Organic Light - Emitting Diodes and their Applications

Article Preview

Abstract:

Organic light emitting diodes (OLEDs) have been the focus of intense study since the late 1980s, when the low voltage organic electroluminescence in small organic molecules such as Alq3, and large organic molecules such as polymers (PPV), was reported. Since that time, research has continued to demonstrate the potential of OLEDs as viable systems for displays and eco-friendly lighting applications. OLEDs offer full colour display, reduced manufacturing cost, larger viewing angle, more flexible, lower power consumption, better contrast, slimmer, etc. which help in replacing the other technologies such as LCD. The operation of OLEDs involves injection of charge carriers into organic semiconducting layers, recombination of charge carriers, formation of singlet and triplet excitons, and emission of light during decay of excitons. The maximum internal quantum efficiency of fluorescent OLEDs consisting of the emissive layer of fluorescent organic material is 25% because in this case only the 25% singlet excitons can emit light. The maximum internal quantum efficiency of phosphorescent OLEDs consisting of the emissive layer of fluorescent organic material mixed with phosphorescent material of heavy metal complexes such as platinum complexes, iridium complexes, etc. is nearly 100% because in this case both the 25% singlet excitons and 75% triplet excitons emit light. Recently, a new class of OLEDs based on thermally activated delayed fluorescence (TADF) has been reported, in which the energy gap between the singlet and triplet excited states is minimized by design, thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates of more than 106 decays per second. These molecules harness both singlet and triplet excitons for light emission through fluorescence decay channels and provides an intrinsic fluorescence efficiency in excess of 90 per cent and a very high external electroluminescence efficiency of more than 19 per cent, which is comparable to that achieved in high-efficiency phosphorescence-based OLEDs.The OLED technology can be used to make screens large enough for laptop, cell phones, desktop computers, televisions, etc. OLED materials could someday be applied to plastic and other materials to create wall-size video panels, roll-up screens for laptops, automotive displays, and even head wearable displays. Presently, the OLEDs are opening up completely new design possibilities for lighting in the world of tomorrow whereby the offices and living rooms could be illuminated by lighting panels on the ceiling. The present paper describes the salient features of OLEDs and discusses the applications of OLEDs in displays and solid state lighting devices. Finally, the challenges in the field of OLEDs are explored. Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-93

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. W. Tang and S. A. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51 (1987) 913 - 915.

DOI: 10.1063/1.98799

Google Scholar

[2] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackey, R.H. Friend, P.L. Burns, A.B. Holmes, Light-emitting diodes based on conjugated polymers, Nature 347 (1990)539 -541.

DOI: 10.1038/347539a0

Google Scholar

[3] A. Bernanose, M. Comte, P. Vouaux, Blue emission from light-emitting diodes based on lithium complex, Journal of Chemical Physicsique 50 (1953) 64-69 (in French).

Google Scholar

[4] A. Bernanose, G. Marquet, Electroluminescence du carbazol par les champs electriques alternatives carecterisation de lelectrophotoluminescence organique, J. Chim. Phys. 51 (1954) 255-259(in French).

DOI: 10.1051/jcp/1954510255

Google Scholar

[5] A. Bernanose, Electroluminescence of organic compounds, Br. J. Appl. Phys. 6 (1955) S54-S56.

Google Scholar

[6] G. D. Short, D. M. Herucles, Electroluminescence of organic compounds. the role of gaseous discharge in the excitation process, J. Am. Chem. Soc. 87 (1965) 1439 -1442.

DOI: 10.1021/ja01085a005

Google Scholar

[7] M. Pope, H. Kallmann, P. Magnate, Electroluminescence in organic crystals, J. Chem. Phys. 38 (1963) 2042 - 2043.

Google Scholar

[8] M. Sano, M. Pope, H. Kallmann, Electroluminescence and band gap in anthracene, J. Chem. Phys. 43 (1965) 2920-2921.

DOI: 10.1063/1.1697243

Google Scholar

[9] W. Helfrich, W. G. Schneider, Recombination radiation in anthracene crystals, Phys. Rev. Lett. 14 (1965) 229 -229.

DOI: 10.1103/physrevlett.14.229

Google Scholar

[10] W. G. Schneider, W. Helfrich, Transient volume-controlled current and of recombination radiation in anthracene, J. Chem. Phys. 44 (1966) 2902-2909.

DOI: 10.1063/1.1727152

Google Scholar

[11] J. Kalinowski, J. Godlewski, R. Signerski, Electroluminescence in tetracene crystals, Mol. Cryst. Liq. Cryst. 33 (1976) 247 -259.

DOI: 10.1080/15421407608084300

Google Scholar

[12] T. C. Werner, J. Chang, D. M. Hercules, Electrochemiluminescence of perylene. The role of direct excimer formation, J. Am. Chem. Soc. 92 (1970) 763.

DOI: 10.1021/ja00722a005

Google Scholar

[13] D. F. Williams, M. Schadt, DC and pulsed electroluminescence in anthracene and doped anthracene crystals, J. Chem. Phys. 53 (1970) 3480-3487.

DOI: 10.1063/1.1674521

Google Scholar

[14] H. P. Schwob, D. Weitz, D. F. Williams, The variation of the carrier recombination region with carrier density in anthracene crystals, Mol. Cryst. Liq. Cryst. 24 (1973) 271-282.

DOI: 10.1080/15421407308084237

Google Scholar

[15] L. L. T. Bradrey, H. P. Schwob, D.Weitz, D. F.Williams, Delayed electroluminescence quenching in anthracene, Mol. Cryst. Liq. Cryst. 23 (1973) 271-282.

DOI: 10.1080/15421407308083377

Google Scholar

[16] W. Hwang, K. C. Kao, On the theory of filamentary double injection and electroluminescence in molecular crystals, J. Chem. Phys.60 (1974) 3845-3855.

