[1]
L. Bøtter-Jensen, S.W.S. McKeever, A.G. Wintle, Optically Stimulated Luminescence, Elsevier, Amsterdam, 2003.
DOI: 10.1016/b978-044450684-9/50089-1
Google Scholar
[2]
L. Bøtter-Jensen, K.J. Thomsen, M. Jain, Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry, Rad. Meas. 45 (2010) 253-257.
DOI: 10.1016/j.radmeas.2009.11.030
Google Scholar
[3]
L. Bøtter-Jensen Luminescence techniques: instrumentation and methods, Rad. Meas. 17 (1997) 749-768.
Google Scholar
[4]
B.G. Markey, L. Bøtter-Jensen, N.R.J. Poolton, H.E. Christiansen, F. Willumsen, A new sensitive system for measurement of thermally and optically stimulated luminescence, Rad. Prot. Dosim. 66 (1996) 413-418.
DOI: 10.1093/oxfordjournals.rpd.a031766
Google Scholar
[5]
L. Bøtter-Jensen, E. Bulur, G.A.T. Duller, A.S. Murray, Advances in luminescence instrument systems, Rad. Meas. 32 (2000) 523-528.
DOI: 10.1016/s1350-4487(00)00039-1
Google Scholar
[6]
E. Bulur, An alternative technique for optically stimulated luminescence (OSL) experiments, Rad. Meas. 26 (1996) 701-709.
DOI: 10.1016/s1350-4487(97)82884-3
Google Scholar
[7]
M. Jain, A.S. Murray, L. Bøtter-Jensen, Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement, Rad. Meas. 37 (2003) 441–449.
DOI: 10.1016/s1350-4487(03)00052-0
Google Scholar
[8]
M. Jain, J.H. Choi, P.J. Thomas, The ultrafast OSL component in quartz: Origins and implications, Rad. Meas. 43 (2008) 709-714.
DOI: 10.1016/j.radmeas.2008.01.005
Google Scholar
[9]
M. Jain, Extending the dose range: Probing deep traps in quartz with 3.06 eV photons, Rad. Meas. 44 (2009) 445-452.
DOI: 10.1016/j.radmeas.2009.03.011
Google Scholar
[10]
C.E. Andersen, L. Bøtter-Jensen, A.S. Murray, A mini x-ray generator as an alternative to a 90Sr/90Y beta source in luminescence dating, Rad. Meas. 37 (2003) 557-561.
DOI: 10.1016/s1350-4487(03)00022-2
Google Scholar
[11]
M. Jain, L. Bøtter-Jensen, K.J. Thomsen, High local ionization density effects in X-ray excitations deduced from optical stimulation of trapped charge in Al2O3:C, J. Phys. Condens. Matter 19 (2007) 116201–116215.
DOI: 10.1088/0953-8984/19/11/116201
Google Scholar
[12]
G. Hütt, I. Jaek, Tchonka J., Optical dating: Feldspars' optical response stimulation spectrum, Quat. Sci. Rev. 7 (1988) 381-386.
DOI: 10.1016/0277-3791(88)90033-9
Google Scholar
[13]
N.R.J. Poolton, L. Bøtter-Jensen, O. Johnsen, On the relationship between luminescence excitation spectra and feldspar mineralogy, Rad. Meas. 26 (1996) 93-101.
DOI: 10.1016/1350-4487(95)00288-x
Google Scholar
[14]
L. Bøtter-Jensen, G.A.T. Duller, N.R.J. Poolton, Excitation and emission spectrometry of stimulated luminescence from quartz and feldspars, Rad. Meas. 23 (1994) 613-616.
DOI: 10.1016/1350-4487(94)90108-2
Google Scholar
[15]
A.M. Harris, J.H. Jackson, A rapid scanning spectrometer for the region 200-850 nm: application of thermoluminescent emission spectra, J. Phys. E3 (1970) 374.
DOI: 10.1088/0022-3735/3/5/309
Google Scholar
[16]
P.L. Mattern, K. Lengweiler, P.W. Levy, Apparatus for the simultaneous determination of thermoluminescent intensity and spectral distribution, Mod. Geol. 2 (1971) 293.
