Thermoluminescence of Persistent Luminescent Materials

Article Preview

Abstract:

Persistent luminescence as well as Thermoluminescence (TL), both the phenomena are nothing but long-period afterglow having lifetime (τ) in the broad range of few minutes to few days. Therefore, it is nothing but natural that all persistent luminescent materials exhibit excellent thermoluminescence. This review critically discusses the data available in literature and provides a commentary on the trap-spectroscopy of persistent luminescent materials as a whole with special emphasis to commercial materials that have found wide applications in safety signage, road sign display as well as sensors for structural damage and in vivo medical imaging. Finally, it also provides some “thumb-rules” to eliminate few fatal misconceptions that have crept into the literature

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-191

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.F. Brito, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, L.C.V. Rodrigues, Persistent luminescence mechanisms: human imagination at work, Opt. Mater. Express. 2 (2012) 371–381.

DOI: 10.1364/ome.2.000371

Google Scholar

[2] M. Lastusaari, T. Laamanen, M. Malkamäki, K.O. Eskola, A. Kotlov, S. Carlson, et al., The Bologna Stone: history's first persistent luminescent material, Eur. J. Mineral. 24 (2012) 885–890.

DOI: 10.1127/0935-1221/2012/0024-2224

Google Scholar

[3] T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4 : Eu2+ , Dy3+, J. Electrochem. Soc. 143 (1996) 2670–2673.

DOI: 10.1149/1.1837067

Google Scholar

[4] U. Happek, A. Setlur, Persistent Phosphors Based on Alkaline-Earth Aluminate Hosts, Electrochem. Soc. Interface. 19 (2010) 53–54.

DOI: 10.1149/2.f08101if

Google Scholar

[5] H. Takasaki, S. Tanabe, T. Hanada, Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al 2 O 3 phosphor, J. Ceram. Soc. Jpn. 104 (1996) 322–326.

DOI: 10.2109/jcersj.104.322

Google Scholar

[6] T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, T. Morikawa, Effects of Composition on the Long Phosphorescent SrAl2O4 : Eu2+ , Dy3+ Phosphor Crystals, J. Electrochem. Soc. 144 (1997) L243–L245.

DOI: 10.1149/1.1837931

Google Scholar

[7] T. Katsumata, T. Nabae, K. Sasajima, T. Matsuzawa, Growth and characteristics of long persistent SrA12O4- and CaA12O4-based phosphor crystals by a floating zone technique, J. Cryst. Growth. 183 (1998) 361–365.

DOI: 10.1016/s0022-0248(97)00308-4

Google Scholar

[8] T. Katsumata, K. Sasajima, T. Nabae, S. Komuro, T. Morikawa, Characteristics of Strontium Aluminate Crystals Used for Long-Duration Phosphors, J. Am. Ceram. Soc. 81 (1998) 413–416.

DOI: 10.1111/j.1151-2916.1998.tb02349.x

Google Scholar

[9] R. Sakai, T. Katsumata, S. Komuro, T. Morikawa, Effect of composition on the phosphorescence from BaAl2O4:Eu2+,Dy3+ crystals, J. Lumin. 85 (1999) 149–154.

DOI: 10.1016/s0022-2313(99)00061-7

Google Scholar

[10] I. Tsutai, T. Kamimura, K. Kato, F. Kaneko, K. Shinbo, M. Ohta, et al., Preparation of sputtered SrAl2O4 :Eu films and their thermoluminescence properties, Electr. Eng. Jpn. 132 (2000) 7–14.

DOI: 10.1002/(sici)1520-6416(20000715)132:1<7::aid-eej2>3.0.co;2-3

Google Scholar

[11] E. Nakazawa, T. Mochida, Traps in SrAl2O4 : Eu2+ phosphor with rare-earth ion doping, J. Lumin. 72–74 (1997) 236–237..

DOI: 10.1016/s0022-2313(97)00043-4

Google Scholar

[12] H. Yamamoto, T. Matsuzawa, Mechanism of long phosphorescence of SrAl2O4 : Eu2+ , Dy3+ and CaAl2O4 : Eu2+ , Nd3+, in: J. Lumin., Elsevier, 1997: p.287–289.

