Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: January 2020
Authors: Asmaa F. Barakat, Mohamed Elsaid, Ragab Abdelaziz El-Sehiemy
The proposed variants are described as follows:
Variant 1.
As and are random numbers which belong to the open interval ]0, 1[.
Table 1 Limits of reactive power generation (p.u) for IEEE 14-bus and 30-bus systems 14 -bus 30-bus 57-bus Bus no.
References [1] A.
In 2019 International Conference on Innovative Trends in Computer Engineering (ITCE) (pp. 479-484).
As and are random numbers which belong to the open interval ]0, 1[.
Table 1 Limits of reactive power generation (p.u) for IEEE 14-bus and 30-bus systems 14 -bus 30-bus 57-bus Bus no.
References [1] A.
In 2019 International Conference on Innovative Trends in Computer Engineering (ITCE) (pp. 479-484).
Online since: May 2017
Authors: Indranil Banerjee, Krishna Pramanik, Mahesh Kumar Sah
Analysis showed that the pore size was governed by the porogen and not influenced by the SF/PVA ratio (Table 1).
Figure 7: ALP activity assay of hMSCs grown on developed scaffolds for 1 day, 7 days and 14 days.
References [1] R.
Pharmacol., 47 (1995) 479–486
Dev., 1 (2010) 404–408
Figure 7: ALP activity assay of hMSCs grown on developed scaffolds for 1 day, 7 days and 14 days.
References [1] R.
Pharmacol., 47 (1995) 479–486
Dev., 1 (2010) 404–408
Online since: September 2013
Authors: Guo Ping Chang-Chien, Yan Hua Wang, Mei Lan Chen, Jian Yuan Yu, Gui Wei Rao
Table 1 Concentrations of PCDD/Fs in flue gas in summer and autumn
PCDD/PCDFs
summer
autumn
PCDD/PCDFs
summer
autumn
2,3,7,8-TeCDD
0.00274
0.00247
2,3,7,8-TeCDF
0.0168
0.0198
1,2,3,7,8-PeCDD
0.0138
0.0112
1,2,3,7,8-PeCDF
0.0422
0.0338
1,2,3,4,7,8-HxCDD
0.0253
0.0107
2,3,4,7,8-PeCDF
0.0601
0.0552
1,2,3,6,7,8-HxCDD
0.0334
0.0190
1,2,3,4,7,8-HxCDF
0.143
0.0692
1,2,3,7,8,9-HxCDD
0.0258
0.0136
1,2,3,6,7,8-HxCDF
0.119
0.0703
1,2,3,4,6,7,8-HpCDD
0.174
0.137
1,2,3,7,8,9-HxCDF
0.00972
0.00342
OCDD
0.173
0.285
2,3,4,6,7,8-HxCDF
0.112
0.0819
1,2,3,4,6,7,8-HpCDF
0.570
0.278
1,2,3,4,7,8,9-HpCDF
0.0827
0.0337
OCDF
0.748
0.119
PCDDs (ng/Nm3)
0.448
0.478
PCDDs (ng I-TEQ/Nm3)
0.0200
0.0141
PCDFs (ng/Nm3)
1.90
0.765
PCDFs (ng I-TEQ/Nm3)
0.0795
0.0570
ratio of PCDDs/PCDFs
0.235
0.626
ratio of PCDDs/PCDFs(TEQ)
0.252
0.247
total PCDD/Fs (ng/Nm3)
2.35
1.24
total PCDD/Fs (ng I-TEQ/Nm3)
0.0995
0.0711
Table 2 Concentrations of PCDD/Fs in ambient air in spring
