Photoluminescence Studies in II-VI Nanoparticles Embedded in Polymer Matrix

Article Preview

Abstract:

Recently, organic-inorganic hybrid nanocomposite materials have been of great interest for their extraordinary performances due to the combination of the advantageous properties of polymers and the size dependent properties of nanocrystals (NCs). Interaction between the polymer matrix and nanocrystalline fillers produces wonderful features, viz. thermal, magnetic, mechanical, electrical and optical properties to these materials. Modern applications require a new design of responsive functional coatings which is capable of changing their properties in a controlled way. However, the synthesis of II-VI nanoparticles into the polymer matrix of its nanocomposites with adjustable sizes and protected from photo-oxidation is a big challenge to the scientific community. It is difficult to synthesize the highly enhanced luminescence in polymers and its semiconductor nanocomposite systems. Luminescence from the polymer embedded II-VI nanoparticles is greatly enhanced and better stability can be achieved from the composite compared to bulk materials. The formation of nanocomposites can be confirmed by photoluminescence (PL) spectroscopy. It is an important technique for determining the optical gap, purity, crystalline quality defects and analysis of the quantum confinement in these nanocomposite materials. In this paper, we have reviewed the present status of II-VI polymer nanocomposites from the photoluminescence studies point of view. We have also shown the results of the PL of these nanocomposite materials and the results will be compared with the reported literature by other groups.Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-126

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.G. Hahm, Y.G. Ko, W. Kwon, M. Ree, Programmable digital polymer memories, Curr. Opin. Chem. Eng. 2 (2013) 79-87.

Google Scholar

[2] X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (2013) 3931-3946.

DOI: 10.1016/j.watres.2012.09.058

Google Scholar

[3] L. Mei, Z. Zhang, L. Zhao, L. Huang, X.L. Yang, J. Tang, S.S. Feng, Pharmaceutical nanotechnology for oral delivery of anticancer drugs, Adv. Drug Delivery Rev. 65 (2013) 880-890.

DOI: 10.1016/j.addr.2012.11.005

Google Scholar

[4] J.W. Rhim, H.M. Park, C.S. Ha, Bio-nanocomposites for food packaging applications, Prog. Polym. Sci. 38 (2013) 1629-1652.

DOI: 10.1016/j.progpolymsci.2013.05.008

Google Scholar

[5] V. Mishra, R.K. Mishra, A. Dikshit, A.C. Pandey, Chapter 8 - Interactions of nanoparticles with plants: An emerging prospective in the agriculture industry: P. Ahmad, S. Rasool (Eds.), Emerging Technologies and Management of Crop Stress Tolerance (2014), pp.159-180.

DOI: 10.1016/b978-0-12-800876-8.00008-4

Google Scholar

[6] S.S. Kanmani, K. Ramachandran, Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications, Renew. Energ. 43 (2012) 149-156.

DOI: 10.1016/j.renene.2011.12.014

Google Scholar

[7] S.J. Lim, A. Smith, S. Nie, The more exotic shapes of semiconductor nanocrystals: emerging applications in bioimaging, Curr. Opin. Chem. Eng. 4 (2014) 137-143.

DOI: 10.1016/j.coche.2014.01.013

Google Scholar

[8] J.S. Lee, J. Jang, Hetero-structured semiconductor nanomaterials for photocatalytic applications, J. Ind. Eng. Chem. 20 (2014) 363-371.

Google Scholar

[9] H. Chen, Y. Zeng, W. Liu, S. Zhao, J. Wu, Y. Du, Multifaceted applications of nanomaterials in cell engineering and therapy, Biotechnol. Adv. 31 (2013) 638-653.

DOI: 10.1016/j.biotechadv.2012.08.002

Google Scholar

[10] H.S. Hafez, Highly active ZnO rod-like nanomaterials: Synthesis, characterization and photocatalytic activity for dye removal, Physica E 44 (2012) 1522-1527.

DOI: 10.1016/j.physe.2012.03.020

Google Scholar

[11] S.K. Tripathi, Temperature-dependent barrier height in CdSe Schottky diode, J. Mater. Sci. 45 (2010) 5468–5471.

DOI: 10.1007/s10853-010-4601-6

Google Scholar

[12] J. Jie, W. Zhang, I. Bello, C.S. Lee, S.T. Lee, One-dimensional II-VI nanostructures: Synthesis, properties and optoelectronic applications, Nano Today 5 (2010), 313-336.

DOI: 10.1016/j.nantod.2010.06.009

Google Scholar

[13] H. Gleiter, Nanostructured materials: Basic concepts and microstructure, Acta Mater. 48 (2000) 1-29.

Google Scholar

[14] N. Han, J.C. Ho, One-dimensional nanomaterials for energy applications: S.C. Tjong (Eds.), Nanocrystalline Materials: Their synthesis-structure-property relationships and applications 2014, pp.75-120.

DOI: 10.1016/b978-0-12-407796-6.00003-8

Google Scholar

[15] T. Yin, W. Qin, Trac. applications of nanomaterials in potentiometric sensors, Trend. Anal. Chem. 51 (2013) 79-86.

Google Scholar

[16] Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Biomedical applications of zinc oxide nanomaterials, Curr. Mol. Med. 13 (2013) 1633-1645.

DOI: 10.2174/1566524013666131111130058

Google Scholar

[17] N.T.K. Thanh, L.A.W. Green, Functionalisation of nanoparticles for biomedical applications, Nano Today 5 (2010) 213-230.

DOI: 10.1016/j.nantod.2010.05.003

Google Scholar

[18] Y. Wang, Luminescent CdTe and CdSe semiconductor nanocrystals: Preparation, optical properties and applications, J. Nanosci. Nanotechnol. 8 (2008) 1068-1091.

DOI: 10.1166/jnn.2008.18156

Google Scholar

[19] H. Zhong, Z. Bai, B. Zou, Tuning the luminescence properties of colloidal I-III-VI semiconductor nanocrystals for optoelectronics and biotechnology applications, J. Phys. Chem. Lett. 3 (2012) 3167-3175.

DOI: 10.1021/jz301345x

Google Scholar

[20] L. Du, Y. Lei, Synthesis of high-quality Cl-doped CdSe nanobelts and their application in nanodevices, Mater. Lett. 106 (2013) 100-103.

DOI: 10.1016/j.matlet.2013.04.107

Google Scholar

[21] M. El-Hagary, M.E. Ismaila, E.R. Shaaband, A. Al-Rashidie, S. Althoyaib, Composition, annealing and thickness dependence of structural and optical studies on Zn1−xMnxS nanocrystalline semiconductor thin films, Mater. Chem. Phys. 132 (2012) 581-590.

