p.1
p.29
p.95
p.127
p.171
p.193
p.217
p.245
p.261
Thermoluminescence of Persistent Luminescent Materials
Abstract:
Persistent luminescence as well as Thermoluminescence (TL), both the phenomena are nothing but long-period afterglow having lifetime (τ) in the broad range of few minutes to few days. Therefore, it is nothing but natural that all persistent luminescent materials exhibit excellent thermoluminescence. This review critically discusses the data available in literature and provides a commentary on the trap-spectroscopy of persistent luminescent materials as a whole with special emphasis to commercial materials that have found wide applications in safety signage, road sign display as well as sensors for structural damage and in vivo medical imaging. Finally, it also provides some “thumb-rules” to eliminate few fatal misconceptions that have crept into the literature
Info:
Periodical:
Pages:
171-191
Citation:
Online since:
July 2014
Authors:
Keywords:
Price:
Сopyright:
© 2014 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] H.F. Brito, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, L.C.V. Rodrigues, Persistent luminescence mechanisms: human imagination at work, Opt. Mater. Express. 2 (2012) 371–381.
DOI: 10.1364/ome.2.000371
[2] M. Lastusaari, T. Laamanen, M. Malkamäki, K.O. Eskola, A. Kotlov, S. Carlson, et al., The Bologna Stone: history's first persistent luminescent material, Eur. J. Mineral. 24 (2012) 885–890.
[3] T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4 : Eu2+ , Dy3+, J. Electrochem. Soc. 143 (1996) 2670–2673.
DOI: 10.1149/1.1837067
[4] U. Happek, A. Setlur, Persistent Phosphors Based on Alkaline-Earth Aluminate Hosts, Electrochem. Soc. Interface. 19 (2010) 53–54.
DOI: 10.1149/2.f08101if
[5] H. Takasaki, S. Tanabe, T. Hanada, Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al 2 O 3 phosphor, J. Ceram. Soc. Jpn. 104 (1996) 322–326.
[6] T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, T. Morikawa, Effects of Composition on the Long Phosphorescent SrAl2O4 : Eu2+ , Dy3+ Phosphor Crystals, J. Electrochem. Soc. 144 (1997) L243–L245.
DOI: 10.1149/1.1837931
[7] T. Katsumata, T. Nabae, K. Sasajima, T. Matsuzawa, Growth and characteristics of long persistent SrA12O4- and CaA12O4-based phosphor crystals by a floating zone technique, J. Cryst. Growth. 183 (1998) 361–365.
[8] T. Katsumata, K. Sasajima, T. Nabae, S. Komuro, T. Morikawa, Characteristics of Strontium Aluminate Crystals Used for Long-Duration Phosphors, J. Am. Ceram. Soc. 81 (1998) 413–416.
[9] R. Sakai, T. Katsumata, S. Komuro, T. Morikawa, Effect of composition on the phosphorescence from BaAl2O4:Eu2+,Dy3+ crystals, J. Lumin. 85 (1999) 149–154.
[10] I. Tsutai, T. Kamimura, K. Kato, F. Kaneko, K. Shinbo, M. Ohta, et al., Preparation of sputtered SrAl2O4 :Eu films and their thermoluminescence properties, Electr. Eng. Jpn. 132 (2000) 7–14.
DOI: 10.1002/(sici)1520-6416(20000715)132:1<7::aid-eej2>3.0.co;2-3
[11] E. Nakazawa, T. Mochida, Traps in SrAl2O4 : Eu2+ phosphor with rare-earth ion doping, J. Lumin. 72–74 (1997) 236–237..
[12] H. Yamamoto, T. Matsuzawa, Mechanism of long phosphorescence of SrAl2O4 : Eu2+ , Dy3+ and CaAl2O4 : Eu2+ , Nd3+, in: J. Lumin., Elsevier, 1997: p.287–289.
[13] W. Jia, H. Yuan, L. Lu, H. Liu, W.M. Yen, Phosphorescent dynamics in SrAl2O4 : Eu2+ , Dy3+ single crystal fibers, J. Lumin. 76–77 (1998) 424–428..
