Luminescence Instrumentation

Article Preview

Abstract:

This chapter gives an introduction to instrumentation for stimulated luminescence studies, with special focus on luminescence dating using the natural dosimeters, quartz and feldspars. The chapter covers basic concepts in luminescence detection, and thermal and optical stimulation, and reference irradiation. It then briefly describes development of spectrometers in dating applications, and finally gives an overview of recent development in the field directly linked to novel instrumentation. Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-260

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Bøtter-Jensen, S.W.S. McKeever, A.G. Wintle, Optically Stimulated Luminescence, Elsevier, Amsterdam, 2003.

DOI: 10.1016/b978-044450684-9/50089-1

Google Scholar

[2] L. Bøtter-Jensen, K.J. Thomsen, M. Jain, Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry, Rad. Meas. 45 (2010) 253-257.

DOI: 10.1016/j.radmeas.2009.11.030

Google Scholar

[3] L. Bøtter-Jensen Luminescence techniques: instrumentation and methods, Rad. Meas. 17 (1997) 749-768.

Google Scholar

[4] B.G. Markey, L. Bøtter-Jensen, N.R.J. Poolton, H.E. Christiansen, F. Willumsen, A new sensitive system for measurement of thermally and optically stimulated luminescence, Rad. Prot. Dosim. 66 (1996) 413-418.

DOI: 10.1093/oxfordjournals.rpd.a031766

Google Scholar

[5] L. Bøtter-Jensen, E. Bulur, G.A.T. Duller, A.S. Murray, Advances in luminescence instrument systems, Rad. Meas. 32 (2000) 523-528.

DOI: 10.1016/s1350-4487(00)00039-1

Google Scholar

[6] E. Bulur, An alternative technique for optically stimulated luminescence (OSL) experiments, Rad. Meas. 26 (1996) 701-709.

DOI: 10.1016/s1350-4487(97)82884-3

Google Scholar

[7] M. Jain, A.S. Murray, L. Bøtter-Jensen, Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement, Rad. Meas. 37 (2003) 441–449.

DOI: 10.1016/s1350-4487(03)00052-0

Google Scholar

[8] M. Jain, J.H. Choi, P.J. Thomas, The ultrafast OSL component in quartz: Origins and implications, Rad. Meas. 43 (2008) 709-714.

DOI: 10.1016/j.radmeas.2008.01.005

Google Scholar

[9] M. Jain, Extending the dose range: Probing deep traps in quartz with 3.06 eV photons, Rad. Meas. 44 (2009) 445-452.

DOI: 10.1016/j.radmeas.2009.03.011

Google Scholar

[10] C.E. Andersen, L. Bøtter-Jensen, A.S. Murray, A mini x-ray generator as an alternative to a 90Sr/90Y beta source in luminescence dating, Rad. Meas. 37 (2003) 557-561.

DOI: 10.1016/s1350-4487(03)00022-2

Google Scholar

[11] M. Jain, L. Bøtter-Jensen, K.J. Thomsen, High local ionization density effects in X-ray excitations deduced from optical stimulation of trapped charge in Al2O3:C, J. Phys. Condens. Matter 19 (2007) 116201–116215.

DOI: 10.1088/0953-8984/19/11/116201

Google Scholar

[12] G. Hütt, I. Jaek, Tchonka J., Optical dating: Feldspars' optical response stimulation spectrum, Quat. Sci. Rev. 7 (1988) 381-386.

DOI: 10.1016/0277-3791(88)90033-9

Google Scholar

[13] N.R.J. Poolton, L. Bøtter-Jensen, O. Johnsen, On the relationship between luminescence excitation spectra and feldspar mineralogy, Rad. Meas. 26 (1996) 93-101.

DOI: 10.1016/1350-4487(95)00288-x

Google Scholar

[14] L. Bøtter-Jensen, G.A.T. Duller, N.R.J. Poolton, Excitation and emission spectrometry of stimulated luminescence from quartz and feldspars, Rad. Meas. 23 (1994) 613-616.

DOI: 10.1016/1350-4487(94)90108-2

Google Scholar

[15] A.M. Harris, J.H. Jackson, A rapid scanning spectrometer for the region 200-850 nm: application of thermoluminescent emission spectra, J. Phys. E3 (1970) 374.