DOI: 10.1016/j.matchemphys.2011.11.072

Google Scholar

[22] G. Kaur, S.K. Tripathi, Size tuning of MAA capped CdSe and CdSe/CdS quantum dots and their stability in different pH environments, Mater. Chem. Phys. 143 (2014) 514-523.

DOI: 10.1016/j.matchemphys.2013.09.003

Google Scholar

[23] A.J. Rahedi, J.F. Douglas, F.W. Starr, Model for reversible nanoparticle assembly in a polymer matrix, J. Chem. Phys. 128 (2008) 024902 (1)- 024902 (9).

DOI: 10.1063/1.2815809

Google Scholar

[24] E. Chabert, C. Gauthier, R. Dendievel, L. Chazeau, J.Y.Y. Cavaille, Mechanical behavior of polymer nanocomposites: A discrete simulation approach, Mat. Res. Soc. Symp. Proc., 740 (2003) 16.1.1-16.1.6.

DOI: 10.1557/proc-740-i6.1

Google Scholar

[25] J.H. Park, S.C. Jana, The relationship between nano- and micro-structures and mechanical properties in PMMA–epoxy–nanoclay composites, Polymer 44 (2003) 2091-2100.

DOI: 10.1016/s0032-3861(03)00075-2

Google Scholar

[26] J. Jordan, M. Sharaf, K. Jacob, R. Tannenbaum, I. Jasiuk, Experimental trends in polymer nanocomposites - A Review, Georgia Institute of Technology. pp.1-29.

Google Scholar

[27] C.L. Wu, M.Q. Zhang, M.Z. Rong, K. Friedrich, Tensile performance improvement of low nanoparticles filled-polypropylene composites, Compos. Sci. Technol. 62 (2002) 1327-1340.

DOI: 10.1016/s0266-3538(02)00079-9

Google Scholar

[28] V. Kovacevic, M. Leskovac, S.L. Blagojevic, Morphology and failure in nanocomposites. Part II: Surface investigation, J. Adhesion Sci. Technol., 16 (2002) 1915-1929.

DOI: 10.1163/15685610260427683

Google Scholar

[29] K.I. Skau, E.M. Blokhuis, Polymer adsorption on curved surfaces:  Finite chain length corrections, Macromolecules, 36 (2003) 4637-4645.

DOI: 10.1021/ma021787b

Google Scholar

[30] A.P.H.J. Schenning, E.W. Meijer, Supramolecular electronics; nanowires from self-assembled π-conjugated systems, Chem. Commun. 3 (2005) 245-258.

DOI: 10.1039/b501804h

Google Scholar

[31] M. Sharma, S.K. Tripathi, Study of barrier inhomogeneities in I–V-T and C-V-T characteristics of Al/Al2O3/PVA:n-ZnSe metal–oxide–semiconductor diode, J. Appl. Phys. 112 (2012) 024521(1)-024521(10).

DOI: 10.1063/1.4737589

Google Scholar

[32] A. Pron, P. Rannou, Processible conjugated polymers: From organic semiconductors to organic metals and superconductors, Prog. Polym. Sci. 27 (2002)135-190.

DOI: 10.1016/s0079-6700(01)00043-0

Google Scholar

[33] W. Gacitua, A. Ballerini, J. Zhang, Polymer nanocomposites: Synthetic and natural fillers a review, Wood. Sci. Technol. 7 (2005) 159-178.

Google Scholar

[34] R. Seoudi, S.A. Mongy, A.A. Shabaka, Effect of polyvinyl alcohol matrices on the structural and spectroscopic studies of CdSe nanoparticles, Physica B 403 (2008) 1781-1786.

DOI: 10.1016/j.physb.2007.10.108

Google Scholar

[35] Q. Yang, K. Tang, C. Wang, Y. Qian, S. Zhang, PVA-assisted synthesis and characterization of CdSe and CdTe nanowires, J. Phys. Chem. B 106 (2002) 9227-9230.

DOI: 10.1021/jp025582g

Google Scholar

[36] L. Lu, X.L. Xu, C. Shi, H. Ming, Localized surface plasmon resonance enhanced photoluminescence of CdSe QDs in PMMA matrix on silver colloids with different shapes, Thin Solid Films 518 (2010) 3250-3254.

DOI: 10.1016/j.tsf.2009.10.166

Google Scholar

[37] L. Hu, H. Wu, L. Du, H. Ge, X. Chen, N. Dai, The effect of annealing and photoactivation on the optical transitions of band–band and surface trap states of colloidal quantum dots in PMMA, Nanotechnology 22 (2011) 125202(1)-125202(6).

DOI: 10.1088/0957-4484/22/12/125202

Google Scholar

[38] A. Chaieb, O. Halimi, A. Bensouici, B. Boudine, B. Sahraoui, Linear and nonlinear optical properties of the CdSe nanocrystals embedded in PMMA matrix, J. Optoelectron. Adv. M. 11 (2009) 104-113.

DOI: 10.1109/ictonmw.2008.4773108

Google Scholar

[39] J.M. Kim, I.S. Shin, S.H. Yoo, J.H. Jeun, J. Lee, A. Kim, H.S. Kim, Z. Ge, J.I. Hong, J.H. Bang, Y.S. Kim, Effect of CdSe nanoparticles in polymethylmethacrylate tunneling layer on the performance of nonvolatile organic memory device, Microelectron. Eng. 98 (2012) 305-308.

DOI: 10.1016/j.mee.2012.07.101

Google Scholar

[40] C. Wu, T.J. Emge, F. Cosandey, M. Hara, CdS and Cd carboxylate nanoclusters dispersed in polymer matrix produced by a freeze drying method, Eur. Polym. J. 49 (2013) 3530-3538.

DOI: 10.1016/j.eurpolymj.2013.08.017

Google Scholar

[41] D. Jiang, L. Ding, J. Huang, E. Gu, L. Liu, Z. Chai, D. Liu, Synthesis and characterization of photorefractive polymer based on chemically hybridized CdSe PVK nanocomposite with a new azo chromophore, Polymer 48 (2007) 7156-7162.

DOI: 10.1016/j.polymer.2007.09.030

Google Scholar

[42] Y. Duan, Q. Luo, D. Wang, X. Li, J. An, Q. Liu, An efficient visible light photocatalyst poly (3-hexylthiophene)/CdS nanocomposite with enhanced antiphotocorrosion property, Superlattice. Microst. 67 (2014) 61-71.

DOI: 10.1016/j.spmi.2013.12.013

Google Scholar

[43] S. Kumar, P. Singh, R.G. Sonkawade, K. Awasthi, R. Kumar, 60 MeV Ni ion induced modifications in nano-CdS/polystyrene composite films, Radiat. Phys. Chem. 94 (2014) 49-53.