[14] W. Jia, H. Yuan, S. Holmstrom, H. Liu, W.M. Yen, Photo-stimulated luminescence in SrAl2O4 : Eu2+ , Dy3+ single crystal fibers, J. Lumin. 83–84 (1999) 465–469.
[15] D. Jia, Relocalization of Ce3+5d electrons from host conduction band, J. Lumin. 117 (2006) 170–178.
[16] D. Jia, X. Wang, W. Jia, W.M. Yen, Trapping processes of 5d electrons in Ce3+ doped SrAl2O4 , J. Lumin. 122–123 (2007) 311–314.
[17] X. Xu, Y. Wang, X. Yu, Y. Li, Y. Gong, Investigation of Ce–Mn Energy Transfer in SrAl2O4 : : Ce3+,Mn2+, J. Am. Ceram. Soc. 94 (2011) 160–163.
[18] Y. Lin, Z. Tang, Z. Zhang, Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties, Mater. Lett. 51 (2001) 14–18.
[19] Y. Lin, Z. Tang, Z. Zhang, C.W. Nan, Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors, Appl. Phys. Lett. 81 (2002) 996–998.
DOI: 10.1063/1.1490631
[20] E. Nakazawa, Y. Murazaki, S. Saito, Mechanism of the persistent phosphorescence in Sr4Al14O25:Eu and SrAl2O4:Eu codoped with rare earth ions, J. Appl. Phys. 100 (2006) 113113.
DOI: 10.1063/1.2397284
[21] D. Jia, X. Wang, E. van der Kolk, W.M. Yen, Site dependent thermoluminescence of long persistent phosphorescence of BaAl2O4:Ce3+, Opt. Commun. 204 (2002) 247–251.
[22] J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+, J. Alloys Compd. 323–324 (2001) 326–330.
[23] Y. Lin, Z. Tang, Z. Zhang, C. Nan, Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors, J. Eur. Ceram. Soc. 23 (2003) 175–178.
[24] D. Jia, R.S. Meltzer, W.M. Yen, W. Jia, X. Wang, Green phosphorescence of CaAl2O4:Tb3+,Ce3+ through persistence energy transfer, Appl. Phys. Lett. 80 (2002) 1535–1537.
DOI: 10.1063/1.1456955
[25] D. Jia, X.J. Wang, W. Jia, W.M. Yen, Persistent energy transfer in CaAl2O4:Tb3+, Ce3+, J. Appl. Phys. 93 (2003) 148–152.
DOI: 10.1063/1.1525860
[26] D. Jia, W.M. Yen, Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+ , A Persistent Phosphor, J. Electrochem. Soc. 150 (2003) H61–H65.
DOI: 10.1149/1.1553792
[27] X.-J. Wang, D. Jia, W.M. Yen, Mn2+ activated green, yellow, and red long persistent phosphors, J. Lumin. 102–103 (2003) 34–37.
[28] Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, et al., Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors, Mater. Chem. Phys. 82 (2003) 860–863.
[29] B. Liu, C. Shi, M. Yin, L. Dong, Z. Xiao, The trap states in the Sr2MgSi2O7 and (Sr, Ca) MgSi2O7 long afterglow phosphor activated by Eu2+ and Dy3+, J. Alloys Compd. 387 (2005) 65–69.
[30] Y. Lin, Z. Tang, Z. Zhang, X. Wang, J. Zhang, Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor, J. Mater. Sci. Lett. 20 (2001) 1505–1506.
[31] T. Aitasalo, J. Hölsä, M. Kirm, T. Laamanen, M. Lastusaari, J. Niittykoski, et al., Persistent luminescence and synchrotron radiation study of the : materials, Radiat. Meas. 42 (2007) 644–647.
[32] G. Blasse, W.L. Wanmaker, J.W. Tervrugt, A. Bril, Fluorescence of Eu2+ activated silicates, Philips Res Rep. 23 (1968) 189–200.
[33] L. Jiang, C. Chang, D. Mao, Luminescent properties of CaMgSi2O6 and Ca2MgSi2O7 phosphors activated by Eu2+, Dy3+ and Nd3+, J. Alloys Compd. 360 (2003) 193–197.