DOI: 10.1088/0022-3735/3/5/309

Google Scholar

[16] P.L. Mattern, K. Lengweiler, P.W. Levy, Apparatus for the simultaneous determination of thermoluminescent intensity and spectral distribution, Mod. Geol. 2 (1971) 293.

Google Scholar

[17] D.J. Huntley, D.I. Godfrey-Smith, M.L.W. Thewalt, G.W. Berger, Thermoluminescence spectra of some mineral samples relevant to thermoluminescence dating, J. Lum. 39 (1988) 123-136.

DOI: 10.1016/0022-2313(88)90067-1

Google Scholar

[18] B.J. Luff, P.D. Townsend, High sensitivity thermoluminescence spectrometer, Meas. Sci. Technol. 4 (1993) 65-71.

DOI: 10.1088/0957-0233/4/1/011

Google Scholar

[19] T.M. Piters, W.H. Meulemans, A.J.J. Bos, An automated facility for measuring thermoluminescence emission spectra using an optical multichannel analyser, Rev. Sci. Instrum. 64 (1993) 109-117.

DOI: 10.1063/1.1144423

Google Scholar

[20] M. Martini, S. Paravisi, C. Liguori, A new high sensitive spectrometer for 3-D thermoluminescence analysis, Rad. Prot. Dosim. 66 (1996) 447-450.

DOI: 10.1093/oxfordjournals.rpd.a031774

Google Scholar

[21] G.V. Bakas, A new optical multichannel analyser using a charge coupled device for thermoluminescence emission measurements, Rad. Prot. Dosim. 9 (1984) 301.

DOI: 10.1093/oxfordjournals.rpd.a083115

Google Scholar

[22] U. Rieser, M.R. Krbetschek, W. Stolz, CCD-camera based high sensitivity TL/OSL- spectrometer, Rad. Meas. 23 (1994) 523-528.

DOI: 10.1016/1350-4487(94)90092-2

Google Scholar

[23] U. Rieser, J. Habermann, G.A Wagner, Luminescence Dating: a new high sensitive TL/OSL emission spectrometer, Quart. Geochron. 18 (1999) 311-315.

DOI: 10.1016/s0277-3791(98)00064-x

Google Scholar

[24] J. R. Prescott, P. J. Fox, R. A. Akber, H. E. Jensen, Thermoluminescence emission spectrometer, Applied Optics 27, (1988) 3496-3502.

DOI: 10.1364/ao.27.003496

Google Scholar

[25] K.J. Thomsen, L. Bøtter-Jensen, P.M. Denby, P. Moska, A.S. Murray, C. Ankjærgaard, Developments in luminescence measurement techniques, Rad. Meas. 41(2006) 768-773.

DOI: 10.1016/j.radmeas.2006.06.010

Google Scholar

[26] K.J. Thomsen, M. Jain, A.S. Murray, P.M. Denby, N. Roy, L. Bøtter-Jensen, Minimizing feldspar OSL contamination in quartz UV-OSL using pulsed blue stimulation, Rad. Meas. 43 (2008) 752-757.

DOI: 10.1016/j.radmeas.2008.01.020

Google Scholar

[27] C. Ankjærgaard, M. Jain, K.J. Thomsen, A.S. Murray, Optimising the separation of quartz and feldspar optically stimulated luminescence using pulsed excitation, Rad. Meas. 45 (2010) 778-785.

DOI: 10.1016/j.radmeas.2010.03.004

Google Scholar

[28] S. Tsukamoto, P.M. Denby, A.S. Murray, L. Bøtter-Jensen, Time-resolved luminescence from feldspars: New insight into fading, Rad. Meas. 41 (2006) 790-795.

DOI: 10.1016/j.radmeas.2006.05.013

Google Scholar

[29] M. Jain, C. Ankjærgaard, Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence, Rad. Meas. 46 (2011) 292-309.

DOI: 10.1016/j.radmeas.2010.12.004

Google Scholar

[30] C. Ankjærgaard, M. Jain, Optically stimulated phosphorescence in quartz over the millisecond to seconds time scale: insights into the role of shallow traps in delaying luminescent recombination, J. Phys. D – App. Phys. 43 (2010) p.255502.