DOI: 10.1016/j.radphyschem.2013.06.022

Google Scholar

[44] R. Wang, K. Yan, F. Wang, J. Zhang, A highly sensitive photoelectrochemical sensor for 4 aminophenol based on CdS-graphene nanocomposites and molecularly imprinted polypyrrole, Electrochim. Acta 121 (2014) 102-108.

DOI: 10.1016/j.electacta.2013.12.139

Google Scholar

[45] B.T. Raut, P.R. Godse, S.G. Pawar, M.A. Chougule, D.K. Bandgar, V.B. Patil, Novel method for fabrication of Polyaniline - CdS sensor for H2S gas detection, Measurement 45 (2012) 94-100.

DOI: 10.1016/j.measurement.2011.09.015

Google Scholar

[46] L. Chen, J.S. Lai, X.N. Fu, J. Sun, Z.F. Ying, J.D. Wu, H. Lu, N. Xu, Growth of ZnSe nano-needles by pulsed laser deposition and their application in polymer/inorganic hybrid solar cells, Thin Solid Films 529 (2013) 76-79.

DOI: 10.1016/j.tsf.2012.02.037

Google Scholar

[47] N. Mastour, Z.B. Hamed, A. Benchaabane, M.A. Sanhoury, F. Kouki, Effect of ZnSe quantum dot concentration on the fluorescence enhancement of polymer P3HT film, Org. Electron. 14 (2013) 2093-2100.

DOI: 10.1016/j.orgel.2013.05.005

Google Scholar

[48] L. Jia, H. kou, Y. Jiang, S. Yu, J. Li, C. Wang, Electrochemical deposition semiconductor ZnSe on a new substrate CNTs/PVA and its photoelectrical properties, Electrochim. Acta 107 (2013) 71-77.

DOI: 10.1016/j.electacta.2013.06.004

Google Scholar

[49] L. Liu, H. Song, L. Fan, F. Wang, R. Qin, B. Dong, H. Zhao, X. Ren, G. Pan, X. Bai, Q. Dai, Inorganic–organic hybrid semiconductor nanomaterials: (ZnSe)(N2H4)x(C5H5N)y, Mater. Res. Bull. 44 (2009) 1385-1391.

DOI: 10.1016/j.materresbull.2008.11.023

Google Scholar

[50] D.Yun, W. Feng, H. Wu, K. Yoshino, Efficient conjugated polymer-ZnSe and -PbSe nanocrystals hybrid photovoltaic cells through full solar spectrum utilization, Sol. Energ. Mater. Sol. C. 93 (2009) 1208-1213.

DOI: 10.1016/j.solmat.2009.01.001

Google Scholar

[51] J.P. Borah, J. Barman, K.C. Sarma, Structural and optical properties of ZnS nanoparticles, Chalcogenide Lett. 5 (2008) 201-208.

Google Scholar

[52] N. Soltani, E. Saion, W.M.M. Yunus, M. Erfani, M. Navasery, G. Bahmanrokh, K. Rezaee, Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating, Appl. Surf. Sci. 290 (2014) 440-447.

DOI: 10.1016/j.apsusc.2013.11.104

Google Scholar

[53] Z. Lin, Y. Cheng, H. Lü, L. Zhang, B. Yang, Preparation and characterization of novel ZnS/sulfur-containing polymer nanocomposite optical materials with high refractive index and high nanophase contents, Polymer 51 (2010) 5424-5431.

DOI: 10.1016/j.polymer.2010.09.017

Google Scholar

[54] B. Liu, X. Lü, C. Wang, C. Tong, Y. Hea, C. Lü, White light emission transparent polymer nanocomposites with novel poly(p-phenylene vinylene) derivatives and surface functionalized CdSe/ZnS NCs Dyes Pigments 99 (2013) 192-200.

DOI: 10.1016/j.dyepig.2013.04.038

Google Scholar

[55] A.K. Kole, S. Gupta, P. Kumbhakar, P.C. Ramamurthy, Nonlinear optical second harmonic generation in ZnS quantum dots and observation on optical properties of ZnS/PMMA nanocomposites, Opt. Commun. 313 (2014) 231-237.

DOI: 10.1016/j.optcom.2013.10.023

Google Scholar

[56] Y. Jiang, H. Kou, J. Li, S. Yu, Y. Du, W. Ye, C. Wang, Synthesis of ZnTe dendrites on multi-walled carbon nanotubes/polyimide nanocomposite membrane by electrochemical atomic layer deposition and photoelectrical property research, J. Solid State Chem. 194 (2012) 336-342.

DOI: 10.1016/j.jssc.2012.05.018

Google Scholar

[57] C. Inui, H. Kura, T. Sato, Y. Tsuge, S. Shiratori, H. Ohkita, A. Tagaya, Y. Koike, Preparation of nanocomposite for optical application using ZnTe nanoparticles and a zero-birefringence polymer, J. Mater. Sci. 42 (2007) 8144-8149.

DOI: 10.1007/s10853-007-1712-9

Google Scholar

[58] E. Tekin, P.J. Smith, S. Hoeppener, A.M.J. Van-Den Berg, A.S. Susha, A.L. Rogach, J. Feldmann, U.S. Schubert, Inkjet printing of luminescent CdTe nanocrystal-Polymer composite, Adv. Funct. Mater. 17 (2007) 23-28.

DOI: 10.1002/adfm.200600587

Google Scholar

[59] L. Zhou, C. Gao, W. Xu, Amphibious polymer-functionalized CdTe quantum dots: Synthesis, thermo-responsive self-assembly, and photoluminescent properties, J. Mater. Chem. 19 (2009) 5655-5664.

DOI: 10.1039/b905966k

Google Scholar

[60] H. Wei, H. Sun, H. Zhang, C. Gao, B. Yang, An effective method to prepare polymer/nanocrystal composites with tunable emission over the whole visible light range, Nano Res. 3 (2010) 496-505.

DOI: 10.1007/s12274-010-0010-z

Google Scholar

[61] M. Li, X. Xu, Y. Tang, Z. Guo, H. Zhang, H. Zhang, B. Yang, CdTe nanocrystal-Polymer composite thin film without fluorescence resonance energy transfer by using polymer nanospheres as nanocrystal carriers, J. Colloid and Interf. Sci. 346 (2010) 330-336.

DOI: 10.1016/j.jcis.2010.03.022

Google Scholar

[62] I. Gorelikov, E. Kumacheva, Electrodeposition of Polymer-Semiconductor nanocomposite films, Chem. Mater. 16 (2004) 4122-4127.