[34] T. Aitasalo, J. Holsa, T. Laamanen, M. Lastusaari, L. Lehto, J. Niittykoski, et al., Luminescence properties of Eu 2+ doped dibarium magnesium disilicate, Ba2MgSi2O7: Eu2+, Ceram.- Silik. 49 (2005) 58–62.
[35] T. Aitasalo, D. Hreniak, J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, et al., Persistent luminescence of Ba2MgSi2O7: Eu2+, J. Lumin. 122–123 (2007) 110–112.
[36] Y. Lin, Z. Tang, Z. Zhang, C.W. Nan, Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8: -based (R=Ca, Sr, Ba) phosphors, J. Alloys Compd. 348 (2003) 76–79.
[37] A.A. Sabbagh Alvani, F. Moztarzadeh, A.A. Sarabi, Effects of dopant concentrations on phosphorescence properties of Eu/Dy-doped Sr3MgSi2O8, J. Lumin. 114 (2005) 131–136.
[38] Y. Lin, Z. Zhang, Z. Tang, X. Wang, J. Zhang, Z. Zheng, Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phosphor, J. Eur. Ceram. Soc. 21 (2001) 683–685.
[39] J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, D. Yuan, Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+,Ho3+, Solid State Commun. 136 (2005) 6–10.
[40] J.Y. Kuang, Y.L. Liu, J.X. Zhang, Effects of RE3+ as a co-dopant in blue-emitting long-lasting phosphors, Sr3Al10SiO20:Eu2+, J. Mater. Sci. 41 (2006) 5500–5503.
[41] K. Jin-Yong, L. Ying-Liang, Trapping Effects in CdSiO3:In3+ Long Afterglow Phosphor, Chin. Phys. Lett. 23 (2006) 204.
[42] Y. Liu, J. Kuang, B. Lei, C. Shi, Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors, J. Mater. Chem. 15 (2005) 4025–4031.
DOI: 10.1039/b507774e
[43] L.E.I. Bing Fu, L.I.U. Ying Liang, Y.E. Ze Ren, S.H.I. Chun Shan, A novel white light emitting long-lasting phosphor, Chin. Chem. Lett. 15 (2004) 335-338.
[44] Y. Liu, B. Lei, C. Shi, Luminescent Properties of a White Afterglow Phosphor CdSiO3:Dy3+ 3+, Chem. Mater. 17 (2005) 2108–2113.
DOI: 10.1021/cm0496422
[45] B. Lei, Y. Liu, Z. Ye, C. Shi, Luminescence properties of CdSiO3:Mn2+ phosphor, J. Lumin. 109 (2004) 215–219.
[46] X. Qu, L. Cao, W. Liu, G. Su, C. Xu, P. Wang, Preparation and properties of CdSiO3:Mn2+, Dy3+ phosphor, J. Alloys Compd. 494 (2010) 196–198.
[47] X. Qu, L. Cao, W. Liu, G. Su, Sol–gel synthesis and luminescence properties of CdSiO3: Mn2+, Eu3+ phosphor, J. Alloys Compd. 533 (2012) 83–87.
[48] J. Kuang, Y. Liu, Observation of energy transfer from host to rare earth ions in Pr3+-doped CdSiO3 long-lasting phosphor, Chem. Phys. Lett. 424 (2006) 58–62.
[49] B. Lei, Y. Liu, J. Liu, Z. Ye, C. Shi, Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3, J. Solid State Chem. 177 (2004) 1333–1337.
[50] S. Chen, Y. Yang, G. Zhou, Y. Wu, P. Liu, F. Zhang, et al., Characterization of afterglow-related spectroscopic effects in vacuum sintered Tb3+, Sr2+ co-doped Lu2O3 ceramics, Opt. Mater. 35 (2012) 240–243.
[51] J. Trojan-Piegza, J. Niittykoski, J. Hölsä, E. Zych, Thermoluminescence and Kinetics of Persistent Luminescence of Vacuum-Sintered Tb3+-Doped and Tb3+,Ca2+-Codoped Lu2O3 Materials, Chem. Mater. 20 (2008) 2252–2261.