DOI: 10.1063/1.1680828

Google Scholar

[17] M. Witter, I. Zschokke-Granacher, Exciton–charge carrier interactions in the electroluminescence of crystalline anthracene, J. Chem. Phys. 63 (1975) 4187-4194.

DOI: 10.1063/1.431177

Google Scholar

[18] F. Lohmann, W. Mehl, Dark injection and radiative recombination of electrons and holes in naphthalene crystals,J. Chem. Phys. 50 (1969) 500-506.

DOI: 10.1063/1.1670827

Google Scholar

[19] N.E. Geacintov, M.Binder, C. E. Swenberg, M. Pope, Exciton dynamics in –particle tracks in organic crystals: magnetic field study of the scintillation in tetracene crystals, Phys. Rev. B12 (1975) 4113-4134.

DOI: 10.1103/physrevb.12.4113

Google Scholar

[20] J. Kalinowski, J. Godlewski, Magnetic field effects on recombination radiation in tetracene crystal, Chem. Phys. Lett.36 (1975) 345-348.

DOI: 10.1016/0009-2614(75)80252-1

Google Scholar

[21] J. Glinski, J. Godlewski, J. Kalinowski, Spatial distribution of the distribution of the electroluminescence and the recombination process in tetracene single crystals, Mol. Cryst. Liq. Cryst. 48 (1977) 1-25.

DOI: 10.1080/00268947808083749

Google Scholar

[22] G. G. Roberts, B. S. Keating, P. S. Vincett, W. A. Barlow, Electroabsorption in disordered solids. II. Anthracene crystals and thin films, J. Phys. C: Solid StatePhys. 11(1978)3847-3855.

DOI: 10.1088/0022-3719/11/18/020

Google Scholar

[23] P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films, Thin Solid Films 94 (1982)171-183.

DOI: 10.1016/0040-6090(82)90509-0

Google Scholar

[24] N. P. Sinha, Y. Misra, L. N. Tripathi, M. Misra, Electro-optical properties of doped anthracene films, Solid State Commun. 39 (1981) 89 -91.

DOI: 10.1016/0038-1098(81)91053-x

Google Scholar

[25] R. M. Burgess, M. Gouterman, G. E. Khalil, Novel ultraviolet electroluminescence from Al/octaethylporphyrin/Ag film sandwich cells, J. Lumin. 28 (1983) 377-384.

DOI: 10.1016/0022-2313(83)90006-6

Google Scholar

[26] G. G. Roberts, M. McGinnity, P. S. Vincett, W. A. Barlow, Electroluminescence, photoluminescence and electroabsorption of a lightly substituted anthracene langmuir film, Solid State Commun.32 (1979) 683-686.

DOI: 10.1016/0038-1098(79)90728-2

Google Scholar

[27] C.Adachi, T. Tsutsui, Molecular LED: Design Concept of Molecular Materials for High-Performance OLED, in:J. Shinar (Ed.), Organic Light-Emitting Diodes, Springer, Berlin 2004, pp.43-70.

DOI: 10.1007/978-0-387-21720-8_2

Google Scholar

[28] P. H. Partridge, Electroluminescence from polyvinylcarbazole films. 1.Carbazole cations, Polymer 24 (1983)733-738.

DOI: 10.1016/0032-3861(83)90012-5

Google Scholar

[29] P. H. Partridge, Electroluminescence from polyvinylcarbazole films. 2. Polyvinylcarbazole films containing antimony pentachloride, Polymer 24 (1983) 739- 747.

DOI: 10.1016/0032-3861(83)90013-7

Google Scholar

[30] P. H. Partridge, Electroluminescence from polyvinylcarbazole films.3. Electroluminescent devices, Polymer 24 (1983) 748-754.

DOI: 10.1016/0032-3861(83)90014-9

Google Scholar

[31] P. H. Partridge, Electroluminescence from polyvinylcarbazole films. 4.Electroluminescence using higher work function cathodes, Polymer 24 (1983) 755-762.

DOI: 10.1016/0032-3861(83)90015-0

Google Scholar

[32] S. Hayashi, H. Etoh, S. Saito, Electroluminescence of perylene films with a conducting polymer as an anode, Jpn. J. Appl. Phys. 25 (1986) L773-L775.

DOI: 10.1143/jjap.25.l773

Google Scholar

[33] N.C. Greenham, R.H. Friend, In Solid State Physics, Academic Press, New York, London, 1995, 2-150.

Google Scholar

[34] M.A. Baldo, D.F.O'Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 395 (1998)151 - 154.

DOI: 10.1038/25954

Google Scholar

[35] C Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light emitting device, J. Appl. Phys. 90 (2001) 5048 -5051.

DOI: 10.1063/1.1409582

Google Scholar

[36] M. Hack, R. Hewitt, K. Urbanik, A. Chwang, J.J. Brown, Full colour top emission AMOLED displays on flexible metal foil, Proceedings of the IMID/IDMC'06 Digest Conference, Daegu, South Korea, 2006, 305-307.

Google Scholar

[37] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature 492 (2012)234 -238.

DOI: 10.1038/nature11687

Google Scholar

[38] J. Kalinowski, Electroluminescence in organics, J. Phys. D: Appl. Phys.32 (1999) R179 – R250.

DOI: 10.1088/0022-3727/32/24/201

Google Scholar

[39] L. S. Hung, C. H. Chen, Recent progress of molecular organic electroluminescent materials and devices, Materials Science and Engineering R39 (2002) 143 - 222.

DOI: 10.1016/s0927-796x(02)00093-1

Google Scholar

[40] S. Reineke, M. Thomschke, B. Lussem, K.Leo, White organic light-emitting diodes: Status and perspective, Rev. Modern Phys. 85 (2013) 1245 -1293.