DOI: 10.1021/cm049446v

Google Scholar

[63] M. Li, J. Zhang, H. Zhang, Y. Liu, C. Wang, X. Xu, Y. Tang, B. Yang, Electrospinning: A facile method to disperse fluorescent quantum dots in nanofibers without Förster resonance energy transfer, Adv. Funct. Mater. 17 (2007) 3650-3656.

DOI: 10.1002/adfm.200700241

Google Scholar

[64] J. Guo, C. Wang, W. Mao, W. Yang, C. Liu, J. Chen, Facile one-pot preparation and functionalization of luminescent chitosan-poly(methacrylic acid) microspheres based on Polymer-Monomer pairs, Nanotechnology 19 (2008) 315605 (8pp).

DOI: 10.1088/0957-4484/19/31/315605

Google Scholar

[65] R. Hariharan, S. Senthilkumar, A. Suganthi, M. Rajarajan, Photodynamic action of curcumin derived polymer modified ZnO nanocomposites, Mater. Res. Bull. 47 (2012) 3090-3099.

DOI: 10.1016/j.materresbull.2012.08.028

Google Scholar

[66] A. Mostafaei, F. Nasirpouri, Epoxy/polyaniline–ZnO nanorods hybrid nanocomposite coatings:Synthesis, characterization and corrosion protection performanceof conducting paints, Prog. Org. Coat. 77 (2014) 146-159.

DOI: 10.1016/j.porgcoat.2013.08.015

Google Scholar

[67] Y. Zhang, S. Zhuang, X. Xu, J. Hu, Transparent and UV-shielding ZnO@PMMA nanocomposite films, Opt. Mater. 36 (2013) 169-172.

DOI: 10.1016/j.optmat.2013.08.021

Google Scholar

[68] M. Rani, S.K. Tripathi, Effect of eosin Y dye on electrical properties of ZnO film synthesized by sol–gel technique, J. Electron. Mater. 43 (2014) 426-434.

DOI: 10.1007/s11664-013-2925-0

Google Scholar

[69] J.P. Zou, P.L. Rendu, I. Musa, S.H. Yang, Y. Dan, C.T. That, T.P. Nguyen, Investigation of the optical properties of polyfluorene/ZnO nanocomposites, Thin Solid Films 519 (2011) 3997-4003.

DOI: 10.1016/j.tsf.2011.01.205

Google Scholar

[70] X. Hou, L. Wang, J.C. Hao, Design, synthesis and characterization of one–dimensional ZnO/polymer nanohybrids, Mater. Lett. 107 (2013) 162-165.

DOI: 10.1016/j.matlet.2013.05.133

Google Scholar

[71] I.S. Elashmawi, N.A. Hakeem, L.K. Marei, F.F. Hann, General construction of mean-field potential and its application to the multiphase equations of state of tin, Physica B 405(2010) 4163-4169.

Google Scholar

[72] M. Anpo, I. Tanahashi, Y. Kubokawa, Photoluminescence and photoreduction of vanadium pentoxide supported on porous Vycor glass, J. Phys. Chem. 84 (1980) 3440-3444.

DOI: 10.1021/j100462a026

Google Scholar

[73] M. Iwamoto, H. Furukawa, K. Matsukami, T. Takenaka, S. Kagawa, Diffuse reflectance infrared and photoluminescence spectra of surface vanadyl groups. Direct evidence for change of bond strength and electronic structure of metal-oxygen bond upon supporting oxide, J. Am. Chem. Soc. 105 (1983) 3719-3720.

DOI: 10.1021/ja00349a066

Google Scholar

[74] X.Z. Li, F.B. Li, Study of Au/Au3+-TiO2 Photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol. 35 (2001) 2381-2387.

DOI: 10.1021/es001752w

Google Scholar

[75] J.C. Yu, J.G. Yu, K.W. Ho, Z.T. Jiang, L.Z. Zhang, Effects of F-Doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Mater. 14 (2002) 3808-3816.

DOI: 10.1021/cm020027c

Google Scholar

[76] W.F. Zhang, M.S. Zhang, Z. Yin, Q. Chen, Photoluminescence in anatase titanium dioxide nanocrystals, Appl. Phys. B 70 (2000) 261-265.

Google Scholar

[77] L.Q. Jing, X.J. Sun, W.M. Cai, Z.L. Xu, Y.G. Du, H.G. Fu, The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity, J. Phys. Chem. Solids 64 (2003) 615-623.

Google Scholar

[78] C.F. Song, M.K. Lu, P. Yang, D. Xu, D.R. Yuan, Structure and photoluminescence properties of sol–gel TiO –SiO films, Thin Solid Films 413 (2002) 155-159.

DOI: 10.1016/s0040-6090(02)00440-6

Google Scholar

[79] F.B. Li, X.Z. Li, Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment, Appl. Catal. A 228 (2002) 15-27.

DOI: 10.1016/s0926-860x(01)00953-x

Google Scholar

[80] T. Toyoda, T. Hayakawa, K. Abe, T. Shigenari, Q.J. Shen, Photoacoustic and photoluminescence characterization of highly porous, polycrystalline TiO2 electrodes made by chemical synthesis, J. Lumin. 87/89 (2000) 1237-1239.

DOI: 10.1016/s0022-2313(99)00526-8

Google Scholar

[81] J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energ. Mat. Sol. C. 90 (2006) 1773-1787.

DOI: 10.1016/j.solmat.2005.11.007

Google Scholar

[82] C. Zeng, L.J. Lee, Poly(methyl methacrylate) and Polystyrene/Clay Nanocomposites Prepared by in-Situ Polymerization, Macromolecules 34 (2001) 4098-4103.

DOI: 10.1021/ma010061x

Google Scholar

[83] M. Jayalakshmi, M.M. Rao, Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications, J. Power Sources 157 (2006) 624-629.

DOI: 10.1016/j.jpowsour.2005.08.001

Google Scholar

[84] Y. Zhao, Y. Zhang, H. Zhu, G.C. Hadjipanayis, J.Q. Xiao, Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals, J. Am. Chem. Soc.126 (2004) 6874-6875.

DOI: 10.1021/ja048650g

Google Scholar

[85] X. Zhao, M. Li, X. Lou, Sol–gel assisted hydrothermal synthesis of ZnO microstructures: Morphology control and photocatalytic activity, Adv. Powder Technol. 25 (2014) 372-378.

DOI: 10.1016/j.apt.2013.06.004

Google Scholar

[86] L.F.F.F. Goncalves, F.K. Kanodarwala, J.A. Stride, C.J.R. Silva, M.R. Pereira, M.J.M. Gomes, One-pot synthesis of CdSe nanoparticles exhibiting quantum size effect within a sol–gel derived ureasilicate matrix, J. Photoch. Photobio. A 285 (2014) 21-29.