DOI: 10.1021/cm703060c
[52] E. Zych, J. Trojan-Piegza, D. Hreniak, W. Strek, Properties of Tb-doped vacuum-sintered Lu2O3 storage phosphor, J. Appl. Phys. 94 (2003) 1318–1324.
DOI: 10.1063/1.1587891
[53] J. Trojan-Piegza, E. Zych, J. Hölsä, J. Niittykoski, Spectroscopic Properties of Persistent Luminescence Phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba), J. Phys. Chem. C. 113 (2009) 20493–20498.
DOI: 10.1021/jp906127k
[54] X. Xu, Y. Wang, W. Zeng, Y. Gong, Luminescence and Storage Properties of Sm-Doped Alkaline-Earth Atannates, J. Electrochem. Soc. 158 (2011) J305–J309.
DOI: 10.1149/1.3617886
[55] Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, W. Liu, Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4, Appl. Phys. Lett. 98 (2011) 121906.
DOI: 10.1063/1.3567511
[56] Z.-H. Ju, S.-H. Zhang, X.-P. Gao, X.-L. Tang, W.-S. Liu, Reddish orange long afterglow phosphor Ca2SnO4:Sm3+ prepared by sol–gel method, J. Alloys Compd. 509 (2011) 8082–8087.
[57] B. Lei, H. Zhang, W. Mai, S. Yue, Y. Liu, S. Man, Luminescent properties of orange-emitting long-lasting phosphorescence phosphor Ca2SnO4:Sm3+, Solid State Sci. 13 (2011) 525–528.
[58] J. Zhang, M. Yu, Q. Qin, H. Zhou, M. Zhou, X. Xu, et al., The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material, J. Appl. Phys. 108 (2010) 123518.
DOI: 10.1063/1.3524280
[59] J. Zhang, Q. Qin, M. Yu, M. Zhou, Y. Wang, The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors, J. Lumin. 132 (2012) 23–26.
[60] Z. Jia-Chi, Q. Qing-Song, Y. Ming-Hui, Z. Hong-Liang, Z. Mei-Jiao, Photoluminescence and persistent luminescence properties of non-doped and Ti4+-doped Mg2SnO4 phosphors, Chin. Phys. B. 20 (2011) 094211.
[61] B. Lei, B. Li, X. Wang, W. Li, Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4:Mn2+ phosphor, J. Lumin. 118 (2006) 173–178.
[62] Z. Pan, Y.-Y. Lu, F. Liu, Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates, Nat. Mater. 11 (2012) 58–63.
DOI: 10.1038/nmat3173
[63] M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E.A. Kouadri-Boudjelthia, S. Alahraché, et al., Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4, Chem. Mater. 25 (2013) 1600–1606.
DOI: 10.1021/cm304101n
[64] C.-C. Kang, R.-S. Liu, J.-C. Chang, B.-J. Lee, Synthesis and Luminescent Properties of a New Yellowish-Orange Afterglow Phosphor Y2O2S:Ti,Mg, Chem. Mater. 15 (2003) 3966–3968.
DOI: 10.1021/cm0344212
[65] C. Liu, G. Che, Observation of enhanced long-lasting phosphorescence in Y2O2S:RE3+ (RE = Lu, Gd) phosphors, Phys. Status Solidi A. 203 (2006) 558–564.
[66] L. Wang, L. Zhang, Y. Huang, D. Jia, J. Lu, Effects of Gd3+ and Lu3+ co-doping on the long afterglow properties of yellowish-orange phosphor Y2O2S:Ti4+, Mg2+, J. Lumin. 129 (2009) 1032–1035.
[67] P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, Z. Wang, Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S , J. Lumin. 113 (2005) 89–93.
[68] Zhang, M.. Wang, Z. Hong, X. Fang, G. Qian, Z.Y. Wang, A New Yellow Long Lasting Phosphor Y2O2S : Ti, J Rare Earths. 22 (2004) 63–66.