Google Scholar
[17]
D.J. Huntley, D.I. Godfrey-Smith, M.L.W. Thewalt, G.W. Berger, Thermoluminescence spectra of some mineral samples relevant to thermoluminescence dating, J. Lum. 39 (1988) 123-136.
DOI: 10.1016/0022-2313(88)90067-1
Google Scholar
[18]
B.J. Luff, P.D. Townsend, High sensitivity thermoluminescence spectrometer, Meas. Sci. Technol. 4 (1993) 65-71.
DOI: 10.1088/0957-0233/4/1/011
Google Scholar
[19]
T.M. Piters, W.H. Meulemans, A.J.J. Bos, An automated facility for measuring thermoluminescence emission spectra using an optical multichannel analyser, Rev. Sci. Instrum. 64 (1993) 109-117.
DOI: 10.1063/1.1144423
Google Scholar
[20]
M. Martini, S. Paravisi, C. Liguori, A new high sensitive spectrometer for 3-D thermoluminescence analysis, Rad. Prot. Dosim. 66 (1996) 447-450.
DOI: 10.1093/oxfordjournals.rpd.a031774
Google Scholar
[21]
G.V. Bakas, A new optical multichannel analyser using a charge coupled device for thermoluminescence emission measurements, Rad. Prot. Dosim. 9 (1984) 301.
DOI: 10.1093/oxfordjournals.rpd.a083115
Google Scholar
[22]
U. Rieser, M.R. Krbetschek, W. Stolz, CCD-camera based high sensitivity TL/OSL- spectrometer, Rad. Meas. 23 (1994) 523-528.
DOI: 10.1016/1350-4487(94)90092-2
Google Scholar
[23]
U. Rieser, J. Habermann, G.A Wagner, Luminescence Dating: a new high sensitive TL/OSL emission spectrometer, Quart. Geochron. 18 (1999) 311-315.
DOI: 10.1016/s0277-3791(98)00064-x
Google Scholar
[24]
J. R. Prescott, P. J. Fox, R. A. Akber, H. E. Jensen, Thermoluminescence emission spectrometer, Applied Optics 27, (1988) 3496-3502.
DOI: 10.1364/ao.27.003496
Google Scholar
[25]
K.J. Thomsen, L. Bøtter-Jensen, P.M. Denby, P. Moska, A.S. Murray, C. Ankjærgaard, Developments in luminescence measurement techniques, Rad. Meas. 41(2006) 768-773.
DOI: 10.1016/j.radmeas.2006.06.010
Google Scholar
[26]
K.J. Thomsen, M. Jain, A.S. Murray, P.M. Denby, N. Roy, L. Bøtter-Jensen, Minimizing feldspar OSL contamination in quartz UV-OSL using pulsed blue stimulation, Rad. Meas. 43 (2008) 752-757.
DOI: 10.1016/j.radmeas.2008.01.020
Google Scholar
[27]
C. Ankjærgaard, M. Jain, K.J. Thomsen, A.S. Murray, Optimising the separation of quartz and feldspar optically stimulated luminescence using pulsed excitation, Rad. Meas. 45 (2010) 778-785.
DOI: 10.1016/j.radmeas.2010.03.004
Google Scholar
[28]
S. Tsukamoto, P.M. Denby, A.S. Murray, L. Bøtter-Jensen, Time-resolved luminescence from feldspars: New insight into fading, Rad. Meas. 41 (2006) 790-795.
DOI: 10.1016/j.radmeas.2006.05.013
Google Scholar
[29]
M. Jain, C. Ankjærgaard, Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence, Rad. Meas. 46 (2011) 292-309.
DOI: 10.1016/j.radmeas.2010.12.004
Google Scholar
[30]
C. Ankjærgaard, M. Jain, Optically stimulated phosphorescence in quartz over the millisecond to seconds time scale: insights into the role of shallow traps in delaying luminescent recombination, J. Phys. D – App. Phys. 43 (2010) p.255502.