DOI: 10.1016/j.jphotochem.2014.04.005

Google Scholar

[87] M. Kakihana, M. Yoshimura, Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method, Bull. Chem. Soc. Jpn. 72 (1999) 1427-1443.

DOI: 10.1246/bcsj.72.1427

Google Scholar

[88] J.N. Alexander, S. Higashiya, D.C. Jr, H. Efstathiadis, P. Haldar, Deposition and characterization of cadmium sulfide (CdS) by chemical bath deposition using an alternative chemistry cadmium precursor, Sol. Energ. Mat. Sol. C. 125 (2014) 47-53.

DOI: 10.1016/j.solmat.2014.02.017

Google Scholar

[89] S.K. Choubey, K.P. Tiwary, Microwave assisted synthesis of CdS nanoparticles for structural and optical Characterization, International Journal of Innovative Research in Science, Engineering and Technology, 3 (2014) 10670-10674.

Google Scholar

[90] G.P. Barreto, G. Morales, M.L.L. Quintanilla, Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano- ZnO morphology development, J. Mater. 2013 (2013) 478681(1)-478681(11).

DOI: 10.1155/2013/478681

Google Scholar

[91] J.V. Tolia, M. Chakraborty, Z.V.P. Murthy, Mechanochemical synthesis and characterization of group II-VI semiconductor nanocrystals, Particul. Sci. Technol. 30 (2012) 533-542.

DOI: 10.1080/02726351.2011.605825

Google Scholar

[92] K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films, Mater. Res. Bull. 47 (2012) 1400-1406.

DOI: 10.1016/j.materresbull.2012.03.008

Google Scholar

[93] J. Sharma, S.K. Tripathi, Effect of deposition pressure on structural, optical and electrical properties of zinc selenide thin films, Physica B 406 (2011) 1757-1762.

DOI: 10.1016/j.physb.2011.02.022

Google Scholar

[94] G. Biasiol, L. Sorba, Molecular beam epitaxy: Principles and applications, in R. Fornari, L. Sorba, Eds., Crystal growth of materials for energy production and energy-saving applications, Edizioni ETS, Pisa, 2000, pp.66-83.

Google Scholar

[95] Y. Cai, T.L. Wong, S.K. Chan, I.K. Sou, D.S. Su, N. Wang, Growth behaviors of ultrathin ZnSe nanowires by Au-catalyzed molecular-beam epitaxy, Appl. Phys. Lett. 93 (2008) 233107(1)-233107(3).

DOI: 10.1063/1.3037024

Google Scholar

[96] F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review, J. Aerosol Sci. 29 (1998) 511-535.

DOI: 10.1016/s0021-8502(97)10032-5

Google Scholar

[97] J.G. Ma, Y.C. Liu, C.S. Xu, Y.X. Liu, C.L. Shao, H.Y. Xu, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering, J. Appl. Phys. 97 (2005) 103509-6.

DOI: 10.1063/1.1897493

Google Scholar

[98] P. Wagener, S. Faramarzi, A. Schwenke, R. Rosenfeld, S. Barcikowski, Photoluminescent zinc oxide polymer nanocomposites fabricated using picosecond laser ablation in an organic solvent, Appl. Surf. Sci. 257 (2011) 7231-7237.

DOI: 10.1016/j.apsusc.2011.03.097

Google Scholar

[99] A.A. Ruth, J.A. Young, Generation of CdSe and CdTe nanoparticles by laser ablation in liquids, Colloid. Surface. A 279 (2006) 121-127.

Google Scholar

[100] N.G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R.J. Potter, M. Sharp, P. French, G. Dearden, K.G. Watkins, CdSe nanoparticles synthesized by laser ablation, Europhys. Lett. 84 (2008) 47001.

DOI: 10.1209/0295-5075/84/47001

Google Scholar

[101] M. Sharma S.K. Tripathi, Photoluminescence study of CdSe nanorods embedded in a PVA matrix, J. Lumin.135 (2013) 327-334.

DOI: 10.1016/j.jlumin.2012.09.016

Google Scholar

[102] P. Singh, O.P. Sinha, R. Srivastava, A.K. Srivastava, J.K. Bindra, R.P. Singh, M.N. Kamalasanan, Studies on morphological and optoelectronic properties of MEH-CN-PPV:TiO2 nanocomposites, Mat. Chem. Phys. 133 (2012) 317-323.

DOI: 10.1016/j.matchemphys.2012.01.030

Google Scholar

[103] P.K. Narayanam, P. Soni, P. Mohanta, R.S. Srinivasa, S.S. Talwar, S.S. Major, Effect of heat treatment on the photoluminescence of CdS nanocrystallites in cadmium-rich organic langmuir blodgett matrix, Mat. Chem. Phys. 139 (2013) 196-209.

DOI: 10.1016/j.matchemphys.2013.01.022

Google Scholar

[104] S.B. Dkhil, R. Bourguiga, J. Davenas, D. Cornu, Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films, Mat. Chem. Phys. 132 (2012) 284-291.

DOI: 10.1016/j.matchemphys.2011.11.014

Google Scholar

[105] D. Selmarten, M. Jones, G. Rumbles, P.R. Yu, J. Nedeljkovic, S. Shaheen, Quenching of semiconductor quantum dot photoluminescence by a pi-conjugated polymer, J. Phys. Chem. B 109 (2005) 15927-15932.

DOI: 10.1021/jp0515479

Google Scholar

[106] M.D. Prè, I. Morrow, D.J. Martin, M. Mos, A.D. Negro, S. Padovani, A. Martucci, Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency, Mat. Chem. Phys. 139 (2013) 531-536.

DOI: 10.1016/j.matchemphys.2013.02.003

Google Scholar

[107] C.H. Chou, H.S. Wang, K.H. Wei, J.Y. Huang, Thiophenol-modified CdS nanoparticles enhance the luminescence of benzoxyl dendron- substituted polyfluorene copolymers, Adv. Funct. Mater. 16 (2006) 909-916.

DOI: 10.1002/adfm.200500354

Google Scholar

[108] N. Misraa, V. Kumar, J. Bahadur, S. Bhattacharya, S. Mazumder, L. Varshney, Layered silicate-polymer nanocomposite coatings via radiation curing process for flame retardant applications, Prog. Org. Coating. 77 (2014) 1443–1451.

DOI: 10.1016/j.porgcoat.2014.04.027

Google Scholar

[109] N.I. Hammer, T. Emrick, M.D. Barnes, Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics, Nanoscale Res. Lett. 2 (2007) 282-290.