ambient air
upwind
downwind
PCDD/PCDFs
Southeastern Institute of Technology Wanfang primary school Guardhouse in Muzha MSWI Xinyi junior middle school 2,3,7,8-TeCDD 0.00128 0.000837 0.00225 0.00142 1,2,3,7,8-PeCDD 0.00304 0.00311 0.00616 0.00597 1,2,3,4,7,8-HxCDD 0.00274 0.00275 0.00512 0.00591 1,2,3,6,7,8-HxCDD 0.00517 0.00473 0.00987 0.0158 1,2,3,7,8,9-HxCDD 0.00359 0.00341 0.00719 0.0114 1,2,3,4,6,7,8-HpCDD 0.0229 0.0385 0.0675 0.111 OCDD 0.0709 0.125 0.182 0.212 2,3,7,8-TeCDF 0.0116 0.00945 0.0182 0.0165 1,2,3,7,8-PeCDF 0.0125 0.0117 0.0211 0.0189 2,3,4,7,8-PeCDF 0.0173 0.0183 0.0389 0.0330 1,2,3,4,7,8-HxCDF 0.013 0.0165 0.0357 0.0394 1,2,3,6,7,8-HxCDF 0.0117 0.0156 0.0365 0.0347 1,2,3,7,8,9-HxCDF 0.0138 0.0232 0.0670 0.0556 2,3,4,6,7,8-HxCDF 0.00128 0.00126 0.00305 0.00213 1,2,3,4,6,7,8-HpCDF 0.0414 0.0656 0.185 0.201 1,2,3,4,7,8,9-HpCDF 0.00809 0.0105 0.0331 0.0300 OCDF 0.0463 0.0708 0.176 0.152 PCDDs 0.11 0.178 0.280 0.364 PCDFs 0.177 0.243 0.615 0.583 PCDDs/PCDFs 0.619 0.734 0.456 0.624 Total PCDD/Fs 0.287 0.421
ND 1,2,3,7,8-PeCDD 0.298 0.0974 0.172 ND 1,2,3,4,7,8-HxCDD 0.145 0.0811 0.132 0.0354 1,2,3,6,7,8-HxCDD 0.302 0.150 0.260 0.0512 1,2,3,7,8,9-HxCDD 0.225 0.150 0.288 0.0512 1,2,3,4,6,7,8-HpCDD 0.833 0.929 1.32 0.256 OCDD 1.87 2.77 3.76 1.19 2,3,7,8-TeCDF 0.893 0.458 0.564 0.205 1,2,3,7,8-PeCDF 0.853 0.337 0.512 0.138 2,3,4,7,8-PeCDF 0.901 0.479 0.840 0.185 1,2,3,4,7,8-HxCDF 0.724 0.288 0.716 0.110 1,2,3,6,7,8-HxCDF 0.773 0.511 0.804 0.138 1,2,3,7,8,9-HxCDF 0.781 0.584 0.928 0.157 2,3,4,6,7,8-HxCDF ND 0.0649 0.0480 0.0669 1,2,3,4,6,7,8-HpCDF 1.67 1.78 2.39 0.425 1,2,3,4,7,8,9-HpCDF 0.109 0.166 0.196 ND OCDF 0.612 0.824 1.32 0.413 PCDDs 3.77 4.18 6.00 1.58 PCDFs 7.32 5.50 8.32 1.84 PCDDs/PCDFs 0.515 0.761 0.722 0.861 Total PCDD/Fs 11.1 9.68 14.3 3.42 PCDDs pg-I-TEQ/Nm3 0.323 0.0989 0.247 0.0175 PCDFs pg-I-TEQ/Nm3 0.829 0.467 0.779 0.172 Ratio of PCDDs/PCDFs(TEQ) 0.390 0.212 0.317 0.102 TEQ(pg I-TEQ/Nm3) 1.15 0.566 1.03 0.189 Average PCDD/Fs (pg/Nm3) 11.1 9.13(RSD=48.8,n=3) Average TEQ