[69] J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, E. Zych, Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S :Eu3+, in: Opt. Mater., Elsevier, 2009: p.1791–1793.
[70] Z. Hong, P. Zhang, X. Fan, M. Wang, Eu3+ red long afterglow in Y2O2S :Ti, Eu phosphor through afterglow energy transfer, J. Lumin. 124 (2007) 127–132.
[71] C. Li, Q. Su, S. Wang, Multi-color long-lasting phosphorescence in Mn2+-doped ZnO–B2O3–SiO2 glass–ceramics, Mater. Res. Bull. 37 (2002) 1443–1449.
[72] C. Li, Q. Su, Action of co-dopant in electron-trapping materials: The case of Sm3+ in Mn2+-activated zinc borosilicate glasses, Appl. Phys. Lett. 85 (2004) 2190–2192.
DOI: 10.1063/1.1797562
[73] C. Li, Q. Su, Effect of Samarium on Mn Activated Zinc Borosilicate Storage Glasses, J. Rare Earths. 24 (2006) 506–508.
[74] K. Van den Eeckhout, P.F. Smet, D. Poelman, Persistent Luminescence in Eu2+-Doped Compounds: A Review, Materials. 3 (2010) 2536–2566.
DOI: 10.3390/ma3042536
[75] K. Van den Eeckhout, D. Poelman, P.F. Smet, Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review, Materials. 6 (2013) 2789–2818.
DOI: 10.3390/ma6072789
[76] R Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena, World Scientific, 1997.
[77] C. Guo, Q. Tang, C. Zhang, D. Huang, Q. Su, Thermoluminescent properties of Eu2+ and RE3+ co-doped phosphors CaGa2S4:Eu2+, RE3+ (RE = Ln, excluding Pm, Eu and Lu), J. Lumin. 126 (2007) 333–338.
[78] F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, et al., Mechanism of Phosphorescence Appropriate for the Long-Lasting Phosphors Eu2+-Doped SrAl2O4 with Codopants Dy3+ and B3+, Chem. Mater. 17 (2005) 3904–3912.
DOI: 10.1021/cm050763r
[79] T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, et al., Persistent luminescence phenomena in materials doped with rare earth ions, J. Solid State Chem. 171 (2003) 114–122.
[80] T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, Thermoluminescence Study of Persistent Luminescence Materials: Eu2+- and R3+-Doped Calcium Aluminates, CaAl2O4:Eu2+,R3+, J. Phys. Chem. B. 110 (2006) 4589–4598.
[81] P. Dorenbos, Mechanism of Persistent Luminescence in Eu2++ and Dy3+ Codoped Aluminate and Silicate Compounds, J. Electrochem. Soc. 152 (2005) H107–H110.
DOI: 10.1149/1.1926652
[82] N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, K. Hirao, Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals, Appl. Phys. Lett. 75 (1999) 1715–1717.
DOI: 10.1063/1.124799
[83] F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, M.-H. Whangbo, Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration, Chem. Mater. 18 (2006) 3212–3220.
DOI: 10.1021/cm052728q
[84] J. Kuang, Y. Liu, J. Zhang, White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3, J. Solid State Chem. 179 (2006) 266–269.
[85] K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, et al., Thermoluminescence properties of SrAl2O4 : Eu sputtered films with long phosphorescence, J. Lumin. 82 (1999) 213–220.
[86] S.W.S. McKeever, Thermoluminescence of Solids, Cambridge University Press, 1988.
[87] R.K. Gartia, L.L. Singh, Evaluation of trapping parameter of quartz by deconvolution of the glow curves, Radiat. Meas. 46 (2011) 664–668.
[88] R.K. Gartia, T.T. Singh, T.B. Singh, Optically stimulated luminescence (OSL) of Lu2SiO5:Ce powder: A preliminary study, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 (2011) 30–33.
[89] M.J. Aitken, Thermoluminescence dating, Academic press, 1985.
[90] L. Lovedy Singh, R.K. Gartia, A new method of determination of trapping parameters of glow peaks relevant to dosimetry and dating from their lifetime, Radiat. Eff. Defects Solids. 166 (2011) 297–304.