DOI: 10.1007/s11671-007-9062-8

Google Scholar

[110] P. Suresh, P. Balaraju, S.K. Sharma, M.S. Roy, G.D. Sharma, Photovoltaic devices based on PPHT: ZnO and dye-sensitized PPHT: ZnO thin films, Sol. Energ. Mater. Sol. C. 92 (2008) 900-908.

DOI: 10.1016/j.solmat.2008.02.028

Google Scholar

[111] S. Singh, A. Guleria, A.K. Singh, M.C. Rath, S. Adhikari, S.K. Sarkar, Radiolytic synthesis and spectroscopic investigations of Cadmium Selenide quantum dots grown in cationic surfactant based quaternary water-in-oil microemulsions, J. Colloid Interf. Sci. 398 (2013) 112-119.

DOI: 10.1016/j.jcis.2013.02.008

Google Scholar

[112] P.K. Sharma, R.K. Dutta, C.H. Liu, R. Pandey, A.C. Pandey, Surfactant mediated optical properties of cytosine capped CdSe quantum dots, Mater. Lett. 64 (2010) 1183–1186.

DOI: 10.1016/j.matlet.2010.02.045

Google Scholar

[113] L. Dai, P. He, S. Li, Functionalized surfaces based on polymers and carbon nanotubes for nanotechnological applications, Nanotechnology 14 (2003) 1081–1097.

DOI: 10.1088/0957-4484/14/10/305

Google Scholar

[114] T.L. Wang, C.H. Yang, Y.T. Shieh, A.C. Yeh, Synthesis of CdSe–Poly(N-vinylcarbazole) nanocomposite by atom transfer radical polymerization for potential optoelectronic applications, Macromol. Rapid Commun. 30 (2009) 1679-1683.

DOI: 10.1002/marc.200900349

Google Scholar

[115] Y.A. Kalandaragh, A. Khodayari, Ultrasound-assisted preparation of CdSe nanocrystals in the presence of polyvinyl alcohol as a capping agent. Mat. Sci. Semicon. Proc. 13 (2010) 225-230.

DOI: 10.1016/j.mssp.2010.10.018

Google Scholar

[116] Y. Badr, M.A. Mahmoud, Optimization and photophysics of cadmium selenide nanoparticles, Physica B 369 (2005) 278-286.

DOI: 10.1016/j.physb.2005.08.027

Google Scholar

[117] D.K. Bozanic, V. Djokovic, N. Bibic, P.S. Nair, M.K. Georges, T. Radhakrishnan, Biopolymer-protected CdSe nanoparticles, Carbohyd. Res. 344 (2009) 2383-2387.

DOI: 10.1016/j.carres.2009.08.018

Google Scholar

[118] Y. Badr, M.A. Mahmoud, Effect of PVA surrounding medium on ZnSe nanoparticles: Size, optical, and electrical properties, Spectrochim. Acta A 65 (2006) 584-590.

DOI: 10.1016/j.saa.2005.12.015

Google Scholar

[119] C. Mehta, G.S.S. Saini, J.M. Abbas, S.K. Tripathi, Effect of complexing agent on the properties of ZnSe thin films, AIP Conf. Proc. 1349 (2011) 617-618.

DOI: 10.1063/1.3606009

Google Scholar

[120] C. Mehta, J.M. Abbas, G.S.S. Saini, S.K. Tripathi, Effect of deposition parameters on the optical and electrical properties of nanocrystalline CdSe, Chalcogenide Letters 4 (2007) 133-138.

Google Scholar

[121] A.S. Edelestein, R.C. Camarata, Nanomaterials: Synthesis, Properties and Application, Institute of Physics Publishing, 1998, p.214, 230, 235, 241.

Google Scholar

[122] R.S. Singh, S. Bhushan, A.K. Singh, S.R. Deo, Characterization and optical properties of CdSe nano-crystalline thin films, Dig. J. Nanomater. Biostruct. 6 (2011) 403-412.

Google Scholar

[123] M. Sharma, Synthesis and characterization of nanocrystalline II-VI core/shell structure and device fabrication, Ph. D. Thesis, Panjab University, Chandigarh, India, 2013.

Google Scholar

[124] M. Ramrakhiani, V. Nogriya, Photo- and electro-luminescence of cadmium selenide nanocrystals and nanocomposites, J. Lumin. 133 (2013) 129-134.

DOI: 10.1016/j.jlumin.2011.09.046

Google Scholar

[125] L. Borkovska, N. Korsunska, T. Stara, O. Gudymenko, Y. Venger, O. Stroyuk, O. Raevska, T. Kryshtab, Enhancement of the photoluminescence in CdSe quantum dot–polyvinyl alcohol composite by light irradiation, Appl. Surf. Sci. 281 (2013) 118-122.

DOI: 10.1016/j.apsusc.2012.12.146

Google Scholar

[126] A. Tang, F. Teng, H. Jin, Y. Gao, Y. Hou, C. Liang, Y. Wang, Investigation on photoconductive properties of MEH-PPV/CdSe-nanocrystal nanocomposites, Mater. Lett. 61 (2007) 2178-2181.

DOI: 10.1016/j.matlet.2006.08.042

Google Scholar

[127] S.V. Bhat, S.R.C. Vivekchand, Optical spectroscopic studies of composites of conducting PANI with CdSe and ZnO nanocrystals, Chem. Phys. Lett. 433 (2006) 154-158.

DOI: 10.1016/j.cplett.2006.11.045

Google Scholar

[128] T.L. Wang, C.H. Yang, Y.T. Shieh, A.C. Yeh, C.H. Chen, T.H. Ho, Effects of annealing on the polymer solar cells based on CdSe–PVK electron acceptor, Mater. Chem. Phys. 132 (2012) 131– 137.

DOI: 10.1016/j.matchemphys.2011.11.008

Google Scholar

[129] R. Berera, R. Grondelle, J.T.M. Kennis, Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems, Photosynth. Res. 101 (2009) 105-118.

DOI: 10.1007/s11120-009-9454-y

Google Scholar

[130] S.N. Sharma, T. Vats, N. Dhenadhayalan, P. Ramamurthy, A.K. Narula, Ligand-dependent transient absorption studies of hybrid polymer:CdSe quantum dot composites, Sol. Energ. Mater. Sol. C. 100 (2012) 6-15.

DOI: 10.1016/j.solmat.2011.10.020

Google Scholar

[131] T.P. Mthethwa, M.J. Moloto, A.D. Vries, K.P. Matabola, Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres, Mater. Res. Bull. 46 (2011) 569-575.

DOI: 10.1016/j.materresbull.2010.12.022

Google Scholar

[132] T. Trindade, M.C. Neves, A.M.V. Barros, Preparation and optical properties of CdSe/polymer nanocomposites, Scripta Mater. 43 (2000) 567-571.