DOI: 10.1103/revmodphys.85.1245

Google Scholar

[41] J. Shinar, Organic Light-Emitting Diodes, Springer Berlin 2004.

Google Scholar

[42] J. Kalinowski, Organic Light Emitting Diodes, Principles, Characteristics and Processes, Marcel Dekker, New York, 2005.

Google Scholar

[43] M. Pfeiffer, S. R. Forrest, in Nanoelectronics and Information Technology: Advanced Materials and Novel Devices, (edited by Rainer Waster). Wiley – VCH GmbH & Co. KGaA Weinheim, (2003), pp.917-931.

Google Scholar

[44] H. Yersin (Ed.), Highly Efficient OLEDs with Phosphorescent Materials, Wiley-VCH, Weinheim, 2009.

Google Scholar

[45] I.H. Chambell, B.K. Crone, D.L. Smith, Physics of Organic Light Emitting Diodes, in: G. Hadiziioannou, G.G. Malliaras (Eds.), Semiconducting Polymers, Wiley-VCH, Weinheim, 2007.

Google Scholar

[46] Z. Kafafi (Ed.), Organic Electroluminescence, CRC Press Taylor & Francis Group, Boca Raton, Fluorida, USA (2005).

Google Scholar

[47] M. Mazzeo, Organic Light Emitting Diode, SciyoJaneza Trdine, Rijeka, Croatia (2010).

Google Scholar

[48] S. J. Martin, "Simulations of Charge Transport in Organic Light Emitting Diodes" (University of Bath, PhD Thesis, Bath, 2002).

Google Scholar

[49] K. Müllen, U. Scherf, "Organic Light-Emitting Devices: Synthesis, Properties and Applications" (WILEY-VCH, Singapore, 2006).

Google Scholar

[50] J. Shinar, Organic Light-Emitting Devices, AIP press (2002).

Google Scholar

[51] Deepak, Organic electronics: successes in organic light emitting diodes and display technology, Materials Science Forum736 (2013) 241 -249.

DOI: 10.4028/www.scientific.net/msf.736.241

Google Scholar

[52] N. G. Pillow, M. Halim, J. M. Lupton, P. L Burn, I. D. W. Samuel, A facile iterative procedure for the preparation of dendrimers containing luminescent cores and stilbene dendrons, Macromolecules 32 (1999) 5985-5993.

DOI: 10.1021/ma981871k

Google Scholar

[53] P.R. Emtage, J.J. O'Dwyer, Richardson-Schottky effect in insulators, Phys. Rev. Lett. 16 (1966) 356-358.

DOI: 10.1103/physrevlett.16.356

Google Scholar

[54] Y. Gartstein, E.M. Conwell, Field-dependent thermal injection into a disordered molecular insulator, Chem. Phys. Lett. 255 (1996) 93-98.

DOI: 10.1016/0009-2614(96)00359-4

Google Scholar

[55] M. Abkowitz, H. Mize, K. Facci, Emission limited injection by thermally assisted tunneling into a trap-free transport polymer, Appl. Phys. Lett. 66 (1995)1288-1290.

DOI: 10.1063/1.113272

Google Scholar

[56] P. He, S. D. Wang, W. K. Wong, C. S Lee, S. T. Lee, Vibrational and photoemission study of the interface between phenyl diamine and indium tin oxide, Appl. Phys. Lett. 79 (2001) 1561-1563.

DOI: 10.1063/1.1399314

Google Scholar

[57] G. Greczynski, M. Fahlman, W. R. Salaneck, Hybrid interfaces of poly(9,9-dioctylfluorene) employing thin insulating layers of CsF: A photoelectron spectroscopy study, J. Chem, Phys. 114 (2001) 8628-8636.

DOI: 10.1063/1.1367260

Google Scholar

[58] Y. Yang, A.J. Heeger, Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency, Appl. Phys. Lett. 64 (1994) 1245-1247.

DOI: 10.1063/1.110853

Google Scholar

[59] J. Godlewski, J. Kalinowski,Injection limited currents in insulators, Japan. J. Appl. Phys.28(1989) 24-38.

DOI: 10.1143/jjap.28.24

Google Scholar

[60] I. Esaki,Tunnelling Phenomena in Solids ed E Burnstein and C Lundqvist (New York: Plenum)1969, p.47–48

Google Scholar

[61] D. F. Blossey, One dimensional Onsager theory for carrier injection in metal – insulator systems, Phys. Rev. B 9 (1974) 5183-87.

DOI: 10.1103/physrevb.9.5183

Google Scholar

[62] R.H. Parmeter, W. Ruppel, Two carrier space charge limited current in a trap free insulator, J. Appl. Phys. 30 (1959) 1548-1558.

DOI: 10.1063/1.1734999

Google Scholar

[63] J. Godlewski, Currents and photocurrents in organic materials determined by the interface phenomena, Adv. Colloid and Interface Science 116 (2005) 227-243.

DOI: 10.1016/j.cis.2005.04.004

Google Scholar

[64] D. Braun, A.J. Heeger, Visible light emission from semiconducting po;ymer diodes, Appl. Phys. Lett. 58 (1991) 1982- 1984.

DOI: 10.1063/1.106423

Google Scholar

[65] I. D. Parker, Carrier tunneling and device characteristics in polymer light emitting diodes, J. Appl. Phys. 75 (1994) 1656-1666.

DOI: 10.1063/1.356350

Google Scholar

[66] N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barriere, J.P. Parneix, L. Aubouy, P. Gerbier, Injection and transport processes in organic light emitting diodes based ona silole derivative, J. Appl. Phys. 99 (2006) 084907-1-084907-6.