[91] B. Liu, C. Shi, Z. Qi, Potential white-light long-lasting phosphor: Dy3+-doped aluminate, Appl. Phys. Lett. 86 (2005) 191111–191111–3.
DOI: 10.1063/1.1925778
[92] N.M. Son, L.T.T. Vien, L.V.K. Bao, N.N. Trac, Synthesis of SrAl2O4: Eu2+ Dy3+ phosphorescence nanosized powder by combustion method and its optical properties, J. Phys. Conf. Ser. 187 (2009) 012017.
[93] T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, et al., Effect of temperature on the luminescence processes of SrAl2O4:Eu2+, Radiat. Meas. 38 (2004) 727–730.
[94] O. Arellano-Tánori, R. Meléndrez, M. Pedroza-Montero, B. Castañeda, V. Chernov, W.M. Yen, et al., Persistent luminescence dosimetric properties of UV-irradiated SrAl2O4: Eu2+ Dy3+ phosphor, J. Lumin. 128 (2008) 173–184.
[95] C. Chang, Z. Yuan, D. Mao, Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method, J. Alloys Compd. 415 (2006) 220–224.
[96] H.F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, et al., Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials, J. Therm. Anal. Calorim. 105 (2011) 657–662.
[97] Z.-X. Yuan, C.-K. Chang, D.-L. Mao, W. Ying, Effect of composition on the luminescent properties of Sr4Al14O25: Eu2+, Dy3+ phosphors, J. Alloys Compd. 377 (2004) 268–271.
[98] N. Suriyamurthy, B.S. Panigrahi, Effects of non-stoichiometry and substitution on photoluminescence and afterglow luminescence of Sr4Al14O25: Eu2+, Dy3+ phosphor, J. Lumin. 128 (2008) 1809–1814.
[99] X. Yu, T. Wang, X. Xu, D. Zhou, J. Qiu, Yellow Photo-Stimulated Long Persistent Luminescence in Strontium Silicate Phosphor, ECS Solid State Lett. 3 (2014) R4–R6.
DOI: 10.1149/2.006402ssl
[100] W. Zeng, Y. Wang, S. Han, W. Chen, G. Li, Y. Wang, et al., Design, synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl:Eu2+,Dy3+, J. Mater. Chem. C. 1 (2013) 3004.
DOI: 10.1039/c3tc30182f
[101] L. Rey, R.K. Gartia, K. Bishal Singh, T. Basanta Singh, Thermoluminescence of ice and its implications, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267 (2009) 3633–3639.
[102] S.S. Pitale, S.K. Sharma, R.N. Dubey, M.S. Qureshi, M.M. Malik, TL and PL studies on defect-assisted green luminescence from doped strontium sulfide phosphor, J. Lumin. 128 (2008) 1587–1594.
[103] S.S. Pitale, S.K. Sharma, R.N. Dubey, M.S. Qureshi, M.M. Malik, Thermoluminescence glow curve analysis of UV irradiated long persistence CaS: Pr3+ phosphor through computerized glow curve deconvolution technique, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 266 (2008) 2027–2034.
[104] R. Kumar, Luminescence Studies of Pr3+Doped Chitosan Biocomposite Matrix through UV Radiation Induced Thermal Stimulation, Int. J. Polym. Anal. Charact. 13 (2008) 254–268.
[105] H.B. Premkumar, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, H.P. Nagaswarupa, B.M. Nagabhushana, et al., Structural, photo and thermoluminescence studies of Eu3+ doped orthorhombic YAlO3 nanophosphors, J. Alloys Compd. 601 (2014) 75–84.
[106] L.L. Noto, M.L. Chitambo, O.M. Ntwaeaborwa, H.C. Swart, Photoluminescence and thermoluminescence properties of Pr3+ doped ZnTa2O6 phosphor, Powder Technol. 247 (2013) 147–150.
[107] L.L. Noto, M.L. Chithambo, O.M. Ntwaeaborwa, H.C. Swart, The greenish-blue emission and thermoluminescent properties of CaTa2O6:Pr3+, J. Alloys Compd. 589 (2014) 88–93.