Electroluminescence in Chalcogenide Nanocrystals and Nanocomposites

Article Preview

Abstract:

Several research groups have reported that nanocrystalline II-VI semiconductors show enhanced luminescence, increased oscillator strength and shorter response time. Nanocrystalline powder samples of CdS, CdSe, ZnS and ZnSe nanocrystals and their composites with PVA and PVK have been prepared by chemical route. SEM. TEM and AFM images indicate agglomeration of particles. XRD reveal the crystal structure and size in nanometer range and absorption spectra show increased band gap due to quantum confinement.The EL studies on nanocrystalline powder samples and nanocrystal/polymer composites have shown that the light emission starts at certain threshold voltage, different for different specimens and then increases with increasing voltage. It is found that smaller nanocrystals have lower threshold voltage and higher EL brightness. It is observed that nanocomposite give much higher electroluminescence starting at lower voltage and increasing very fast with the voltage as compared to nanocrystalline powder. The emission spectra are found to depend on the material, crystalline size and doping. Electroluminescence in undoped and doped chalcogenide nanocrystals and nanocomposites is reviewed in this paper. In nanosize regime, electroluminescence (EL) is governed by the size quantization effect. Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-169

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Burda, X. Chen, R. Narayan, M.A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev. 105 (2005) 1025-1102.

DOI: 10.1021/cr030063a

Google Scholar

[2] C.N.R. Rao, G.U. Kulkarni, J.P. Thomas, P.P. Edwards, Size-dependent chemistry: properties of nanocrystals, Chem. Eur. J. 8 (2002), 28-35.

Google Scholar

[3] J. Hambrock, A. Birkner, R.A. Fischer, The Synthesis of CdSe Nanoparticles using various Organometallic Cadmium Precursors, J. Mater. Chem. 11 (2001) 3197-3201.

DOI: 10.1039/b104231a

Google Scholar

[4] A.V. Firth, S.W. Haggata, P.K. Khanna, S.J. Willioms, J.W. Allen, S.W. Magennis, I.D.W. Samud, D.J. Cole-Hamilton, Production and luminescent properties of CdSe and CdS nanoparticlepolymer composites, J. Lumin. 109 (2004) 163-172.

DOI: 10.1016/s0022-2313(04)00140-1

Google Scholar

[5] Sun Hai Zhu, Yang Bai, In situ preparation of Nanoparticles/polymer composites Sci. China. Ser. E. Tech. Sci. 51 (2008) 1886.

Google Scholar

[6] Suparna Sadhu, Amitara Patra, Synthesis and spectroscopic study of high quality alloy Cdx Zn1–xS nanocrystals, J. Chem. Sci. Soc. 120 (2008), 557-564.

DOI: 10.1007/s12039-008-0085-1

Google Scholar

[7] Pooja Chauksey, B.P. Chandra, M. Ramrahiani, Electroluminescence of CdS Nanoparticles-polyvinyl carbazole composites, Indian J. Eng. And Sci. 16 (2009) 157.

Google Scholar

[8] V. Smyntyna, B. Semenenko, V. Skobeeva, N. Malushin, Photo-activation of luminescence in CdS nanocrystals, Beilstein J. Nanotechnol. 5 (2014) 355–359.

DOI: 10.3762/bjnano.5.40

Google Scholar

[9] A.I. Ekimov, F. Hache, M.C Schanneklein, D. Ricard, C.Flytzanis, I.A. Kudryavtsev, T.V. Yazeva, A,V, Rodina, A. L. Efros, Absorption and Intensity-Dependent Photoluminescence Measurements on CdSe Quantum Dots-Assignment of the 1st Electronic-Transitions, J. Opt. Soc. Am. B 10 (1993) 100-107.

DOI: 10.1364/josab.10.000100

Google Scholar

[10] A.R. Kortan, R. Hull, R.L. Opilla, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, L.E. Brus, Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media, J. Am. Chem. Soc. 112 (1990) 1327.

DOI: 10.1021/ja00160a005

Google Scholar

[11] V. Colvin, A. Schlamp, A.P. Alvistors, Light emmiting diode made from cadmium selenide nanocrystals and a semiconducting polymer, Nature 370 (1994) 6488.