DOI: 10.1016/s0022-2313(97)00012-4

Google Scholar

[13] W. Jia, H. Yuan, L. Lu, H. Liu, W.M. Yen, Phosphorescent dynamics in SrAl2O4 : Eu2+ , Dy3+ single crystal fibers, J. Lumin. 76–77 (1998) 424–428..

DOI: 10.1016/s0022-2313(97)00230-5

Google Scholar

[14] W. Jia, H. Yuan, S. Holmstrom, H. Liu, W.M. Yen, Photo-stimulated luminescence in SrAl2O4 : Eu2+ , Dy3+ single crystal fibers, J. Lumin. 83–84 (1999) 465–469.

DOI: 10.1016/s0022-2313(99)00145-3

Google Scholar

[15] D. Jia, Relocalization of Ce3+5d electrons from host conduction band, J. Lumin. 117 (2006) 170–178.

DOI: 10.1016/j.jlumin.2005.05.008

Google Scholar

[16] D. Jia, X. Wang, W. Jia, W.M. Yen, Trapping processes of 5d electrons in Ce3+ doped SrAl2O4 , J. Lumin. 122–123 (2007) 311–314.

DOI: 10.1016/j.jlumin.2006.01.154

Google Scholar

[17] X. Xu, Y. Wang, X. Yu, Y. Li, Y. Gong, Investigation of Ce–Mn Energy Transfer in SrAl2O4 : : Ce3+,Mn2+, J. Am. Ceram. Soc. 94 (2011) 160–163.

DOI: 10.1111/j.1551-2916.2010.04061.x

Google Scholar

[18] Y. Lin, Z. Tang, Z. Zhang, Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties, Mater. Lett. 51 (2001) 14–18.

DOI: 10.1016/s0167-577x(01)00257-9

Google Scholar

[19] Y. Lin, Z. Tang, Z. Zhang, C.W. Nan, Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors, Appl. Phys. Lett. 81 (2002) 996–998.

DOI: 10.1063/1.1490631

Google Scholar

[20] E. Nakazawa, Y. Murazaki, S. Saito, Mechanism of the persistent phosphorescence in Sr4Al14O25:Eu and SrAl2O4:Eu codoped with rare earth ions, J. Appl. Phys. 100 (2006) 113113.

DOI: 10.1063/1.2397284

Google Scholar

[21] D. Jia, X. Wang, E. van der Kolk, W.M. Yen, Site dependent thermoluminescence of long persistent phosphorescence of BaAl2O4:Ce3+, Opt. Commun. 204 (2002) 247–251.

DOI: 10.1016/s0030-4018(02)01300-7

Google Scholar

[22] J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+, J. Alloys Compd. 323–324 (2001) 326–330.

DOI: 10.1016/s0925-8388(01)01084-2

Google Scholar

[23] Y. Lin, Z. Tang, Z. Zhang, C. Nan, Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors, J. Eur. Ceram. Soc. 23 (2003) 175–178.

DOI: 10.1016/s0955-2219(02)00080-8

Google Scholar

[24] D. Jia, R.S. Meltzer, W.M. Yen, W. Jia, X. Wang, Green phosphorescence of CaAl2O4:Tb3+,Ce3+ through persistence energy transfer, Appl. Phys. Lett. 80 (2002) 1535–1537.

DOI: 10.1063/1.1456955

Google Scholar

[25] D. Jia, X.J. Wang, W. Jia, W.M. Yen, Persistent energy transfer in CaAl2O4:Tb3+, Ce3+, J. Appl. Phys. 93 (2003) 148–152.

DOI: 10.1063/1.1525860

Google Scholar

[26] D. Jia, W.M. Yen, Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+ , A Persistent Phosphor, J. Electrochem. Soc. 150 (2003) H61–H65.

DOI: 10.1149/1.1553792

Google Scholar

[27] X.-J. Wang, D. Jia, W.M. Yen, Mn2+ activated green, yellow, and red long persistent phosphors, J. Lumin. 102–103 (2003) 34–37.

DOI: 10.1016/s0022-2313(02)00541-0

Google Scholar

[28] Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, et al., Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors, Mater. Chem. Phys. 82 (2003) 860–863.

DOI: 10.1016/j.matchemphys.2003.07.015

Google Scholar

[29] B. Liu, C. Shi, M. Yin, L. Dong, Z. Xiao, The trap states in the Sr2MgSi2O7 and (Sr, Ca) MgSi2O7 long afterglow phosphor activated by Eu2+ and Dy3+, J. Alloys Compd. 387 (2005) 65–69.

