Design of Inorganic Scintillators: Role of Thermoluminescence

Abstract:

Article Preview

Thermoluminescence (TL) is basically a super-sensitive phenomenon exhibit ted practically by all semiconductors/ insulators upon suitable excitation. The occurrence of TL peaks during the thermal scan of a previously excited material gives rise to a number of peaks whose trapping parameters and relative concentrations can be evaluated by well-known techniques. Thus, TL in principle is a unique tool to characterize scintillator crystals. The technique is capable to detect the relative abundance of carriers in traps as shallow as ≈0.1eV to as deep as 2.0eV; providing means to probe carriers having lifetime (τ) as low as ∼ps to as large as billions of years. Hence the technique can be used to design scintillator materials of desired properties specially the decay time, the rise-time and the afterglow by adjusting the presence/absence of relevant trapping levels.

Info:

Periodical:

Main Theme:

Edited by:

Hardev Singh Virk

Pages:

193-215

Citation:

R.K. Gartia, "Design of Inorganic Scintillators: Role of Thermoluminescence", Defect and Diffusion Forum, Vol. 357, pp. 193-215, 2014

Online since:

July 2014

Authors:

Export:

Price:

$41.00

* - Corresponding Author

[1] M.J. Aitken, Thermoluminescence dating, Academic press, (1985).

[2] L. Lovedy Singh, R.K. Gartia, A new method of determination of trapping parameters of glow peaks relevant to dosimetry and dating from their lifetime, Radiat. Eff. Defects Solids. 166 (2011) 297–304.

DOI: https://doi.org/10.1080/10420150.2010.550007

[3] R. Chen, Y. Kirsh, The Analysis of Thermally Stimulated Processes, Pergamon, Oxford ; New York, (1981).

[4] S.W.S. McKeever, Thermoluminescence of Solids, Cambridge University Press, (1988).

[5] R Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena, World Scientific, (1997).

[6] Y.S. Horowitz, D. Yossian, Computerised Glow Curve Deconvolution: Application to Thermoluminescence Dosimetry, Radiat. Prot. Dosimetry. 60 (1995) 3–114.

DOI: https://doi.org/10.1093/oxfordjournals.rpd.a082702

[7] V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminescence, Springer New York, n. d.

[8] L. Rey, R.K. Gartia, K. Bishal Singh, T. Basanta Singh, Thermoluminescence of ice and its implications, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267 (2009) 3633–3639.

DOI: https://doi.org/10.1016/j.nimb.2009.09.024

[9] R.K. Gartia, Paleothermometry of NaCl as evidenced from thermoluminescence data, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267 (2009) 2903–2907.

DOI: https://doi.org/10.1016/j.nimb.2009.06.106

[10] R.K. Gartia, L.L. Singh, Evaluation of trapping parameter of quartz by deconvolution of the glow curves, Radiat. Meas. 46 (2011) 664–668.

DOI: https://doi.org/10.1016/j.radmeas.2011.06.036

[11] R.K. Gartia, T.T. Singh, T.B. Singh, Optically stimulated luminescence (OSL) of Lu2SiO5: Ce powder: A preliminary study, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 (2011) 30–33.

DOI: https://doi.org/10.1016/j.nimb.2010.10.008

[12] R.K. Gartia, L. Rey, T. Tejkumar Singh, T. Basanta Singh, Thermoluminescence of alkali halides and its implications, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 274 (2012) 129–134. doi: 10. 1016/j. nimb. 2011. 02. 078.

DOI: https://doi.org/10.1016/j.nimb.2011.02.078

[13] http: /crystalclear. web. cern. ch/crystalclear/, (n. d. ).

[14] P.L. C. Kuntner, Evaluation of New Inorganic Scintillators for Application in a Prototype Small Animal PET Scanner, (n. d. ).

[15] L. BØtter-Jensen, Luminescence techniques: instrumentation and methods, Radiat. Meas. 27 (1997) 749–768.

[16] A.J. Wojtowicz, W. Drozdowski, D. Wiśniewski, K. Wiśniewski, K.R. Przegiȩtka, H.L. Oczkowski, et al., Thermoluminescence and scintillation of LuAlO3: Ce, Radiat. Meas. 29 (1998) 323–326.

DOI: https://doi.org/10.1016/s1350-4487(98)00033-x

[17] E.G. Yukihara, L.G. Jacobsohn, M.W. Blair, B.L. Bennett, S.C. Tornga, R.E. Muenchausen, Luminescence properties of Ce-doped oxyorthosilicate nanophosphors and single crystals, J. Lumin. 130 (2010) 2309–2316.