Table 8 Concentrations of PCDD/Fs in soil in spring soil upwind downwind PCDD/PCDFs Southeastern Institute of Technology Wanfang primary school Guardhouse in Muzha MSWI Xinyi junior middle school 2,3,7,8-TeCDD 0.0314 0.0357 0.358 ND 1,2,3,7,8-PeCDD 0.159 0.187 4.92 0.0580 1,2,3,4,7,8-HxCDD 0.139 0.310 8.61 0.0380 1,2,3,6,7,8-HxCDD 0.285 0.576 37.2 0.120 1,2,3,7,8,9-HxCDD 0.250 0.554 22.9 0.102 1,2,3,4,6,7,8-HpCDD 2.94 14.0 335 2.03 OCDD 32.0 479 1390 30.3 2,3,7,8-TeCDF 0.145 0.240 2.78 6.42 1,2,3,7,8-PeCDF 0.283 0.363 6.84 5.90 2,3,4,7,8-PeCDF 0.371 0.427 15.5 4.23 1,2,3,4,7,8-HxCDF 0.499 0.546 21.8 7.76 1,2,3,6,7,8-HxCDF 0.428 0.516 24.6 1.93 1,2,3,7,8,9-HxCDF 0.654 0.622 50.7 0.768 2,3,4,6,7,8-HxCDF 0.0766 0.0973 2.29 0.228 1,2,3,4,6,7,8-HpCDF 2.11 2.96 195 2.74 1,2,3,4,7,8,9-HpCDF 0.206 0.556 47.2 1.06 OCDF 1.84 4.51 299 2.50 PCDDs 35.8 495 1800 32.7 PCDFs 6.61 10.8 666 33.5 PCDDs/PCDFs 5.41 45.7 2.70 0.974 Total PCDD/Fs 42.4 506 2470 66.2 PCDDs pg-I-TEQ/Nm3 0.240 0.893 14.4
Res. 1(1994)262
Southeastern Institute of Technology Wanfang primary school Guardhouse in Muzha MSWI Xinyi junior middle school 2,3,7,8-TeCDD 0.00128 0.000837 0.00225 0.00142 1,2,3,7,8-PeCDD 0.00304 0.00311 0.00616 0.00597 1,2,3,4,7,8-HxCDD 0.00274 0.00275 0.00512 0.00591 1,2,3,6,7,8-HxCDD 0.00517 0.00473 0.00987 0.0158 1,2,3,7,8,9-HxCDD 0.00359 0.00341 0.00719 0.0114 1,2,3,4,6,7,8-HpCDD 0.0229 0.0385 0.0675 0.111 OCDD 0.0709 0.125 0.182 0.212 2,3,7,8-TeCDF 0.0116 0.00945 0.0182 0.0165 1,2,3,7,8-PeCDF 0.0125 0.0117 0.0211 0.0189 2,3,4,7,8-PeCDF 0.0173 0.0183 0.0389 0.0330 1,2,3,4,7,8-HxCDF 0.013 0.0165 0.0357 0.0394 1,2,3,6,7,8-HxCDF 0.0117 0.0156 0.0365 0.0347 1,2,3,7,8,9-HxCDF 0.0138 0.0232 0.0670 0.0556 2,3,4,6,7,8-HxCDF 0.00128 0.00126 0.00305 0.00213 1,2,3,4,6,7,8-HpCDF 0.0414 0.0656 0.185 0.201 1,2,3,4,7,8,9-HpCDF 0.00809 0.0105 0.0331 0.0300 OCDF 0.0463 0.0708 0.176 0.152 PCDDs 0.11 0.178 0.280 0.364 PCDFs 0.177 0.243 0.615 0.583 PCDDs/PCDFs 0.619 0.734 0.456 0.624 Total PCDD/Fs 0.287 0.421
ND 1,2,3,7,8-PeCDD 0.298 0.0974 0.172 ND 1,2,3,4,7,8-HxCDD 0.145 0.0811 0.132 0.0354 1,2,3,6,7,8-HxCDD 0.302 0.150 0.260 0.0512 1,2,3,7,8,9-HxCDD 0.225 0.150 0.288 0.0512 1,2,3,4,6,7,8-HpCDD 0.833 0.929 1.32 0.256 OCDD 1.87 2.77 3.76 1.19 2,3,7,8-TeCDF 0.893 0.458 0.564 0.205 1,2,3,7,8-PeCDF 0.853 0.337 0.512 0.138 2,3,4,7,8-PeCDF 0.901 0.479 0.840 0.185 1,2,3,4,7,8-HxCDF 0.724 0.288 0.716 0.110 1,2,3,6,7,8-HxCDF 0.773 0.511 0.804 0.138 1,2,3,7,8,9-HxCDF 0.781 0.584 0.928 0.157 2,3,4,6,7,8-HxCDF ND 0.0649 0.0480 0.0669 1,2,3,4,6,7,8-HpCDF 1.67 1.78 2.39 0.425 1,2,3,4,7,8,9-HpCDF 0.109 0.166 0.196 ND OCDF 0.612 0.824 1.32 0.413 PCDDs 3.77 4.18 6.00 1.58 PCDFs 7.32 5.50 8.32 1.84 PCDDs/PCDFs 0.515 0.761 0.722 0.861 Total PCDD/Fs 11.1 9.68 14.3 3.42 PCDDs pg-I-TEQ/Nm3 0.323 0.0989 0.247 0.0175 PCDFs pg-I-TEQ/Nm3 0.829 0.467 0.779 0.172 Ratio of PCDDs/PCDFs(TEQ) 0.390 0.212 0.317 0.102 TEQ(pg I-TEQ/Nm3) 1.15 0.566 1.03 0.189 Average PCDD/Fs (pg/Nm3) 11.1 9.13(RSD=48.8,n=3) Average TEQ