DOI: 10.1063/1.2190714

Google Scholar

[67] H. A. Méndez-Pinzón, D. R. Pardo-Pardo, J.P. Cuéllar-Alvarado, J. C. Salcedo-Reyes, R. Vera, B. A. Páez-Sierra, Analysis of the current-voltage characteristics of polymer-basedorganic light-emitting diodes (OLEDs) deposited by spin coating, Universitas Scientiarum, 15 (2010) 68-76.

DOI: 10.11144/javeriana.sc15-1.aotc

Google Scholar

[68] J. C. Scott, Metal–organic interface and charge injection in organic electronic devices, J. Vac. Sci. Technol. A 21 (2003) 521-531.

Google Scholar

[69] Y. Shen, G. G. Malliaras, Charge injection into organic semiconductors, The Spectrum 13 (2000) 1–4.

Google Scholar

[70] F. Gutmann, L. E. Lyons, Organic Semiconductors. John Wiley & Sons, Inc.,1967.

Google Scholar

[71] W. D. Gill, Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole, J. Appl. Phys. 43 (1972) 5033–5040.

DOI: 10.1063/1.1661065

Google Scholar

[72] P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene), Phys.Rev. B55 (1997) 656–659.

DOI: 10.1103/physrevb.55.r656

Google Scholar

[73] T. Mori, T. Ogawa, D. Cho, T. Mizutani, A discussion of conduction in organic light-emitting diodes, Appl. Sur. Sci. 212-213 (2003)458-463.

DOI: 10.1016/s0169-4332(03)00465-3

Google Scholar

[74] A. J. Campbell, D. Bradley, H. Antoniadis, M. Inbasekaran, W. Wu, E. Woo, Transient and steady-state space-charge-limited currents in polyfluorene copolymer diode structures with ohmic hole injecting contacts, Appl. Phys. Lett. 76 (2000) 1734-1736.

DOI: 10.1063/1.126182

Google Scholar

[75] C. Giebeler, H. Antoniadis, D. Bradley, Y. Shirota, Space-charge-limited charge injection from indium tin oxide into a starburst amine and its implications for organic light-emitting diodes, Appl. Phys. Lett. 72 (1998)2448-2450.

DOI: 10.1063/1.121392

Google Scholar

[76] P.E. Burrows, Z. Shen, V. Bulovic, D.M. McCarty, S.R. Forrest, J.A. Cronin, M.E. Thompson, Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices, J. Appl. Phys.79 (1996)7991-8006.

DOI: 10.1063/1.362350

Google Scholar

[77] P. Langevin, Recombinaison et mobilites des ions dans les gaz, Ann. Chem. Phys. 28 (1903) 433-450.

Google Scholar

[78] J.J. Thomson, Recombination of gaseous ions, the chemical combination of gases, and mono-molecular reactions, Phil. Mag. 47 (1924) 337-378.

Google Scholar

[79] M. Lax, Cascade capture of electrons in solids, Phys. Rev. 119 (1960) 1502.

DOI: 10.1103/physrev.119.1502

Google Scholar

[80] R. Morris, M. J. Silver, Direct electron-hole recombination in anthracene, Chem. Phys. 50 (1969) 2969-2973.

DOI: 10.1063/1.1671492

Google Scholar

[81] M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals; Clarendon: Oxford, New York, 1982.

Google Scholar

[82] O. Mikhnenko, Singlet and Triplet Excitons in Organic Semiconductors, PhD Thesis, University of Groningen, the Netherlands, 2012.

Google Scholar

[83] D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys.21 (1953) 836-850.

Google Scholar

[84] D. L. Dexter, R. S. Knox, T. Förster, The radiationless transfer of energy of electronic excitation between impurity molecules in crystals, Phys. Status Solidi B34 (1969) K159-K162.

DOI: 10.1002/pssb.19690340264

Google Scholar

[85] G. D. Scholes, Long-range resonance energy transfer in molecular systems, Ann. Rev. Phys. Chem. 54 (2003) 57-87.

DOI: 10.1146/annurev.physchem.54.011002.103746

Google Scholar

[86] W. A. Luhman, R. J. Holmes, Investigation of energy transfer in organic photovoltaic cells and impact on exciton diffusion length measurements, Adv. Funct. Mater. 21 (2011) 764-771.

DOI: 10.1002/adfm.201001928

Google Scholar

[87] V. Cleave, G. Yahioglu, P. L. Barny, R. H. Friend, N. Tessler, Harvesting singlet and triplet energy in polymer LEDs, Adv. Mater. 11(1999) 285-288.

DOI: 10.1002/(sici)1521-4095(199903)11:4<285::aid-adma285>3.0.co;2-n

Google Scholar

[88] J. Kalinowski, W. Stampor, M. Cocchi, D. Virgili, V. Fattori, P. Di Marco, Triplet energy exchange between fluorescent and phosphorescent organic molecules in a solid state matrix, Chem.Phys. 297 (2004) 39-48.

DOI: 10.1016/j.chemphys.2003.09.041

Google Scholar

[89] A. Köhler, H. Bässler, Triplet states in organic semiconductors, Mater. Sci. Eng. R 66 (2009) 71-109.

Google Scholar

[90] R. Wyckhoff, Crystal Structures, New York: Wiley 1963, 1 - 28.

Google Scholar

[91] M. Schwoerer, H.C. Wolf, Organic Molecular Solids, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.

Google Scholar

[92] T. Ishida, H. Kobayashi, Y. Nakato. Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements, J. Appl. Phys. Lett. 73 (1993) 4344 -4350.

DOI: 10.1063/1.352818

Google Scholar

[93] T. Osada, T. Kugler, P. Broms, W. Salaneck. Polymer-based light-emitting devices: investigations on the role of the indium—tin oxide (ITO) electrode, Synth. Met. 96 (1998) 77-80.