DOI: https://doi.org/10.1016/j.jlumin.2010.07.010

[18] F. You, A.J.J. Bos, Q. Shi, S. Huang, P. Dorenbos, Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12, Phys. Rev. B. 85 (2012) 115101.

DOI: https://doi.org/10.1103/physrevb.85.115101

[19] A. Lang, A. Kadereit, R. -H. Behrends, G.A. Wagner, Optical Dating of Anthropogenic Sediments at the Archaeological Site of Herrenbrunnenbuckel, Bretten-Bauerbach (germany)*, Archaeometry. 41 (1999) 397–411.

DOI: https://doi.org/10.1111/j.1475-4754.1999.tb00989.x

[20] M. Fuchs, A. Lang, OSL dating of coarse-grain fluvial quartz using single-aliquot protocols on sediments from NE Peloponnese, Greece, Quat. Sci. Rev. 20 (2001) 783–787.

DOI: https://doi.org/10.1016/s0277-3791(00)00040-8

[21] I.K. Bailiff, L. Bøtter-Jensen, V. Correcher, A. Delgado, H.Y. Göksu, H. Jungner, et al., Absorbed dose evaluations in retrospective dosimetry: methodological developments using quartz, Radiat. Meas. 32 (2000) 609–613.

DOI: https://doi.org/10.1016/s1350-4487(00)00076-7

[22] H.Y. Göksu, I.K. Bailiff, V.B. Mikhailik, New approaches to retrospective dosimetry using cementitious building materials, Radiat. Meas. 37 (2003) 323–327.

DOI: https://doi.org/10.1016/s1350-4487(03)00005-2

[23] L. Bøtter-Jensen, N. Agersnap Larsen, B.G. Markey, S.W.S. McKeever, Al2O3: C as a sensitive OSL dosemeter for rapid assessment of environmental photon dose rates, Radiat. Meas. 27 (1997) 295–298.

DOI: https://doi.org/10.1016/s1350-4487(96)00124-2

[24] R.K. Gartia, B.A. Sharma, R. Usham, Thermoluminescence response of some common brands of iodised salt, Indian J. Eng. Mater. Sci. IJEMS. 11 (2004) 137–142.

[25] S.Á. Garcı́a, UV induced afterglow and thermoluminescence in Eu-doped Alkali Halides at low temperature, Universidad De Sonara, (2005).

[26] B. Adeva, M. Aguilar-Benitez, H. Akbari, J. Alcaraz, A. Aloisio, J. Alvarez-Taviel, et al., The construction of the L3 experiment, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 289 (1990) 35–102.

[27] C. Zh, F. Mr, Bismuth germanate as a potential scintillation detector in positron cameras., J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 18 (1977) 840–844.

[28] E. Costa, E. Massaro, L. Piro, A BGO-CsI(Tl) phoswich: A new detector for X- and γ-ray astronomy, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 243 (1986) 572–577.

DOI: https://doi.org/10.1016/0168-9002(86)90997-6

[29] C.L. Melcher, Thermoluminescence and radiation damage in bismuth germanate, Nature. 313 (1985) 465–467.

DOI: https://doi.org/10.1038/313465a0

[30] P. Lecoq, P.J. Li, B. Rostaing, BGO radiation damage effects: optical absorption, thermoluminescence and thermoconductivity, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 300 (1991) 240–258.

DOI: https://doi.org/10.1016/0168-9002(91)90433-q

[31] H.P. Sangeeta, S.C. Sabharwal, Crystal stoichiometry and thermoluminescence of Bi4Ge3O12 and Y3Al5O12, J. Cryst. Growth. 118 (1992) 396–400.

DOI: https://doi.org/10.1016/0022-0248(92)90088-z

[32] Z.S. Macedo, R.S. Silva, M.E.G. Valerio, A.L. Martinez, A.C. Hernandes, Laser-Sintered Bismuth Germanate Ceramics as Scintillator Devices, J. Am. Ceram. Soc. 87 (2004) 1076–1081.

DOI: https://doi.org/10.1111/j.1551-2916.2004.01076.x

[33] S.G. Raymond, B.J. Luff, P.D. Townsend, X. Feng, G. Hu, Thermoluminescence spectra of doped Bi4Ge3O12, Radiat. Meas. 23 (1994) 195–202.

DOI: https://doi.org/10.1016/1350-4487(94)90035-3

[34] L. Kovacs, S.G. Raymond, B.J. Luff, A. Peter, P.D. Townsend, Thermoluminescence spectra of eulytine Bi4Si3O12 and Bi4Ge3O12 single crystals, in: J. Lumin., Elsevier, 1994: p.574–577.