Table 8 Concentrations of PCDD/Fs in soil in spring soil upwind downwind PCDD/PCDFs Southeastern Institute of Technology Wanfang primary school Guardhouse in Muzha MSWI Xinyi junior middle school 2,3,7,8-TeCDD 0.0314 0.0357 0.358 ND 1,2,3,7,8-PeCDD 0.159 0.187 4.92 0.0580 1,2,3,4,7,8-HxCDD 0.139 0.310 8.61 0.0380 1,2,3,6,7,8-HxCDD 0.285 0.576 37.2 0.120 1,2,3,7,8,9-HxCDD 0.250 0.554 22.9 0.102 1,2,3,4,6,7,8-HpCDD 2.94 14.0 335 2.03 OCDD 32.0 479 1390 30.3 2,3,7,8-TeCDF 0.145 0.240 2.78 6.42 1,2,3,7,8-PeCDF 0.283 0.363 6.84 5.90 2,3,4,7,8-PeCDF 0.371 0.427 15.5 4.23 1,2,3,4,7,8-HxCDF 0.499 0.546 21.8 7.76 1,2,3,6,7,8-HxCDF 0.428 0.516 24.6 1.93 1,2,3,7,8,9-HxCDF 0.654 0.622 50.7 0.768 2,3,4,6,7,8-HxCDF 0.0766 0.0973 2.29 0.228 1,2,3,4,6,7,8-HpCDF 2.11 2.96 195 2.74 1,2,3,4,7,8,9-HpCDF 0.206 0.556 47.2 1.06 OCDF 1.84 4.51 299 2.50 PCDDs 35.8 495 1800 32.7 PCDFs 6.61 10.8 666 33.5 PCDDs/PCDFs 5.41 45.7 2.70 0.974 Total PCDD/Fs 42.4 506 2470 66.2 PCDDs pg-I-TEQ/Nm3 0.240 0.893 14.4
Res. 1(1994)262
Online since: August 2014
Authors: Patrick A. Smyth, Itzhak Green, Robert L. Jackson, R. Reid Hanson
For example, consider an isotropic, elastic
material- the stress and strain relations are determined as follows in cylindrical coordinates [33]:(a) Reproduction of test setup from [9, 31, 32] (b) Reproduction of ramp input from [9, 31, 32]
(c) Schematic of test setup in current study (d) Instantaneous displacement used in current study
Fig. 1: Comparison of experimental setups for measuring cartilage
σr
σθ
σz
=
E
(1 + ν)(1 − 2ν)
1 − ν ν ν
ν 1 − ν ν
ν ν 1 − ν
ϵr
ϵθ
ϵz
(1)
or for strain in terms of stress:
{ϵ} =
ϵr
ϵθ
ϵz
= 1
E
1 −ν −ν
−ν 1 −ν
−ν −ν 1
σr
σθ
σz
(2)
According to Eq. 1, Poisson's ratio is needed in the confined compression case (ϵr = ϵθ = 0) to obtain
stress in the z (vertical) direction:
σz = [
E(1 − ν)
(1 + ν)(1 − 2ν)] ϵz. (3)
Poisson's ratio must be assumed or determined experimentally, which adds an additional parameter
to the models using confined
Archive of Applied Mechanics 61(1):479--487 [2] Friswell M (2007) The response of rotating machines on viscoelastic supports.