DOI: 10.1016/j.jallcom.2004.06.061

Google Scholar

[30] Y. Lin, Z. Tang, Z. Zhang, X. Wang, J. Zhang, Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor, J. Mater. Sci. Lett. 20 (2001) 1505–1506.

Google Scholar

[31] T. Aitasalo, J. Hölsä, M. Kirm, T. Laamanen, M. Lastusaari, J. Niittykoski, et al., Persistent luminescence and synchrotron radiation study of the : materials, Radiat. Meas. 42 (2007) 644–647.

DOI: 10.1016/j.radmeas.2007.01.058

Google Scholar

[32] G. Blasse, W.L. Wanmaker, J.W. Tervrugt, A. Bril, Fluorescence of Eu2+ activated silicates, Philips Res Rep. 23 (1968) 189–200.

Google Scholar

[33] L. Jiang, C. Chang, D. Mao, Luminescent properties of CaMgSi2O6 and Ca2MgSi2O7 phosphors activated by Eu2+, Dy3+ and Nd3+, J. Alloys Compd. 360 (2003) 193–197.

DOI: 10.1016/s0925-8388(03)00361-x

Google Scholar

[34] T. Aitasalo, J. Holsa, T. Laamanen, M. Lastusaari, L. Lehto, J. Niittykoski, et al., Luminescence properties of Eu 2+ doped dibarium magnesium disilicate, Ba2MgSi2O7: Eu2+, Ceram.- Silik. 49 (2005) 58–62.

DOI: 10.1016/j.jlumin.2006.01.112

Google Scholar

[35] T. Aitasalo, D. Hreniak, J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, et al., Persistent luminescence of Ba2MgSi2O7: Eu2+, J. Lumin. 122–123 (2007) 110–112.

DOI: 10.1016/j.jlumin.2006.01.112

Google Scholar

[36] Y. Lin, Z. Tang, Z. Zhang, C.W. Nan, Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8: -based (R=Ca, Sr, Ba) phosphors, J. Alloys Compd. 348 (2003) 76–79.

DOI: 10.1016/s0925-8388(02)00796-x

Google Scholar

[37] A.A. Sabbagh Alvani, F. Moztarzadeh, A.A. Sarabi, Effects of dopant concentrations on phosphorescence properties of Eu/Dy-doped Sr3MgSi2O8, J. Lumin. 114 (2005) 131–136.

DOI: 10.1016/j.jlumin.2004.12.012

Google Scholar

[38] Y. Lin, Z. Zhang, Z. Tang, X. Wang, J. Zhang, Z. Zheng, Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phosphor, J. Eur. Ceram. Soc. 21 (2001) 683–685.

DOI: 10.1016/s0955-2219(00)00252-1

Google Scholar

[39] J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, D. Yuan, Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+,Ho3+, Solid State Commun. 136 (2005) 6–10.

DOI: 10.1016/j.ssc.2005.06.030

Google Scholar

[40] J.Y. Kuang, Y.L. Liu, J.X. Zhang, Effects of RE3+ as a co-dopant in blue-emitting long-lasting phosphors, Sr3Al10SiO20:Eu2+, J. Mater. Sci. 41 (2006) 5500–5503.

DOI: 10.1007/s10853-006-0244-z

Google Scholar

[41] K. Jin-Yong, L. Ying-Liang, Trapping Effects in CdSiO3:In3+ Long Afterglow Phosphor, Chin. Phys. Lett. 23 (2006) 204.

DOI: 10.1088/0256-307x/23/1/059

Google Scholar

[42] Y. Liu, J. Kuang, B. Lei, C. Shi, Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors, J. Mater. Chem. 15 (2005) 4025–4031.

DOI: 10.1039/b507774e

Google Scholar

[43] L.E.I. Bing Fu, L.I.U. Ying Liang, Y.E. Ze Ren, S.H.I. Chun Shan, A novel white light emitting long-lasting phosphor, Chin. Chem. Lett. 15 (2004) 335-338.

Google Scholar

[44] Y. Liu, B. Lei, C. Shi, Luminescent Properties of a White Afterglow Phosphor CdSiO3:Dy3+ 3+, Chem. Mater. 17 (2005) 2108–2113.