DOI: 10.1038/370354a0

Google Scholar

[12] A. Gao, B. Richter, S. Kirstein, Photo-and Electroluminescence in self-assembled films of CdSe nanoparticles and poly (phenylene vinylene), Synth. Met. 102 (1999) 1213.

DOI: 10.1016/s0379-6779(98)01264-8

Google Scholar

[13] Michael A. Schreuder, Kai Xiao, Ilia N. Invanor, Sharon M. Weiss, Sandra J. Rosenthal, White Light Emitting Diodes Based on Ultra small CdSe Nanocrystal Electroluminescence, Nano Lett. 10 (2010) 573-576.

DOI: 10.1021/nl903515g

Google Scholar

[14] Y. Wang and N. Herron, Photoconductivity of CdS nanoclusters-doped polymers, Chem. Phys. Lett. 200, (1992), 71-75.

Google Scholar

[15] D.J. Norris, N. Yao, F.T. Charnock, T.A. Kennedy, High-quality magnese-doped ZnSe nanocrystals, Nano. Lett. 1 (2001) 3-7.

DOI: 10.1021/nl005503h

Google Scholar

[16] N. Pardhan, D. Goorskey, J. Thessing, X.G. Peng, Synthesis and characterization of pure and alkali, J. Am. Chem. Soc. 127, (2005), 7586-7589.

Google Scholar

[17] N. Pardhan, X.G. Peng, Efficient and color-tunable Mn doped ZnSe nanocrystals emitters: Contrl of optical performance via. Greener Synthetic Chemistry, J. Am. Chem. Soc. 129 (2007), 3339-3347.

DOI: 10.1021/ja068360v

Google Scholar

[18] D.J. Norris, A.L. Efros, S.C. Erwin, Doped nanocrystals, Science 319, (2008), 1776-1779.

DOI: 10.1126/science.1143802

Google Scholar

[19] R.G. Xie, X.G. Peng, Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barriers as efficient and color-tunable, NIR emitters, J. Am. Chem. Soc. 131 (2009), 10645-10651.

DOI: 10.1021/ja903558r

Google Scholar

[20] T. Toyama, T. Hama, D. Adachi, An electroluminescence devices for printable electronics using co-precipitated ZnS:Mn nanocrystals ink, Nanotechnology, 20, (2009), 55203.

DOI: 10.1088/0957-4484/20/5/055203

Google Scholar

[21] S.H. Shin, J.H. Kang, D.Y. Jeon, D.S. Zang, Effect of nanoscale of SnO2 coating on ZnS:Mn phosphors under electron irradiation, J. Solid State Chem., 178, (2005), 2205-2210.

DOI: 10.1016/j.jssc.2005.04.032

Google Scholar

[22] Y. He, H.F. Wang, X.P. Yan, Self-assembly of octa (3-aminopropyl)-octasileq axane octahydrchloride on Mn doped ZnS quantum dots for optosensing DNA, Chem. Eur. J. 15, (2009), 5436-5440.

DOI: 10.1002/chem.200900432

Google Scholar

[23] B.H. Dong, L.X. Cao, G. Su, W. Liu, H. Qu, D.X. Jiang, Synthesis and characterization of the water-soluble silica coated ZnS:Mn nanoparticles as fluorescent sensor for C++ ions, J. Colloid Interface Sia 339, (2009), 78-82.

DOI: 10.1016/j.jcis.2009.07.039

Google Scholar

[24] A. N. Gorgobiani and P. A. Pipinis, Tunnel phenomena in Fluorescence of Semiconductors Mir, Moscow, 1994.

Google Scholar

[25] Kamal Kumar Kushwah, Nitendra Gautam, P.Singh and Meera Ramrakhiani, Synthesis and photoluminescence of CdSe/PVA nanocomposite, Journal of physics, IOP science, 365 (2012) 012014.

Google Scholar

[26] F. T. Quinlan, J. Kuther, W. Tremel, W. Knoll, S. Risbud, P. Stroeve, Reverse Micelle Synthesis and Characterization of ZnSe Nanoparticles, Langmuir,2000, 16, 4049.