DOI: https://doi.org/10.1016/0022-2313(94)90220-8

[35] R.S. da Silva, Z.S. Macedo, A.L. Martinez, A.C. Hernandes, M.E. Giroldo Valerio, Thermoluminescence kinetic parameters of Bi4Ge3O12 single crystals, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 250 (2006) 390–395.

DOI: https://doi.org/10.1016/j.nimb.2006.04.144

[36] E. Dieguez, L. Arizmendi, J.M. Cabrera, X-ray induced luminescence, photoluminescence and thermoluminescence of Bi4Ge3O12, J. Phys. C Solid State Phys. 18 (1985) 4777.

DOI: https://doi.org/10.1088/0022-3719/18/24/021

[37] V.A. Gusev, S.A. Petrov, Local trap centers in Bi4Ge3O12 crystals, J. Appl. Spectrosc. 50 (1989) 409–411.

DOI: https://doi.org/10.1007/bf00659487

[38] N.V. Chernei, V.A. Nadolinnyi, N.V. Ivannikova, V.A. Gusev, I.N. Kupriyanov, V.N. Shlegel, et al., Chromium ion incorporation in the crystal structure of BGO, J. Struct. Chem. 46 (2005) 431–437.

DOI: https://doi.org/10.1007/s10947-006-0121-2

[39] O.M. Bordun, I.I. Kukharskii, S.I. Gaidai, Thermally stimulated luminescence of bismuth germanate ceramics with the benitoite, eulitine, and sillenite structures, J. Appl. Spectrosc. 75 (2008) 379–384.

DOI: https://doi.org/10.1007/s10812-008-9057-y

[40] W. Drozdowski, A.J. Wojtowicz, Sł.M. Kaczmarek, M. Berkowski, Scintillation yield of Bi4Ge3O12 (BGO) pixel crystals, Phys. B Condens. Matter. 405 (2010) 1647–1651.

DOI: https://doi.org/10.1016/j.physb.2009.12.061

[41] R. Chen, Glow Curves with General Order Kinetics, J. Electrochem. Soc. 116 (1969) 1254–1257.

[42] R.K. Gartia, S.J. Singh, A.B. Ahmed, On the Determination of the Kinetics of Thermally Stimulated Luminescence, Phys. Status Solidi A. 103 (1987) 593–598.

DOI: https://doi.org/10.1002/pssa.2211030232

[43] R.K. Gartia, S.J. Singh, P.S. Mazumdar, Symmetry factor and order of kinetics in thermally stimulated luminescence, Phys. Status Solidi A. 106 (1988) 291–296.

DOI: https://doi.org/10.1002/pssa.2211060135

[44] J.T. Randall, M.H.F. Wilkins, Phosphorescence and Electron Traps. I. The Study of Trap Distributions, Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 184 (1945) 365–389.

[45] O. Sellès, M. Fasoli, A. Vedda, M. Martini, D. Gourier, Thermoluminescence study of cerium-doped lanthanum halides, Phys. Status Solidi C. 4 (2007) 1004–1007.

DOI: https://doi.org/10.1002/pssc.200673881

[46] J. Glodo, K.S. Shah, M. Klugerman, P. Wong, B. Higgins, Thermoluminescence of LaBr3: Ce and LaCl3: Ce crystals, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 537 (2005) 93–96.

DOI: https://doi.org/10.1016/j.nima.2004.07.242

[47] P. Dorenbos, C.W.E. van Eijk, A.J.J. Bos, C.L. Melcher, Afterglow and thermoluminescence properties of Lu2SiO5: Ce scintillation crystals, J. Phys. Condens. Matter. 6 (1994) 4167.

DOI: https://doi.org/10.1088/0953-8984/6/22/016

[48] D.W. Cooke, B.L. Bennett, K.J. McClellan, J.M. Roper, M.T. Whittaker, Similarities in glow peak positions and kinetics parameters of oxyorthosilicates: evidence for unique intrinsic trapping sites, J. Lumin. 92 (2000) 83–89.

DOI: https://doi.org/10.1016/s0022-2313(00)00235-0

[49] D.W. Cooke, B.L. Bennett, K.J. McClellan, J.M. Roper, X-ray-induced thermally stimulated luminescence of cerium-doped gadolinium oxyorthosilicate, Radiat. Meas. 33 (2001) 403–408.