DOI: 10.1021/cm0496422

Google Scholar

[45] B. Lei, Y. Liu, Z. Ye, C. Shi, Luminescence properties of CdSiO3:Mn2+ phosphor, J. Lumin. 109 (2004) 215–219.

DOI: 10.1016/s0022-2313(04)00147-4

Google Scholar

[46] X. Qu, L. Cao, W. Liu, G. Su, C. Xu, P. Wang, Preparation and properties of CdSiO3:Mn2+, Dy3+ phosphor, J. Alloys Compd. 494 (2010) 196–198.

DOI: 10.1016/j.jallcom.2009.10.158

Google Scholar

[47] X. Qu, L. Cao, W. Liu, G. Su, Sol–gel synthesis and luminescence properties of CdSiO3: Mn2+, Eu3+ phosphor, J. Alloys Compd. 533 (2012) 83–87.

DOI: 10.1016/j.jallcom.2012.01.110

Google Scholar

[48] J. Kuang, Y. Liu, Observation of energy transfer from host to rare earth ions in Pr3+-doped CdSiO3 long-lasting phosphor, Chem. Phys. Lett. 424 (2006) 58–62.

DOI: 10.1016/j.cplett.2006.04.033

Google Scholar

[49] B. Lei, Y. Liu, J. Liu, Z. Ye, C. Shi, Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3, J. Solid State Chem. 177 (2004) 1333–1337.

DOI: 10.1016/j.jssc.2003.11.006

Google Scholar

[50] S. Chen, Y. Yang, G. Zhou, Y. Wu, P. Liu, F. Zhang, et al., Characterization of afterglow-related spectroscopic effects in vacuum sintered Tb3+, Sr2+ co-doped Lu2O3 ceramics, Opt. Mater. 35 (2012) 240–243.

DOI: 10.1016/j.optmat.2012.08.001

Google Scholar

[51] J. Trojan-Piegza, J. Niittykoski, J. Hölsä, E. Zych, Thermoluminescence and Kinetics of Persistent Luminescence of Vacuum-Sintered Tb3+-Doped and Tb3+,Ca2+-Codoped Lu2O3 Materials, Chem. Mater. 20 (2008) 2252–2261.

DOI: 10.1021/cm703060c

Google Scholar

[52] E. Zych, J. Trojan-Piegza, D. Hreniak, W. Strek, Properties of Tb-doped vacuum-sintered Lu2O3 storage phosphor, J. Appl. Phys. 94 (2003) 1318–1324.

DOI: 10.1063/1.1587891

Google Scholar

[53] J. Trojan-Piegza, E. Zych, J. Hölsä, J. Niittykoski, Spectroscopic Properties of Persistent Luminescence Phosphors: Lu2O3:Tb3+,M2+ (M = Ca, Sr, Ba), J. Phys. Chem. C. 113 (2009) 20493–20498.

DOI: 10.1021/jp906127k

Google Scholar

[54] X. Xu, Y. Wang, W. Zeng, Y. Gong, Luminescence and Storage Properties of Sm-Doped Alkaline-Earth Atannates, J. Electrochem. Soc. 158 (2011) J305–J309.

DOI: 10.1149/1.3617886

Google Scholar

[55] Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, W. Liu, Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4, Appl. Phys. Lett. 98 (2011) 121906.

DOI: 10.1063/1.3567511

Google Scholar

[56] Z.-H. Ju, S.-H. Zhang, X.-P. Gao, X.-L. Tang, W.-S. Liu, Reddish orange long afterglow phosphor Ca2SnO4:Sm3+ prepared by sol–gel method, J. Alloys Compd. 509 (2011) 8082–8087.

DOI: 10.1016/j.jallcom.2011.05.050

Google Scholar

[57] B. Lei, H. Zhang, W. Mai, S. Yue, Y. Liu, S. Man, Luminescent properties of orange-emitting long-lasting phosphorescence phosphor Ca2SnO4:Sm3+, Solid State Sci. 13 (2011) 525–528.

DOI: 10.1016/j.solidstatesciences.2010.12.019

Google Scholar

[58] J. Zhang, M. Yu, Q. Qin, H. Zhou, M. Zhou, X. Xu, et al., The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material, J. Appl. Phys. 108 (2010) 123518.

DOI: 10.1063/1.3524280

Google Scholar

[59] J. Zhang, Q. Qin, M. Yu, M. Zhou, Y. Wang, The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors, J. Lumin. 132 (2012) 23–26.