DOI: 10.1016/s1359-6462(00)00437-1

Google Scholar

[133] M.D. Heinemann, K.V. Maydell, F. Zutz, J.K. Olesiak, H. Borchert, I. Riedel, J. Parisi, Photo-induced charge transfer and relaxation of persistent charge carriers in polymer/nanocrystal composites for applications in hybrid solar cells, Adv. Funct. Mater.19 (2009) 3788-3795.

DOI: 10.1002/adfm.200900852

Google Scholar

[134] S. Ananthakumar, J. Ramkumar, S.M. Babu, Synthesis of thiol-modified CdSe nanoparticles/P3HT blends for hybrid solar cell structures, Mater. Sci. Semicond. Proc. 22 (2014) 44–49.

DOI: 10.1016/j.mssp.2014.02.008

Google Scholar

[135] W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells, Science 295 (2002) 2425-2427.

DOI: 10.1126/science.1069156

Google Scholar

[136] Z. Liang, K.L. Dzienis, J. Xu, Q. Wang, C​o​v​a​l​e​n​t​ ​l​a​y​e​r​-​b​y​-​l​a​y​e​r​ ​a​s​s​e​m​b​l​y​ ​o​f​ ​c​o​n​j​u​g​a​t​e​d​ ​p​o​l​y​m​e​r​s​ ​a​n​d​ CdSe​ ​n​a​n​o​p​a​r​t​i​c​l​e​s:​ m​u​l​t​i​l​ayer structure and ​photovoltaic p​r​o​p​e​r​t​i​e​s, Adv. Funct. Mater. 16 (2006) 542-548.

Google Scholar

[137] X.Y. Qi, K.Y. Pu, C. Fang, A.G. Wen, H. Zhang, F.Y.C. Boey, Q.L. Fan, L.H. Wang, W. Huang, Semiconductor nanocomposites of emissive flexible random copolymers and CdTe nanocrystals: Preparation, characterization, and optoelectronic properties, Macromol. Chem. Phys. 208 (2007) 2007-2017.

DOI: 10.1002/macp.200700088

Google Scholar

[138] D.C. Olson, S.S. Shaheen, R.T. Collins, D.S. Ginley, The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices, J. Phys. Chem. C 111 (2007)16670-16678.

DOI: 10.1021/jp0734225

Google Scholar

[139] A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu, A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials, Adv. Mater. 22 (2010) 103–106.

DOI: 10.1002/adma.200901920

Google Scholar

[140] X. Peng, M.C. Schlamp, A.V. Kadavanich, A. Alivisatos, Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility, J. Am. Chem. Soc.119 (1997) 7019-7029.

DOI: 10.1021/ja970754m

Google Scholar

[141] N. Venkatram, R. Kumar, D.R. Narayana, Nonlinear absorption and scattering properties of cadmium sulphide nanocrystals with its application as a potential optical limiter, J.Appl.Phys.100 (2006) 074309(1)-074309(8).

DOI: 10.1063/1.2354417

Google Scholar

[142] A. Kharazmi, E. Saion, N. Faraji, R.M. Hussin, W.M.M. Yunus, Structural, optical and thermal properties of PVA/CdS nanocomposites synthesized by radiolytic method, Radiat. Phys. Chem. 97 (2014) 212-216.

DOI: 10.1016/j.radphyschem.2013.12.003

Google Scholar

[143] O.C. Damian, P.J.K. Tjaart, S.O. Oluwafemi, A.S. Christien, Nanosecond laser irradiation synthesis of CdS nanoparticles in a PVA system, Appl. Surf. Sci. 290 (2014) 18-26.

Google Scholar

[144] P.K. Khanna, N. Singh, Light emitting CdS quantum dots in PMMA: synthesis and optical studies, J. Lumin. 127 (2007) 474-482.

DOI: 10.1016/j.jlumin.2007.02.037

Google Scholar

[145] L. Chen, J. Zhu, Q. Li, S. Chen, Y. Wang, Controllable synthesis of functionalized CdS nanocrystals and CdS/PMMA nanocomposite hybrids, Eur. Polym. J. 43 (2007) 4593-4601.

DOI: 10.1016/j.eurpolymj.2007.08.008

Google Scholar

[146] R.K. Bhardwaj, H.S. Kushwaha, J. Gaur, T. Upreti, V. Bharti, V. Gupta, N. Chaudhary, G.D. Sharma, K. Banerjee, S. Chand, A green approach for direct growth of CdS nanoparticles network in poly(3-hexylthiophene-2,5-diyl) polymer film for hybrid photovoltaic, Mater. Lett. 89 (2012) 195-197.

DOI: 10.1016/j.matlet.2012.08.071

Google Scholar

[147] M. Zhong, D. Yang, J. Zhang, J. Shi, X. Wang, C. Li, Improving the performance of CdS/P3HT hybrid inverted solar cells by interfacial modification, Sol. Energy Mater. Sol. Cells 96 (2012) 160-165.

DOI: 10.1016/j.solmat.2011.09.041

Google Scholar

[148] A. Pucci, M. Boccia, F. Galembeck, C.A.P. Leite, N. Tirelli, G. Ruggeri, Luminescent nanocomposites containing CdS nanoparticles dispersed into vinyl alcohol based polymers, React. Funct. Polym. 68 (2008) 1144-1151.

DOI: 10.1016/j.reactfunctpolym.2008.03.007

Google Scholar

[149] T. Franzl, T.A. Klar, S. Schietinger, A.L. Rogach, J. Feldmann, Exciton recycling in graded gap nanocrystal structures, Nano Lett. 4 (2004) 1599-1603.

DOI: 10.1021/nl049322h

Google Scholar

[150] E. Tekin, P.J. Smith, S. Hoeppener, A.M.J. Berg, A.S. Susha, A.L. Rogach, J. Feldmann, U.S. Schubert, Inkjet printing of luminescent CdTe nanocrystal–polymer composites, Adv. Funct. Mater. 17 (2007) 23-28.

DOI: 10.1002/adfm.200600587

Google Scholar

[151] M. Sharma, S.K. Tripathi, Preparation and nonlinear characterization of zinc selenide nanoparticles embedded in polymer matrix, J. Phys. Chem. Solid 73 (2012) 1075-1081.

DOI: 10.1016/j.jpcs.2012.04.007

Google Scholar

[152] S.K. Tripathi, M. Sharma, Synthesis and optical study of green light emitting polymer coated CdSe/ZnSe core/shell nanocrystals, Mater. Res. Bull. 48 (2013) 1837-1844.