DOI: https://doi.org/10.1016/s1350-4487(00)00141-4

[50] A.J. Wojtowicz, J. Glodo, W. Drozdowski, K.R. Przegietka, Electron traps and scintillation mechanism in YAlO3 : Ce and LuAlO3 : Ce scintillators, J. Lumin. 79 (1998) 275–291.

DOI: https://doi.org/10.1016/s0022-2313(98)00039-8

[51] A.J. Wojtowicz, P. Szupryczynski, J. Glodo, W. Drozdowski, D. Wisniewski, Radioluminescence and recombination processes in BaF2: Ce, J. Phys. Condens. Matter. 12 (2000) 4097.

DOI: https://doi.org/10.1088/0953-8984/12/17/315

[52] K. Yang, M. Zhuravleva, C.L. Melcher, Scintillation kinetics and thermoluminescence of SrI2: Eu2+ single crystals, J. Lumin. 132 (2012) 1824–1829. doi: 10. 1016/j. jlumin. 2012. 02. 040.

DOI: https://doi.org/10.1016/j.jlumin.2012.02.040

[53] A. Lempicki, R.H. Bartram, Effect of shallow traps on scintillation, J. Lumin. 81 (1999) 13–20.

[54] L. Pidol, A. Kahn-Harari, B. Viana, B. Ferrand, P. Dorenbos, J.T.M. de Haas, et al., Scintillation properties of Lu2Si2O7: Ce3+, a fast and efficient scintillator crystal, J. Phys. Condens. Matter. 15 (2003) (2091).

DOI: https://doi.org/10.1088/0953-8984/15/12/326

[55] A.J. Wojtowicz, W. Drozdowski, D. Wisniewski, J. -L. Lefaucheur, Z. Galazka, Z. Gou, et al., Scintillation properties of selected oxide monocrystals activated with Ce and Pr, Opt. Mater. 28 (2006) 85–93.

DOI: https://doi.org/10.1016/j.optmat.2004.09.029

[56] S.C. F, Thermoluminescent doubly doped lif phosphor, US3320180 A, (1967).

[57] M. Bidyasagar, T.B. Singh, A.G. Barua, R.K. Gartia, Trap spectroscopy and thermoluminescence of CaF2 based TLDs, Indian J. Pure Appl. Phys. 52 (2014) 13–18.

[58] C. Brecher, E.E. Ovechkina, V. Gaysinskiy, S.R. Miller, V.V. Nagarkar, R.H. Bartram, et al., Afterglow suppression in codoped CsI: Tl, Eu and its effect on imaging speed, in: Proc 8th Intl Conf Inorg Scint SCINT2005, 2005: p.407–410.

DOI: https://doi.org/10.1016/j.radmeas.2007.01.048

[59] C. Brecher, A. Lempicki, S.R. Miller, J. Glodo, E.E. Ovechkina, V. Gaysinskiy, et al., Suppression of afterglow in CsI: Tl by codoping with Eu2+—I: Experimental, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 558 (2006).

DOI: https://doi.org/10.1016/j.nima.2005.11.119

[60] R.H. Bartram, L.A. Kappers, D.S. Hamilton, A. Lempicki, C. Brecher, J. Glodo, et al., Suppression of afterglow in CsI: Tl by codoping with Eu2+—II: Theoretical model, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 558 (2006).

DOI: https://doi.org/10.1016/j.nima.2005.11.051

[61] V.V. Nagarkar, S.C. Thacker, V. Gaysinskiy, L.E. Ovechkina, S.R. Miller, S. Cool, et al., Suppression of Afterglow in Microcolumnar CsI: Tl by Codoping With Sm : Recent Advances, IEEE Trans. Nucl. Sci. 56 (2009).

DOI: https://doi.org/10.1109/tns.2009.2016198

[62] N.G. Starzhinsky, О.T. Sidletskiy, B.V. Grinyov, А.А. Masalov, Y.V. Malyukin, K.А. Katrunov, et al., Luminescence kinetics of crystals LSO co doped with rare earth elements, Funct. Mater. 16 (2009) 431.

[63] CMS Electromagnetic calorimeter—Technical Design Report, CERN, Geneve, (1997).

[64] ALICE Technical Proposal, CERN/LHC 95–71, CERN, Geneve, CERN, Geneve, (1995).

[65] BTeV Proposal, 2000, http: /www-btev. fnal. gov.

[66] A.A. Annenkov, M.V. Korzhik, P. Lecoq, Lead tungstate scintillation material, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 490 (2002) 30–50.