DOI: 10.1016/j.jlumin.2011.07.022

Google Scholar

[60] Z. Jia-Chi, Q. Qing-Song, Y. Ming-Hui, Z. Hong-Liang, Z. Mei-Jiao, Photoluminescence and persistent luminescence properties of non-doped and Ti4+-doped Mg2SnO4 phosphors, Chin. Phys. B. 20 (2011) 094211.

Google Scholar

[61] B. Lei, B. Li, X. Wang, W. Li, Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4:Mn2+ phosphor, J. Lumin. 118 (2006) 173–178.

DOI: 10.1016/j.jlumin.2005.08.010

Google Scholar

[62] Z. Pan, Y.-Y. Lu, F. Liu, Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates, Nat. Mater. 11 (2012) 58–63.

DOI: 10.1038/nmat3173

Google Scholar

[63] M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E.A. Kouadri-Boudjelthia, S. Alahraché, et al., Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4, Chem. Mater. 25 (2013) 1600–1606.

DOI: 10.1021/cm304101n

Google Scholar

[64] C.-C. Kang, R.-S. Liu, J.-C. Chang, B.-J. Lee, Synthesis and Luminescent Properties of a New Yellowish-Orange Afterglow Phosphor Y2O2S:Ti,Mg, Chem. Mater. 15 (2003) 3966–3968.

DOI: 10.1021/cm0344212

Google Scholar

[65] C. Liu, G. Che, Observation of enhanced long-lasting phosphorescence in Y2O2S:RE3+ (RE = Lu, Gd) phosphors, Phys. Status Solidi A. 203 (2006) 558–564.

DOI: 10.1002/pssa.200521220

Google Scholar

[66] L. Wang, L. Zhang, Y. Huang, D. Jia, J. Lu, Effects of Gd3+ and Lu3+ co-doping on the long afterglow properties of yellowish-orange phosphor Y2O2S:Ti4+, Mg2+, J. Lumin. 129 (2009) 1032–1035.

DOI: 10.1016/j.jlumin.2009.04.016

Google Scholar

[67] P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, Z. Wang, Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S , J. Lumin. 113 (2005) 89–93.

DOI: 10.1016/j.jlumin.2004.08.056

Google Scholar

[68] Zhang, M.. Wang, Z. Hong, X. Fang, G. Qian, Z.Y. Wang, A New Yellow Long Lasting Phosphor Y2O2S : Ti, J Rare Earths. 22 (2004) 63–66.

Google Scholar

[69] J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, E. Zych, Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S :Eu3+, in: Opt. Mater., Elsevier, 2009: p.1791–1793.

DOI: 10.1016/j.optmat.2009.01.018

Google Scholar

[70] Z. Hong, P. Zhang, X. Fan, M. Wang, Eu3+ red long afterglow in Y2O2S :Ti, Eu phosphor through afterglow energy transfer, J. Lumin. 124 (2007) 127–132.

DOI: 10.1016/j.jlumin.2006.02.008

Google Scholar

[71] C. Li, Q. Su, S. Wang, Multi-color long-lasting phosphorescence in Mn2+-doped ZnO–B2O3–SiO2 glass–ceramics, Mater. Res. Bull. 37 (2002) 1443–1449.

DOI: 10.1016/s0025-5408(02)00787-0

Google Scholar

[72] C. Li, Q. Su, Action of co-dopant in electron-trapping materials: The case of Sm3+ in Mn2+-activated zinc borosilicate glasses, Appl. Phys. Lett. 85 (2004) 2190–2192.

DOI: 10.1063/1.1797562

Google Scholar

[73] C. Li, Q. Su, Effect of Samarium on Mn Activated Zinc Borosilicate Storage Glasses, J. Rare Earths. 24 (2006) 506–508.

DOI: 10.1016/s1002-0721(06)60152-x

Google Scholar

[74] K. Van den Eeckhout, P.F. Smet, D. Poelman, Persistent Luminescence in Eu2+-Doped Compounds: A Review, Materials. 3 (2010) 2536–2566.

DOI: 10.3390/ma3042536

Google Scholar

[75] K. Van den Eeckhout, D. Poelman, P.F. Smet, Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review, Materials. 6 (2013) 2789–2818.