International Review of Mechanical Engineering 1(1):32--40 [3] Elsharkawy AA, Nassar MM (1996) Hydrodynamic lubrication of squeeze-film porous bearings.
Wear 5(1):1--17 [6] Ateshian GA (2009) The role of interstitial fluid pressurization in articular cartilage lubrication.
Archives of Biochemistry and Biophysics 483(1):75--80
Archive of Applied Mechanics 61(1):479--487 [2] Friswell M (2007) The response of rotating machines on viscoelastic supports.
International Review of Mechanical Engineering 1(1):32--40 [3] Elsharkawy AA, Nassar MM (1996) Hydrodynamic lubrication of squeeze-film porous bearings.
Wear 5(1):1--17 [6] Ateshian GA (2009) The role of interstitial fluid pressurization in articular cartilage lubrication.
Archives of Biochemistry and Biophysics 483(1):75--80
Online since: August 2019
Authors: Sayed Mohammad Tariful Azam, A.S.M. Bakibillah, M.A.S. Kamal
References
[1] Y.
Proc., no. 814, pp. 1–7, 2013
Sedighi et al., “Analog Circuit Design Using Tunnel-FETs,” vol. 62, no. 1, pp. 1–10, 2014
Technol., vol. 30, no. 1, 2015
Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, no. 7373, pp. 329–337, 2011
Proc., no. 814, pp. 1–7, 2013
Sedighi et al., “Analog Circuit Design Using Tunnel-FETs,” vol. 62, no. 1, pp. 1–10, 2014
Technol., vol. 30, no. 1, 2015
Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, no. 7373, pp. 329–337, 2011
Online since: May 2011
Authors: Zhi Rui Wang, Charles C.F. Kwan
Glazov and Laird have shown that the minimum equilibrium separation distance for any of the known conventional patterning is in the order of 1 μm [3].
The embedded primary discontinuities tend to encourage grain coarsening to occur around them, the resulting microstructure is shown in Fig. 1.
The microstructure in Fig. 1 consists of three constituents of various grain sizes: (1) uf grains with mean grain size of 862 nm x 303 nm, (2) primary discontinuities with mean grain size of 63 nm x 31 nm, and lastly (3) equiaxed grains with grain size larger than 2 µm [5].
References [1] N.
Forum, 475-479 (2005) p. 4055 [20] Y.
The embedded primary discontinuities tend to encourage grain coarsening to occur around them, the resulting microstructure is shown in Fig. 1.
The microstructure in Fig. 1 consists of three constituents of various grain sizes: (1) uf grains with mean grain size of 862 nm x 303 nm, (2) primary discontinuities with mean grain size of 63 nm x 31 nm, and lastly (3) equiaxed grains with grain size larger than 2 µm [5].
References [1] N.
Forum, 475-479 (2005) p. 4055 [20] Y.
Online since: August 2014
Authors: Ou Chen Cai
Introduction
Nanoparticles are defined as substances behaving as a whole unit in terms of their transport and properties, with diameters ranging from 1 to 100 nanometers [1].
Figure 1.
References [1] ISO/TS 27687.2008, 2008.
Kogel-Knabner, Release of polycyclic aromatic hydrocarbons, dissolved organic carbon, and suspended matter from disturbed NAPL-contaminated gravelly soil material, Vadose Zone J. 5 (2006) 469–479
Sci. 253 (2002) 1-8
Figure 1.
References [1] ISO/TS 27687.2008, 2008.
Kogel-Knabner, Release of polycyclic aromatic hydrocarbons, dissolved organic carbon, and suspended matter from disturbed NAPL-contaminated gravelly soil material, Vadose Zone J. 5 (2006) 469–479
Sci. 253 (2002) 1-8