[67] M. Nikl, Wide Band Gap Scintillation Materials: Progress in the Technology and Material Understanding, Phys. Status Solidi. 178 (n. d. ) 595–620.

DOI: https://doi.org/10.1002/1521-396x(200004)178:2<595::aid-pssa595>3.0.co;2-x

[68] V.V. Laguta, M. Nikl, A. Pöppl, J. Rosa, D. Savchenko, S. Zazubovich, ESR and TSL study of hole capture in PbWO4 : Mo, La and PbWO4 : Mo, Y scintillator crystals, J. Phys. Appl. Phys. 46 (2013) 075302.

DOI: https://doi.org/10.1088/0022-3727/46/7/075302

[69] A. Annenkov, A. Borisevitch, A. Hofstaetter, M. Korzhik, V. Ligun, P. Lecoq, et al., Improved light yield of lead tungstate scintillators, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 450 (2000) 71–74.

DOI: https://doi.org/10.1016/s0168-9002(00)00156-x

[70] M. Nikl, P. Bohacek, E. Mihokova, N. Solovieva, A. Vedda, M. Martini, et al., Enhanced efficiency of PbWO4: Mo, Nb scintillator, J. Appl. Phys. 91 (2002) 5041–5044.

DOI: https://doi.org/10.1063/1.1462420

[71] M. Nikl, P. Bohacek, E. Mihokova, N. Solovieva, A. Vedda, M. Martini, et al., Complete characterization of doubly doped PbWO4: Mo, Y scintillators, J. Appl. Phys. 91 (2002) 2791–2797.

DOI: https://doi.org/10.1063/1.1436561

[72] A.J.J. Bos, T.M. Piters, J.M. Gómez-Ros, A. Delgado, An Intercomparison of Glow Curve Analysis Computer Programs: I. Synthetic Glow Curves, Radiat. Prot. Dosimetry. 47 (1993) 473–477.

DOI: https://doi.org/10.1093/rpd/47.1-4.473

[73] A.J. Wojtowicz, W. Drozdowski, D. Wiśniewski, K. Wiśniewski, K.R. Przegiȩtka, H.L. Oczkowski, et al., Thermoluminescence and scintillation of LuAlO3: Ce, Radiat. Meas. 29 (1998) 323–326.

DOI: https://doi.org/10.1016/s1350-4487(98)00033-x

[74] A.J. Wojtowicz, J. Glodo, W. Drozdowski, K.R. Przegietka, Electron traps and scintillation mechanism in YAlO3 : Ce and LuAlO3 : Ce scintillators, J. Lumin. 79 (1998) 275–291.

DOI: https://doi.org/10.1016/s0022-2313(98)00039-8

[75] K. Yang, M. Zhuravleva, C.L. Melcher, Scintillation kinetics and thermoluminescence of SrI2: Eu2+ single crystals, J. Lumin. 132 (2012) 1824–1829. doi: 10. 1016/j. jlumin. 2012. 02. 040.

DOI: https://doi.org/10.1016/j.jlumin.2012.02.040

[76] D.W. Cooke, B.L. Bennett, K.J. McClellan, R.E. Muenchausen, J.R. Tesmer, C.J. Wetteland, Luminescence, emission spectra and hydrogen content of crystalline Lu2SiO5: Ce3+, Philos. Mag. Part B. 82 (2002) 1659–1670.

DOI: https://doi.org/10.1080/13642810208220731

[77] A.G. Milnes, Deep Impurities in Semiconductors, John Wiley & Sons Inc, New York, (1973).

[78] M. Castagne, J. Bonnafe, J.C. Manifacier, J.P. Fillard, Evidence for a shallow level structure in the bulk of semi‐insulating GaAs, J. Appl. Phys. 51 (1980) 4894–4897.

DOI: https://doi.org/10.1063/1.328327

[79] J.P. Fillard, M. Castagne, J. Bonnafe, M. de Murcia, A specific trap level at 78 meV in undoped liquid encapsulated Czochralski grown GaAs–SI materials, J. Appl. Phys. 54 (1983) 6767–6770.

DOI: https://doi.org/10.1063/1.331872

[80] J. Bonnafe, M. Castagne, J. Romestan, J.P. Fillard, Very low temperature TSC trap spectroscopy, J. Phys. C Solid State Phys. 14 (1981) 2465.

DOI: https://doi.org/10.1088/0022-3719/14/18/014

[81] T.B. Singh, M. Mashangva, R.K. Gartia, Trap spectroscopy and thermoluminescence of persistent luminescent materials, Indian J. Pure Appl. Phys. 51 (2013) 223–229.