DOI: 10.1088/0022-3727/43/25/255502
Google Scholar
[31]
C. Ankjærgaard, M. Jain, Optically stimulated phosphorescence in feldspar over the millisecond to seconds time scale, J. Lumin. 130 (2010) 2346-2355.
DOI: 10.1016/j.jlumin.2010.07.016
Google Scholar
[32]
S. Tsukamoto, A.S. Murray, C. Ankjærgaard, M. Jain, Charge movement in minerals studied by optically stimuated luminescence and time resolved exo-electon emission, J. Phys. D: App. Phys. 43 (2010) 325502.
DOI: 10.1088/0022-3727/43/32/325502
Google Scholar
[33]
G.A.T. Duller, L. Bøtter-Jensen, P. Kohsiek, A.S. Murray, A high-sensitivity optically stimulated luminescence scanning system for measurement of single sand-sized grains, Rad. Prot. Dosim. 84 (1999) 325-330.
DOI: 10.1093/oxfordjournals.rpd.a032748
Google Scholar
[34]
T. Hashimoto, Y. Hayashi, A. Koyanagi, K. Yokosaka, K. Kimura, Red and blue coloration of thermoluminescence from natural quartz sands. Nucl. Tracks Rad. Meas. 11 (1986) 229-235.
DOI: 10.1016/1359-0189(86)90039-7
Google Scholar
[35]
G.A.T. Duller, L. Bøtter-Jensen, B.G. Markey, A luminescence imaging system based on a charge coupled device (CCD) camera, Rad. Meas. 27 (1997) 91-99.
DOI: 10.1016/s1350-4487(96)00120-5
Google Scholar
[36]
N.A. Spooner, A. Allsop, The spatial variation of dose rate from 90Sr/90Y beta sources for use in luminescence dating, Rad. Meas. 32 (2000) 49-56.
DOI: 10.1016/s1350-4487(99)00252-8
Google Scholar
[37]
S. Greilich, G.A. Wagner, Development of a spatially resolved dating technique using HR- OSL, Rad. Meas. 41 (2006) 738-743.
DOI: 10.1016/j.radmeas.2006.05.022
Google Scholar
[38]
I.K. Bailiff, V. B. Mikhailik, Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence, Rad. Meas. 37 (2003) 151-159.
DOI: 10.1016/s1350-4487(02)00187-7
Google Scholar
[39]
Y.U. Marazuev, A.B. Brik, V.Y. Degoda, Radioluminescent dosimetry of α-quartz. Rad. Meas. 24 (1995) 565-569.
DOI: 10.1016/1350-4487(95)00278-m
Google Scholar
[40]
T. Trautmann, M.R. Krbetschek, A. Dietrich, W. Stolz, The basic principle of radioluminescence dating and a localized transition model, Rad. Meas. 32 (2000) 487-492.
DOI: 10.1016/s1350-4487(00)00119-0
Google Scholar
[41]
M.R. Krbetschek, T. Trautmann, A. Dietrich, W. Stolz, Radioluminescence dating of sediments: methodological aspects, Rad. Meas. 32 (2000) 493-498.
DOI: 10.1016/s1350-4487(00)00122-0
Google Scholar
[42]
J.-P. Buylaert, M. Jain, A.S. Murray, K.J. Thomsen, T. Lapp, IR-RF dating of sand-sized K- feldspar extracts: a test of accuracy, Rad. Meas. 47 (2012) 759-765.
DOI: 10.1016/j.radmeas.2012.06.021
Google Scholar
[43]
N.R.J. Poolton, E. Bulur, J. Wallinga, L. Bøtter-Jensen, A.S. Murray, F. Willumsen, An automated system for the analysis of variable temperature radioluminescence. Nucl. Instrum. Meth. Phys. Res. B 179 (2001) 575-584.
DOI: 10.1016/s0168-583x(01)00605-x
Google Scholar
[44]
T. Lapp, M. Jain, K.J. Thomsen, A.S. Murray, J.P. Buylaert, New luminescence measurement facilities in retrospective dosimetry, Rad. Meas. 47 (2012) 803-808.
DOI: 10.1016/j.radmeas.2012.02.006
Google Scholar