DOI: 10.1016/s0379-6779(98)00069-1

Google Scholar

[94] J. Kim, M. Granstrom, R. Friend, N. Johansson, W. Salaneck. Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance, J. Appl. Phys. 84 (1998) 6859-6870.

DOI: 10.1063/1.368981

Google Scholar

[95] T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S.H. Bae, B H Hong, J.H. Ahn, T.W. Lee, Extremely efficient flexible organic light – emitting diodes with modified grapheme anode, Nat. Photonics 6 (2012) 105-110.

DOI: 10.1038/nphoton.2011.318

Google Scholar

[96] L. Duan, L. Hou, T. W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, Y. Qiu, Solution processable small molecules for organic light emitting diodes, J. Mat. Chem. 20 (2010) 6392-6407.

DOI: 10.1039/b926348a

Google Scholar

[97] C.W. Tang, S. A. VanSlyke, C. H. Chen. Electroluminescence of doped organic thin films, J. Appl. Phys. 65 (1989) 3610-3616.

DOI: 10.1063/1.343409

Google Scholar

[98] T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, M. Tsuchida. Organic EL cells using alkalinemetal compounds as electron injection material, IEEE Trans. Electron Dev. 44 (1997) 1245-1248.

DOI: 10.1109/16.605462

Google Scholar

[99] G. E. Jabbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian. Aluminium based cathode structure for enhanced electron injection in electroluminescent organic devices, Appl. Phys. Lett. 73 (1998) 1185-1187.

DOI: 10.1063/1.122367

Google Scholar

[100] F. Li, H. Tang, J. Anderegg, J. Shinar.Fabrication and electroluminescence of double-layered organic light-emitting diodes with the cathode, Appl. Phys. Lett. 70 (1997)1233-1235.

DOI: 10.1063/1.118539

Google Scholar

[101] S. J. Kang, D.S. Park, S. Y. Kim, C. N. Whang, K. Jeong, S. Im, Enhancing the electroluminescent properties of organic light-emitting devices using a thin NaCl layer, Appl. Phys. Lett. 81 (2002) 2581.

DOI: 10.1063/1.1511817

Google Scholar

[102] L. S. Hung, R.Q. Zhang, P. He, G. Mason, Contact formation of LiF/Al cathodes in Alq-based organic light-emitting diodes, J. Phys. D: Appl. Phys. 35 (2002) 103-107.

DOI: 10.1088/0022-3727/35/2/302

Google Scholar

[103] Z. Y. Zhong, Y. D. Jiang.The effect of electrode materials on the performance of OLEDs, Proc. SPIE 6030 (2006)122-129.

Google Scholar

[104] W. Brutting, S. Berleb, A.G. Muckl, Device physics of organic light-emitting diodes based on molecular materials, Organic Electronics 2 (2001) 1-36.

DOI: 10.1016/s1566-1199(01)00009-x

Google Scholar

[105] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki and Y. Taga, Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer, Appl. Phys. Lett. 79 (2001) 156 -158.

DOI: 10.1063/1.1385182

Google Scholar

[106] S. Kappaun, C. Slugovc,E. J. W. List, Phosphorescent organic light-emitting devices: working principle and iridium based emitter materials, Int. J. Mol. Sci. 9 (2008) 1527-1547.

DOI: 10.3390/ijms9081527

Google Scholar

[107] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E., Thompson, S. R. Forrest, Very high-efficiency green organic light-emitting devices based on , Appl. Phys. Lett. 75 (1999) 4 -6.

DOI: 10.1063/1.124258

Google Scholar

[108] A. Kohle, J. S. Wilson, R. H. Friend, Fluorescence and phosphorescence in organic materials,Advanced Materials14 (2002) 701-707.

Google Scholar

[109] Y. Kawamura, S. Yanagida, S. R. Forrest, Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers,J. Appl. Phys., 92 (2002) 87-93.

DOI: 10.1063/1.1479751

Google Scholar

[110] K. M. Vaeth, C. W. Tang, Light emitting diodes based on phosphorescent guest/polymeric host systems, J. Appl. Phys. 92 (2002) 3447 - 3453.

DOI: 10.1063/1.1501748

Google Scholar

[111] M.A. Baldo, C. Adachi, S.R. Forrest, Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation, Phys. Rev. B: Condensed Matter 62 (2000)10967-10977.

DOI: 10.1103/physrevb.62.10967

Google Scholar

[112] M.A. Baldo, M.E. Thompson, S.R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer, Nature 403 (2000) 750 -753.

DOI: 10.1038/35001541

Google Scholar

[113] C. Adachi, M.A. Baldo, S.R. Forrest, M.E. Thompson, High-efficiency organicelectrophosphorescent devices with tris.2-phenylpyridine.iridium doped into electron-transporting materials,Appl. Phys. Lett. 77 (2000) 904 -906.

DOI: 10.1063/1.1306639

Google Scholar

[114] A.Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi, Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes, Appl. Phys. Lett. 98 (2011) 083302-1-083302-3.

DOI: 10.1063/1.3558906

Google Scholar

[115] Optoelectronics Industry Development Association (OIDA) 2002 Organic light emitting diodes (OLEDs) for general illumination, update Report August2002.

Google Scholar

[116] K.T. Kamtekar, A.P. Monkman, M.R. Bryce, Recent advances in white organic light emiting materials and devices (WOLEDs), Advanced Materials22 (2010) 572-582.

DOI: 10.1002/adma.200902148

Google Scholar

[117] R.J. Holmes, S. R. Forrest, Y. J. Tung, R.C. Kwong, J. J. Brown, S. Garon, M.E. Thompson. Blue organic electrophosphorescence using exothermic host–guest energy transfer, Appl. Phys. Lett. 82 (2003) 2422 -2424.

DOI: 10.1063/1.1568146

Google Scholar

[118] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S.R. Forest,Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 395 (1998) 151 -154.