DOI: 10.3390/ma6072789

Google Scholar

[76] R Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena, World Scientific, 1997.

Google Scholar

[77] C. Guo, Q. Tang, C. Zhang, D. Huang, Q. Su, Thermoluminescent properties of Eu2+ and RE3+ co-doped phosphors CaGa2S4:Eu2+, RE3+ (RE = Ln, excluding Pm, Eu and Lu), J. Lumin. 126 (2007) 333–338.

DOI: 10.1016/j.jlumin.2006.08.063

Google Scholar

[78] F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, et al., Mechanism of Phosphorescence Appropriate for the Long-Lasting Phosphors Eu2+-Doped SrAl2O4 with Codopants Dy3+ and B3+, Chem. Mater. 17 (2005) 3904–3912.

DOI: 10.1021/cm050763r

Google Scholar

[79] T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, et al., Persistent luminescence phenomena in materials doped with rare earth ions, J. Solid State Chem. 171 (2003) 114–122.

DOI: 10.1016/s0022-4596(02)00194-9

Google Scholar

[80] T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, Thermoluminescence Study of Persistent Luminescence Materials:  Eu2+- and R3+-Doped Calcium Aluminates, CaAl2O4:Eu2+,R3+, J. Phys. Chem. B. 110 (2006) 4589–4598.

DOI: 10.1016/s0022-2313(01)00279-4

Google Scholar

[81] P. Dorenbos, Mechanism of Persistent Luminescence in Eu2++ and Dy3+ Codoped Aluminate and Silicate Compounds, J. Electrochem. Soc. 152 (2005) H107–H110.

DOI: 10.1149/1.1926652

Google Scholar

[82] N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, K. Hirao, Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals, Appl. Phys. Lett. 75 (1999) 1715–1717.

DOI: 10.1063/1.124799

Google Scholar

[83] F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, M.-H. Whangbo, Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration, Chem. Mater. 18 (2006) 3212–3220.

DOI: 10.1021/cm052728q

Google Scholar

[84] J. Kuang, Y. Liu, J. Zhang, White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3, J. Solid State Chem. 179 (2006) 266–269.

DOI: 10.1016/j.jssc.2005.10.025

Google Scholar

[85] K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, et al., Thermoluminescence properties of SrAl2O4 : Eu sputtered films with long phosphorescence, J. Lumin. 82 (1999) 213–220.

DOI: 10.1016/s0022-2313(99)00036-8

Google Scholar

[86] S.W.S. McKeever, Thermoluminescence of Solids, Cambridge University Press, 1988.

Google Scholar

[87] R.K. Gartia, L.L. Singh, Evaluation of trapping parameter of quartz by deconvolution of the glow curves, Radiat. Meas. 46 (2011) 664–668.

DOI: 10.1016/j.radmeas.2011.06.036

Google Scholar

[88] R.K. Gartia, T.T. Singh, T.B. Singh, Optically stimulated luminescence (OSL) of Lu2SiO5:Ce powder: A preliminary study, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 (2011) 30–33.

DOI: 10.1016/j.nimb.2010.10.008

Google Scholar

[89] M.J. Aitken, Thermoluminescence dating, Academic press, 1985.

Google Scholar

[90] L. Lovedy Singh, R.K. Gartia, A new method of determination of trapping parameters of glow peaks relevant to dosimetry and dating from their lifetime, Radiat. Eff. Defects Solids. 166 (2011) 297–304.

DOI: 10.1080/10420150.2010.550007

Google Scholar

[91] B. Liu, C. Shi, Z. Qi, Potential white-light long-lasting phosphor: Dy3+-doped aluminate, Appl. Phys. Lett. 86 (2005) 191111–191111–3.

DOI: 10.1063/1.1925778

Google Scholar

[92] N.M. Son, L.T.T. Vien, L.V.K. Bao, N.N. Trac, Synthesis of SrAl2O4: Eu2+ Dy3+ phosphorescence nanosized powder by combustion method and its optical properties, J. Phys. Conf. Ser. 187 (2009) 012017.

DOI: 10.1088/1742-6596/187/1/012017

Google Scholar

[93] T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, et al., Effect of temperature on the luminescence processes of SrAl2O4:Eu2+, Radiat. Meas. 38 (2004) 727–730.