DOI: 10.1021/la9909291

Google Scholar

[27] K.K. Kushwah, N. Gautam, P. Singh, G. Singh and Meera Ramrakhiani, Photoluminescence of ZnSe PVA nanocomposite films, Int. J. Luminencsence and its Applications, 4(II) (2014) 110-111.

Google Scholar

[28] Q. Peng, Y. J. Dong, Y. D. Li, ZnSe Semiconductor Hollow Microspheres, Angew. Chem. Int. Ed. (2003) 42 3027-3030.

DOI: 10.1002/anie.200250695

Google Scholar

[29] Meera Ramrakhiani and Vikas Nogriya, Photo and Electroluminescence of Cadmium Selenide nanocrystals and nanocomposites, Journal of Luminescence 133 (2013) 129–134.

DOI: 10.1016/j.jlumin.2011.09.046

Google Scholar

[30] Meera Ramrakhiani, Luminescence of Cadmium Sulphide nanoparticles and naocomposites, International Journal of Luminescence and Applications 3, No. 1, (2013), 004,15–22.

Google Scholar

[31] R.J. Bandarnayke, G.W. Wen, J.Y. Lin, H.X. Jiang, C.M. Sorensen, Structural phase behavior in II–VI semiconductor nanoparticles, Appl. Phys. Lett. 67(6), (1995), 831.

DOI: 10.1063/1.115458

Google Scholar

[32] H. Sharma, S.N. Sharma, G. Singh, S.M. Shivprasad, Effect of precursor ratios of Cd:Se in CdSe nanoparticles on optical edge shifts and photoluminescence properties, Physica E 31, (2006) 180.

DOI: 10.1016/j.physe.2005.12.154

Google Scholar

[33] K.E. Andersen, C.Y. Fong, W.E. Pickett, Quantum confinement in CdSe Nanocrystallites, J. of Noncrystalline solids 299 (2002) 1105-1110.

DOI: 10.1016/s0022-3093(01)01132-2

Google Scholar

[34] M.G. Bawendi, M.L. Steigerwald, L.E. Brus, The quantum mechanics for larger semiconductor cluster, Annu. Rev. Phys. Chem. 41 (1990) 477.

DOI: 10.1146/annurev.pc.41.100190.002401

Google Scholar

[35] Preeti Gupta, M. Ramrakhiani, Influence of particle size on the optical properties of CdSe nanoparticles, Open Nano. Sci. J. 3 (2009), 15.

Google Scholar

[36] Meera Ramrakhiania and Sakshi Sahare, Photo-and Electro-Luminescence in Copper Doped Zinc Sulphide Nanoparticles and Nanocomposites, Solid State Phenomena 201 (2013) 181-196.

DOI: 10.4028/www.scientific.net/ssp.201.181

Google Scholar

[37] B.O. Dabbousi, M.G. Bawendi, O. Onotsuka, M.F. Rubner, Electroluminescence of CdSe quantum dot/polymer composite, Appl. Phys. Lett. 66 (1995) 1316.

DOI: 10.1063/1.113227

Google Scholar

[38] J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu, J. Shen, Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric network, Appl. Phys. Lett. 67, (1997), 2335-2481.

Google Scholar

[39] B Bhattacharjee, D Ganguli, K Iakoubovskii, A Stesmans and S Chaudhuri Synthesis and characterization of sol–gel derived ZnS : Mn2+ nanocrystallites embedded in a silica matrix, Bull. Mater. Sci., 25, 3 (2002) 175–180.

DOI: 10.1007/bf02711150

Google Scholar

[40] C. R. Kagan, C.B. Murray, M. Nirmal, M.G. Bawendi, Electronic energy transfer in CdSe quantum dot, Solids Phys. Rev. Lett. 76 (1996) 1517-20.

DOI: 10.1103/physrevlett.76.1517

Google Scholar

[41] Xiao-Dong Ma, Xue-Feng Qian, Jie Yin and Zi-Kang Zhu,Preparation and characterization of polyvinyl alcohol–selenide nanocomposites at room temperature, J. Mater. Chem. 12 (2002) 663-666.

DOI: 10.1039/b107173b

Google Scholar