DOI: 10.1038/25954

Google Scholar

[119] G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Vankatsh, S. R. Forrest, M. E. Thompson. High-external-quantum-efficiency organic light-emitting devices, Opt. Lett. 22 (1997) 396-398.

DOI: 10.1364/ol.22.000396

Google Scholar

[120] C. F. Madigan, M. H. Lu, J. C. Sturm, Improvement of output coupling efficiency of organic light emitting diodes by backside substrate modification, Appl. Phys. Lett. 76 (2000) 1650 - 1652.

DOI: 10.1063/1.126124

Google Scholar

[121] S. Moller, S. R. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays, J. Appl. Phys.91 (2002) 3324-3327.

DOI: 10.1063/1.1435422

Google Scholar

[122] B W. D'Andrade, J. Brooks, V. Adamovich, M. E. Thompson, S. R. Forrest,White light emission using triplet excimers in electrophosphorescent organic light-emitting devices, Adv. Mater. 15 (2002) 1032 -1036.

DOI: 10.1002/1521-4095(20020805)14:15<1032::aid-adma1032>3.0.co;2-6

Google Scholar

[123] J. Lim, S. S. Oh, D. Y. Kim, S. H. Cho, I. T. Kim, S. H. Han, H. Takezoe, E.H. Choi, G.S. Cho, Y.H. Seo, S.O. Kang, B. Park, Enhanced out-coupling factor of microcavity organic light-emitting devices with irregular microlens array, Opt. Exp. 14 (2006) 6564-6571.

DOI: 10.1364/oe.14.006564

Google Scholar

[124] H. Peng, Y. L. Ho,X. J. Yu, M. Wong, H. S. Kwok, Coupling efficiency enhancement in organic light-emitting devices using microlens array-theory and experiment, J. Displ. Technol. 1(2005) 278-282.

DOI: 10.1109/jdt.2005.858944

Google Scholar

[125] T. Yamasaki, K. Sumioka, T. Tsutsui,Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium, Appl. Phys. Lett. 76 (2000) 1243-1245.

DOI: 10.1063/1.125997

Google Scholar

[126] K. Neyts, A. U. Nieto,Importance of scattering and absorption for the outcoupling efficiency in organic light-emitting devices, J. Opt. Soc. Am. A 23 (2006) 1201-1206.

DOI: 10.1364/josaa.23.001201

Google Scholar

[127] M. H. Lu, C. F. Madigan, J. C. Strurm,Improved external coupling efficiency in organic light-emitting devices on high-index substrates, International Electron Devices Meeting 2000 (IEDM) 007, 607-610.

DOI: 10.1109/iedm.2000.904393

Google Scholar

[128] T. Tsutsui, M. Tahiro, H. Yokogawa, K. Kawano, M. Yokoyama,Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer, Adv. Mater. 13 (2001)1149-1152.

DOI: 10.1002/1521-4095(200108)13:15<1149::aid-adma1149>3.0.co;2-2

Google Scholar

[129] C. Liu, V. Kamaev, Z. V. Vardeny,Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array, Appl. Phys. Lett. 86 (2005)143501-1-143501-2.

DOI: 10.1063/1.1895481

Google Scholar

[130] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forest, Endothermic energy transfer. A mechanism for generating very efficient high-energy phosphorescent emission in organic materials, Appl. Phys. Lett. 79 (2001) 2082-2084.

DOI: 10.1063/1.1400076

Google Scholar

[131] L. Do, E. Han, N. Yamamoto, M. Fujihira. Thermal stabilities of organic layer in electroluminescent devices, Mol. Cryst. Liq. Cryst. 280 (1996) 373-378.

Google Scholar

[132] P. Tyagi, R. Srivastava, A. Kumar, V. K. Rai, R. Grover, M. N. Kamalasanan, White electroluminescence from stacked organic light emitting diode,Synthetic Metals 160 (2010) 756-761.

DOI: 10.1016/j.synthmet.2010.01.016

Google Scholar

[133] Q. Y. Zhang, K. Pita, W. Ye, W.X. Que, Influence of annealing atmosphere and temperature on photoluminescence of Tb 3+ or Eu 3+-activated zinc silicate thin film phosphors via sol-gel method, Chem. Phys. Lett. 351 (2002) 163-170.

DOI: 10.1016/s0009-2614(01)01370-7

Google Scholar

[134] Q.Y. Zhang, K. Pita, S. Buddhudu, C. H. Kam, Luminescent properties of rare-earth ion doped yttrium silicate thin film phosphors for a full-colour display, J. Phys. D 35 (2002) 3085-3090.

DOI: 10.1088/0022-3727/35/23/308

Google Scholar

[135] W. R. Stevens, Building Physics : Lighting. London : Pergamon Press, 1969, 66.

Google Scholar

[136] J. E. Kaufman, J. F. Christensen, Lighting hand book. Maryland: Waverly Press, 1972, 48.

Google Scholar

[137] G. Wyszelki, W.S. Stiles, Color Science, 2nd ed., Wiley, New York (1982).

Google Scholar

[138] C. Adachi, M. A. Baldo, S. R. Forrest,M. E. Thompson, High efficiency organic electrophosphorescent devices with tris (2-phenylpyridine) iridium doped into electron – transporting materials, Appl. Phys. Lett. 77 (2000) 904-906.

DOI: 10.1063/1.1306639

Google Scholar

[139] S.T. Lee, Z.Q. Gao, L.S. Hung, Metal diffusion from electrodes in organic light-emitting diodes, Appl. Phys. Lett. 75 (1999) 1404-1406.

DOI: 10.1063/1.124708

Google Scholar

[140] K. A. Higginson, X.M. Zhang, F. Papadimitrakopoulos, Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3), Chem. Mater. 10 (1998) 1017-1020.