DOI: 10.1016/j.materresbull.2013.01.023

Google Scholar

[153] Y.D. Qin, F. Wei, W.H. Cai, L.X. Zeng, Q.J. Feng, Optical properties of conjugated polymer-ZnSe nanocrystal nanocomposites, Chin. Phys. B 19 (2010) 017304(1)-017304(8).

DOI: 10.1088/1674-1056/19/1/017304

Google Scholar

[154] M. Sebais, A. Chaieb, B. Boudine, Z. Ouili, S. Halimi, Electronics, Communications and Photonics Conference (SIECPC), 2011 Saudi International, E-ISBN : 978-1-4577-0067-5 Print ISBN: 978-1-4577-0068-2.

DOI: 10.1109/siecpc.2011.5876957

Google Scholar

[155] N. Mastour, Z.B. Hamed, A. Benchaabane, M.A. Sanhoury, F. Kouki, Effect of ZnSe quantum dot concentration on the fluorescence enhancement of polymer P3HT film, Org. Electron. 14 (2013) 2093-2100.

DOI: 10.1016/j.orgel.2013.05.005

Google Scholar

[156] Y. Badr, M.A. Mahmoud, Effect of PVA surrounding medium on ZnSe nanoparticles: Size, optical, and electrical properties, Spectrochim. Acta A 65 (2006) 584-590.

DOI: 10.1016/j.saa.2005.12.015

Google Scholar

[157] N.A. Dhas, A. Zaban, A. Gedanken, Surface synthesis of zinc sulfide nanoparticles on silica microspheres:  Sonochemical preparation, characterization, and optical properties, Chem. mater 11 (1999) 806-813.

DOI: 10.1021/cm980670s

Google Scholar

[158] S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, H. Manuspiya, Hybrid organic–inorganic of ZnS embedded PVP nanocomposite film for photoluminescent application. C.R. Physique 13 (2012) 994-1000.

DOI: 10.1016/j.crhy.2012.09.008

Google Scholar

[159] B. Liu, Q. Liu, C. Tong, X. Lü, C. Lü, Blue-light-emitting surface-functionalized ZnS nanoparticles and their transparent polymer nanocomposites with near-white light emission, Colloid Surf. A 434 (2013) 213-219.

DOI: 10.1016/j.colsurfa.2013.05.040

Google Scholar

[160] K.S. Hemalatha, K. Rukmani, N. Suriyamurthy, B.M. Nagabhushan, Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: A composition dependent study, Mater. Res. Bull. 51 (2014) 438-446.

DOI: 10.1016/j.materresbull.2013.12.055

Google Scholar

[161] D.C. Reyolds, D.C. Look, B. Jogai, H. Mokoc, Similarities in the band edge and deep-centre photoluminescence mechanisms of ZnO and GaN, Solid State Commun. 101 (1997) 643-646.

DOI: 10.1016/s0038-1098(96)00697-7

Google Scholar

[162] A. Teke, U. Orgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, H.O. Everitt, Excitonic fine structure and recombination dynamics in single-crystalline ZnO, Phys. Rev. B 70 (2004) 195207(1) - 195207(10).

DOI: 10.1103/physrevb.70.195207

Google Scholar

[163] R. Jetson, K. Yin, K. Donovan, Z. Zhu, Effects of surface modification on the fluorescence properties of conjugated polymer/ZnO nanocomposites, Mater. Chem. Phys. 124 (2010) 417-421.

DOI: 10.1016/j.matchemphys.2010.06.058

Google Scholar

[164] C.Y. Kwong, W.C.H. Choy, A.B. Djurisic, P.C. Chui, K.W. Cheng, W.K. Chan, Poly(3-hexylthiophene):TiO2 nanocomposites for solar cell applications, Nanotechnology 15 (2004) 1156-1161.

DOI: 10.1088/0957-4484/15/9/008

Google Scholar

[165] O.V. Vassiltsova, D.A. Jayez, Z. Zhao, M.A. Carpenter, M.A. Petrukhina, Synthesis of nanocomposite materials with controlled structures and optical emissions: application of various methacrylate polymers for CdSe quantum dots encapsulation, J. Nanosci. Nanotechnol. 10 (2010) 1635-1642.

DOI: 10.1166/jnn.2010.2099

Google Scholar

[166] N.N. Dinh, L.H. Chi, T.T.C. Thuy, D.V. Thanh, T.P. Nguyen, Study of nanostructured polymeric composites and hybrid layers used for light emitting diodes, J. Korean Phys. Soc. 53 (2008) 802-805.

DOI: 10.3938/jkps.53.802

Google Scholar

[167] H. Gordillo, I. Suárez, R. Abargues, P.R. Cantó, S. Albert, J.P.M. Pastor, Polymer/QDs nanocomposites for waveguiding applications, J. Nanomater. 2012 (2012) 960201(1)-960201(9).

DOI: 10.1155/2012/960201

Google Scholar

[168] I. Suárez, H. Gordillo, R. Abargues, S. Albert, J.M. Pastor, Photoluminescence wave-guiding in CdSe and CdTe QDs-PMMA nanocomposite films, Nanotechnology 22 (2011) 435202(1)-435202(8).

DOI: 10.1088/0957-4484/22/43/435202

Google Scholar

[169] Z.B. Sun, X.Z. Dong, W.Q. Chen, S. Nakanishi, X.M. Duan, S. Kawata, Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures, Adv. Mater. 20 (2008) 914-919.

DOI: 10.1002/adma.200702035

Google Scholar

[170] J. Li, J.Z. Zhang, Optical properties and applications of hybrid semiconductor nanomaterials, Coordin. Chem. Rev. 253 (2009) 3015-3041.

Google Scholar

[171] D.R. Paul, L.M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer 49 (2008) 3187-3204.

DOI: 10.1016/j.polymer.2008.04.017

Google Scholar

[172] S. Pati, P. Banerji, S.B. Majumder, MOCVD grown ZnO thin film gas sensors: Influence of microstructure, Sensor. Actuator. A-Phys. 213 (2014) 52-58.

DOI: 10.1016/j.sna.2014.04.005

Google Scholar

[173] E.R. Menzel, M. Takatsu, R.H. Murdock, K.K. Bouldin, K.H. Cheng, Photoluminescent CdS/dendrimer nanocomposites for fingerprint detection, J. Forensic Sci. 45 (2000) 770-773.

DOI: 10.1520/jfs14769j

Google Scholar

[174] J.Y. Juan, L.Y. Jun, L.G. Ping, L. Jie, W.Y. Feng, Y.R. Qin, L.W. Ting, Application of photoluminescent CdS/PAMAM nanocomposites in fingerprint detection, Forensic Sci. Int. 179 (2008) 34-38.

Google Scholar