S. Murray, L. Bøtter-Jensen, L. Desorgher, Modelling of the dose-rate variations with depth in the Martian regolith using GEANT4. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580 (2007) 667-670.

DOI: 10.1016/j.nima.2007.05.118

Google Scholar