DOI: 10.1088/0022-3727/43/25/255502

Google Scholar

[31] C. Ankjærgaard, M. Jain, Optically stimulated phosphorescence in feldspar over the millisecond to seconds time scale, J. Lumin. 130 (2010) 2346-2355.

DOI: 10.1016/j.jlumin.2010.07.016

Google Scholar

[32] S. Tsukamoto, A.S. Murray, C. Ankjærgaard, M. Jain, Charge movement in minerals studied by optically stimuated luminescence and time resolved exo-electon emission, J. Phys. D: App. Phys. 43 (2010) 325502.

DOI: 10.1088/0022-3727/43/32/325502

Google Scholar

[33] G.A.T. Duller, L. Bøtter-Jensen, P. Kohsiek, A.S. Murray, A high-sensitivity optically stimulated luminescence scanning system for measurement of single sand-sized grains, Rad. Prot. Dosim. 84 (1999) 325-330.

DOI: 10.1093/oxfordjournals.rpd.a032748

Google Scholar

[34] T. Hashimoto, Y. Hayashi, A. Koyanagi, K. Yokosaka, K. Kimura, Red and blue coloration of thermoluminescence from natural quartz sands. Nucl. Tracks Rad. Meas. 11 (1986) 229-235.

DOI: 10.1016/1359-0189(86)90039-7

Google Scholar

[35] G.A.T. Duller, L. Bøtter-Jensen, B.G. Markey, A luminescence imaging system based on a charge coupled device (CCD) camera, Rad. Meas. 27 (1997) 91-99.

DOI: 10.1016/s1350-4487(96)00120-5

Google Scholar

[36] N.A. Spooner, A. Allsop, The spatial variation of dose rate from 90Sr/90Y beta sources for use in luminescence dating, Rad. Meas. 32 (2000) 49-56.

DOI: 10.1016/s1350-4487(99)00252-8

Google Scholar

[37] S. Greilich, G.A. Wagner, Development of a spatially resolved dating technique using HR- OSL, Rad. Meas. 41 (2006) 738-743.

DOI: 10.1016/j.radmeas.2006.05.022

Google Scholar

[38] I.K. Bailiff, V. B. Mikhailik, Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence, Rad. Meas. 37 (2003) 151-159.

DOI: 10.1016/s1350-4487(02)00187-7

Google Scholar

[39] Y.U. Marazuev, A.B. Brik, V.Y. Degoda, Radioluminescent dosimetry of α-quartz. Rad. Meas. 24 (1995) 565-569.

DOI: 10.1016/1350-4487(95)00278-m

Google Scholar

[40] T. Trautmann, M.R. Krbetschek, A. Dietrich, W. Stolz, The basic principle of radioluminescence dating and a localized transition model, Rad. Meas. 32 (2000) 487-492.

DOI: 10.1016/s1350-4487(00)00119-0

Google Scholar

[41] M.R. Krbetschek, T. Trautmann, A. Dietrich, W. Stolz, Radioluminescence dating of sediments: methodological aspects, Rad. Meas. 32 (2000) 493-498.

DOI: 10.1016/s1350-4487(00)00122-0

Google Scholar

[42] J.-P. Buylaert, M. Jain, A.S. Murray, K.J. Thomsen, T. Lapp, IR-RF dating of sand-sized K- feldspar extracts: a test of accuracy, Rad. Meas. 47 (2012) 759-765.

DOI: 10.1016/j.radmeas.2012.06.021

Google Scholar

[43] N.R.J. Poolton, E. Bulur, J. Wallinga, L. Bøtter-Jensen, A.S. Murray, F. Willumsen, An automated system for the analysis of variable temperature radioluminescence. Nucl. Instrum. Meth. Phys. Res. B 179 (2001) 575-584.

DOI: 10.1016/s0168-583x(01)00605-x

Google Scholar

[44] T. Lapp, M. Jain, K.J. Thomsen, A.S. Murray, J.P. Buylaert, New luminescence measurement facilities in retrospective dosimetry, Rad. Meas. 47 (2012) 803-808.

DOI: 10.1016/j.radmeas.2012.02.006

Google Scholar