DOI: 10.1016/j.radmeas.2004.01.031

Google Scholar

[94] O. Arellano-Tánori, R. Meléndrez, M. Pedroza-Montero, B. Castañeda, V. Chernov, W.M. Yen, et al., Persistent luminescence dosimetric properties of UV-irradiated SrAl2O4: Eu2+ Dy3+ phosphor, J. Lumin. 128 (2008) 173–184.

DOI: 10.1016/j.jlumin.2007.07.006

Google Scholar

[95] C. Chang, Z. Yuan, D. Mao, Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method, J. Alloys Compd. 415 (2006) 220–224.

DOI: 10.1016/j.jallcom.2005.04.219

Google Scholar

[96] H.F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, et al., Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials, J. Therm. Anal. Calorim. 105 (2011) 657–662.

DOI: 10.1007/s10973-011-1403-2

Google Scholar

[97] Z.-X. Yuan, C.-K. Chang, D.-L. Mao, W. Ying, Effect of composition on the luminescent properties of Sr4Al14O25: Eu2+, Dy3+ phosphors, J. Alloys Compd. 377 (2004) 268–271.

DOI: 10.1016/j.jallcom.2004.01.063

Google Scholar

[98] N. Suriyamurthy, B.S. Panigrahi, Effects of non-stoichiometry and substitution on photoluminescence and afterglow luminescence of Sr4Al14O25: Eu2+, Dy3+ phosphor, J. Lumin. 128 (2008) 1809–1814.

DOI: 10.1016/j.jlumin.2008.05.001

Google Scholar

[99] X. Yu, T. Wang, X. Xu, D. Zhou, J. Qiu, Yellow Photo-Stimulated Long Persistent Luminescence in Strontium Silicate Phosphor, ECS Solid State Lett. 3 (2014) R4–R6.

DOI: 10.1149/2.006402ssl

Google Scholar

[100] W. Zeng, Y. Wang, S. Han, W. Chen, G. Li, Y. Wang, et al., Design, synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl:Eu2+,Dy3+, J. Mater. Chem. C. 1 (2013) 3004.

DOI: 10.1039/c3tc30182f

Google Scholar

[101] L. Rey, R.K. Gartia, K. Bishal Singh, T. Basanta Singh, Thermoluminescence of ice and its implications, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267 (2009) 3633–3639.

DOI: 10.1016/j.nimb.2009.09.024

Google Scholar

[102] S.S. Pitale, S.K. Sharma, R.N. Dubey, M.S. Qureshi, M.M. Malik, TL and PL studies on defect-assisted green luminescence from doped strontium sulfide phosphor, J. Lumin. 128 (2008) 1587–1594.

DOI: 10.1016/j.jlumin.2008.03.002

Google Scholar

[103] S.S. Pitale, S.K. Sharma, R.N. Dubey, M.S. Qureshi, M.M. Malik, Thermoluminescence glow curve analysis of UV irradiated long persistence CaS: Pr3+ phosphor through computerized glow curve deconvolution technique, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 266 (2008) 2027–2034.

DOI: 10.1016/j.nimb.2008.03.072

Google Scholar

[104] R. Kumar, Luminescence Studies of Pr3+Doped Chitosan Biocomposite Matrix through UV Radiation Induced Thermal Stimulation, Int. J. Polym. Anal. Charact. 13 (2008) 254–268.

DOI: 10.1080/10236660802141008

Google Scholar

[105] H.B. Premkumar, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, H.P. Nagaswarupa, B.M. Nagabhushana, et al., Structural, photo and thermoluminescence studies of Eu3+ doped orthorhombic YAlO3 nanophosphors, J. Alloys Compd. 601 (2014) 75–84.

DOI: 10.1016/j.jallcom.2014.02.066

Google Scholar

[106] L.L. Noto, M.L. Chitambo, O.M. Ntwaeaborwa, H.C. Swart, Photoluminescence and thermoluminescence properties of Pr3+ doped ZnTa2O6 phosphor, Powder Technol. 247 (2013) 147–150.

DOI: 10.1016/j.powtec.2013.07.012

Google Scholar

[107] L.L. Noto, M.L. Chithambo, O.M. Ntwaeaborwa, H.C. Swart, The greenish-blue emission and thermoluminescent properties of CaTa2O6:Pr3+, J. Alloys Compd. 589 (2014) 88–93.

DOI: 10.1016/j.jallcom.2013.11.185

Google Scholar