DOI: 10.1021/cm970599a

Google Scholar

[141] D.Y. Kondakov, J.R. Sandifer, C.W. Tang, R.H. Young, Nonradiative recombination centres and electrical aging of organic light-emitting diodes: direct connection between accumulation of trapped charge and luminance loss, J. Appl. Phys. 93 (2003) 1108-1119.

DOI: 10.1063/1.1531231

Google Scholar

[142] P.E. Burrows, V. Bulovic, S.R. Forrest, L.S. Sapochak, D.M. McCarty, M. E. Thompson, Reliability and degradation of organic light emitting devices, Appl. Phys. Lett. 65 (1994)2922 -2924.

DOI: 10.1063/1.112532

Google Scholar

[143] H. Aziz, Z. Popovic, S. Xie, A.M. Hor, N. X. Hu, C. Tripp, G. Xu, Humidity-induced crystallization of tris(8-hydroxyquinoline) aluminum layers in organic light emitting devices, Appl. Phys. Lett. 72 (1998) 756 -758.

DOI: 10.1063/1.120867

Google Scholar

[144] B. H. Cumpston, K.F. Jensen, Electromigration of aluminum cathodes in polymer-based electroluminescent devices, Appl. Phys. Lett. 69 (1996) 3941 -3943.

DOI: 10.1063/1.117577

Google Scholar

[145] J. S. Kim, P. K. H. Ho, N. C. Greenham, R. H. Friend, Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations, J. Appl. Phys. 88 (2000) 1073– 1081.

DOI: 10.1063/1.373779

Google Scholar

[146] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. New York:Wiley-Interscience, 2007.

Google Scholar

[147] G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E.Thompson, High-external-quantum-efficiency organic light-emitting devices, Optics Letters 22 (1997) 396 -398.

DOI: 10.1364/ol.22.000396

Google Scholar

[148] W. Holzer, A. Penzkofer, T. Tsuboi, Absorption and emission spectroscopic characterization of Ir(ppy)3, Chem. Phys. 308 (2005) 93-102.

DOI: 10.1016/j.chemphys.2004.07.051

Google Scholar

[149] L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, W. L. Barnes, Light out-coupling efficiencies of organic light – emitting diode structures and the effect of photoluminescence quantum yield, Adv. Funct. Mat. 15 (2005) 1839-1844.

DOI: 10.1002/adfm.200500283

Google Scholar

[150] J. Kalinowski, N. Camaioni, P. Di Marco, V. Fattori, A. Martelli, Kinetics of charge carrier recombination in organic light-emitting diodes, Appl. Phys. Lett. 72 (1998) 513 -515.

DOI: 10.1063/1.120805

Google Scholar

[151] D.G. Moon, R.B. Pode, C.J. Lee, J.I. Hars, Transient electrophosphorescence in red top-emitting organic light-emitting devices, Appl. Phys. Lett. 85 (2004) 4771-4773.

DOI: 10.1063/1.1815372

Google Scholar

[152] A. Teramura, Y. Nanko, Y. Sakuma, Y. Satoh, S. Kojima, K. Kasahara, T.Ohatsuka, N. Miyura, Markedly different rise and fall times in transient electroluminescence of 4,4'-N,N'-dicarbazolylbiphenyl:fac-tris(2-phenylpyridinate) iridium(III)-based organic light emitting diodes, Jpn. J. Appl. Phys. 48 (2009)111505-1-111505-5.

DOI: 10.1143/jjap.48.111505

Google Scholar

[153] V.R. Nikitenko, V. I.Arkhipov, Y. H. Tak, J. H. Pommerehne, H. Bassler, H, Horhold, The overshoot effect in transient electroluminescence from organic bilayer light emitting diodes: Experiment and theory, J. Appl. Phys. 81 (1997) 7514-7525.

DOI: 10.1063/1.365293

Google Scholar

[154] J. M.Lupton, V. R.Nikitenko, I. D. W. Samuel, H.Bassler, Time delayed electroluminescence overshoot in single layer polymer light – emitting diodes due to electrode luminescence quenching, J. Appl. Phys. 89 (2001) 311-317.

DOI: 10.1063/1.1331066

Google Scholar

[155] V. K. Chandra, M. Tiwari, B.P. Chandra, M. Ramrakhiani, Electroluminescence overshoot effect in single layer pulsed organic light emitting diodes, Synthetic Met. 161 (2011) 460 -465.

DOI: 10.1016/j.synthmet.2010.12.029

Google Scholar

[156] V.K. Chandra, B.P. Chandra, M. Tiwari, R.N. Baghel, M. Ramrakhiani, Modeling of transient electroluminescence overshoot in bilayer organic light-emitting diodes using rate equations, J. Lumin. 132 (2012)1532 -1539.

DOI: 10.1016/j.jlumin.2012.01.033

Google Scholar

[157] M. Tiwari, V.K. Chandra, B.P. Chandra, M. Ramrakhiani, Delayed electroluminescence in organic light emitting diodes, Int. J. Pure and Appl. Phys. 6 (2010)251 -256.

Google Scholar

[158] B.P. Chandra, V.K. Chandra, Proceedings of the National Conference on Luminescence and its Application (NCLA-2006), held at Amravati University, Amravati(Maharastra), India, (February 7-9, 2006, pp.27-32).

Google Scholar

[159] V.K. Chandra, B.P. Chandra, Transient electroluminescence in heavy metal complex-based phosphorescent organic light-emitting diodes, Organic Electronics 13 (2012)329 -334.

DOI: 10.1016/j.orgel.2011.11.003

Google Scholar

[160] G. Parthasarathy, J. Liu, A. R. Duggal, Organic light emitting devices from displays to lighting, The Electrochemical Society Interface, Summer 2003, pp.42-47.

DOI: 10.1149/2.f10032if

Google Scholar

[161] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bre das, M. LoÈ gdlund, W. R. Salaneck, Electro-luminescence in conjugated polymers, Nature 397 (1999) 121-128.

DOI: 10.1038/16393

Google Scholar

[162] S.R. Forest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature 428 (2004) 911-918.

DOI: 10.1038/nature02498

Google Scholar

[163] J. Zmija, M.J. Malachowski , Organic light emitting diode: Operation and application in displays, Archives of Materials Science and Engineering 40 (2009) 5 -12.

Google Scholar

[164] C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz, Multi-colour organic light-emitting displays by solution processing, Nature 421 (2003) 829-833.

DOI: 10.1038/nature01390

Google Scholar

[165] K. Chung, J. Choi, J. Jung, B. Choi, J. Chung, B.-W. Lee, Ch. Chu, Is AMOLED TV to enter the battle for large-screen, FPD dominance, Information Display 2/6 (2006) 12-17.

Google Scholar

[166] "Sony Launches World's First OLED TV" on-line press release. Sony Corp. [Online]. Available:http://www.sony.net/SonyInfo/News/Press/200710/07-1001E/

Google Scholar

[167] I. Yagi, N. Hirai, M. Noda, A. Imaoka, Y. Miyamoto, N. Yoneya, K. Nomoto, J. Kasahara, A. Yumoto, T. Urabe, SID Symposium Digest of Technical Papers 38 (2007) 1753.

DOI: 10.1889/1.2785666

Google Scholar

[168] I. Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kasahara, A. Yumoto, T. Urabe, A flexible full-colour AMOLED display driven by OTFTs, Journal of SID 16/1 (2008) 15 -19.

DOI: 10.1889/1.2835023

Google Scholar

[169] A. R. Duggal, D. F. Foust, W. F. Nealon, C. M. Heller, Organic Light-Emitting Materials and Devices VII, edited by Zakya H. Kafafi, Paul A. Lane, Proceedings of SPIE Vol. 5214 (SPIE, Bellingham, WA, 2004) pp.241-247.

DOI: 10.1117/12.511477

Google Scholar

[170] K. T. Kamtekar, A. P. Monkman, M. R. Bryce, Recent advances in white organic light-emitting materials and devices (WOLEDs), Adv. Mater. 21 (2009) 1–11.

DOI: 10.1002/adma.200902148

Google Scholar

[171] M.N. Kamalasanan, R. Srivastava, G. Chauhan, A. Kumar, P. Tayagi, A. Kumar, Organic Light Emitting Diodes for White Light Emission, in Organic Light Emitting Diode, Marco Mazzeo (Ed.), InTech Europe University Campus STeP Ri Slavka Krautzeka 83/A 51000 Rijeka, Croatia. (2010). pp.179-224.

DOI: 10.5772/9892

Google Scholar

[172] J. J. Shiang, Organiclight emitting devices for lighting,The Electrochemical Society Interface,Winter 2009, pp.37-41.

Google Scholar

[173] B.W. D'Andrade, S.R. Forrest, Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer, Advanced Materials 16 (2004)624-628.

DOI: 10.1002/adma.200306670

Google Scholar

[174] N. Ide, H. Tsuji, N. Ito, H. Sasaki, T. Nishimori, Y. Kuzuoka, K. Fujihara, T. Miyai, T. Komoda, High-performance OLEDs and their application to lighting, Proc. of SPIE , 7051 (2008) 705119-1-705119-10.

DOI: 10.1117/12.798190

Google Scholar

[175] H. Sasabe, J. Kido, Multifunctional materials in high-performance OLEDs: challenges for solid –state lighting, Chem. Mater. 23 (2011) 621–630.

DOI: 10.1021/cm1024052

Google Scholar

[176] P. Loebl, V. Elsbergena, H. Boernera, C. Goldmanna, S. Grabowskia, Organic Light Emitting Materials and Devices XIII, edited by Franky So, Chihaya Adachi, Proc. of SPIE Vol. 7415 (2009) 74151A ·

DOI: 10.1117/12.846115

Google Scholar

[177] R. Pode, B. Diouf, Solar Lighting, Springer, London Dordrecht Heidelberg, New York, 2011, pp.97-150.

Google Scholar

[178] N. Thejo Kalyani, S.J. Dhoble, Novel approaches for energy efficient solid state lighting by RGB organic light emitting diodes – A review, Renewable and Sustainable Energy Reviews 32 (2014) 448 - 467.

DOI: 10.1016/j.rser.2014.01.013

Google Scholar

[179] N. Thejo Kalyani, S.J. Dhoble, Organic light emitting diodes: Energy saving lighting technology—A review, Renewable and Sustainable Energy Reviews 16 (2012) 2696 - 2723.

DOI: 10.1016/j.rser.2012.02.021

Google Scholar

[180] A. De Almeida, B. Santos, B. Paolo, M. Quicheron, Solid state lighting review – Potential and challenges in Europe, Renewable and Sustainable Energy Reviews 34 (2014) 30-48.

DOI: 10.1016/j.rser.2014.02.029

Google Scholar

[181] P. Kopola, M. Tuomikoski, R. Suhonen, A. Maaninen, Gravure printed organic light emitting diodes for lighting applications, Thin Solid Films 517 (2009) 5757–5762.

DOI: 10.1016/j.tsf.2009.03.209

Google Scholar

[182] K.Hong, J.L. Lee, Review paper: Recent developments in light extraction technologies of organic light emitting diodes, Electronic Materials Letters 7 (2011) 77-91.

DOI: 10.1007/s13391-011-0601-1

Google Scholar

[183] www.lumiblade.com

Google Scholar

[184] R. Ma, M. Weaver, Maximizing OLED Lighting Efficacy, DOE Workshop, Long Beach, LA, January 30, 2013.

Google Scholar