[1]
P. Coleman (Ed. ), Positron Beams and their applications, World Scientific, Singapore, (2000).
Google Scholar
[2]
M. Charlton, J. Humberston, Positron Physics, Cambridge University Press, Cambridge, (2001).
Google Scholar
[3]
R. Krause-Rehberg, H. S. Leipner, Positron Annihilation in Semi-conductors, Springer-Verlag, Berlin, (1999).
Google Scholar
[4]
Y. C. Jean, P. E. Mallon, D. M. Schrader, Principles and Applications of Positron & Positronium Chemistry, World Scientific, Singapore, (2003).
DOI: 10.1142/9789812775610_0001
Google Scholar
[5]
P. J. Schultz, K. G. Lynn, Interaction of positron beams with surfaces, thin films and interfaces, Rev. Mod. Phys. 60 (1988) 701-779.
DOI: 10.1103/revmodphys.60.701
Google Scholar
[6]
H. Saito, Y. Nagashima, T. Kurihara, T. Hyodo, A newpositron lifetime spectrometer using a fast digital oscilloscope and BaF2 scintillators, Nucl. Instrum. Meth. Phys. Res. A 487 (2002) 612-617.
DOI: 10.1016/s0168-9002(01)02172-6
Google Scholar
[7]
A. Krille, R. Krause-Rehberg, M. Jungmanna, F. Becvar, G. Brauer, Digital positron lifetime spectroscopy at EPOS, Appl. Surf. Sci. 255 (2008) 93-95.
DOI: 10.1016/j.apsusc.2008.05.215
Google Scholar
[8]
L. Hui, S. Yundong, Z. Kai, P. Jingbiao, W. Zhun, A simplified digital positron lifetime spectrometer based on a fast digital oscilloscope, Nucl. Instrum. Meth. Phys. Res. A 625 (2011) 29-34.
DOI: 10.1016/j.nima.2010.10.005
Google Scholar
[9]
S. Szpala, M. Petkov, K.G. Lynn, A simple positron lifetime spectrometer for a magnetically guided low energy beam, Rev. Sci. Instr. 73 (2002) 147-155.
DOI: 10.1063/1.1424905
Google Scholar
[10]
D.W. Gidley, H-G. Peng, R.S. Vallery, Positron Annihilation as a Method to Characterize Porous Materials, Annual Rev. Materials Res. 36 (2006) 49-79.
DOI: 10.1146/annurev.matsci.36.111904.135144
Google Scholar
[11]
S. Valkealahti, R. M. Nieminen, Monte-Carlo Calculations of keV Electron and Positron Slowing Down in Solids, Appl. Phys. A 32 (1983) 95-106.
DOI: 10.1007/bf00617834
Google Scholar
[12]
A. Vehanen, K. Saarinen, P. Hautojärvi, H. Huomo, Profiling multilayer structures with monoenergetic positrons, Phys. Rev. B 35 (1987) 4606-4610.
DOI: 10.1103/physrevb.35.4606
Google Scholar
[13]
D.G. Costello, D.E. Groce, D.F. Herring, J.W. McGowan, Evidence for the Negative Work Function Associated with Positrons in Gold, Phys. Rev. B 5 (1972) 1433-1436.
DOI: 10.1103/physrevb.5.1433
Google Scholar
[14]
G. Graff, R. Ley, A. Osipowitz, G. Werth, Intense Source of Slow Positrons from Pulsed Electron Accelerators, Appl. Phys. A 33 (1984) 59-62.
DOI: 10.1007/bf01197087
Google Scholar
[15]
R.H. Howell, I.J. Rosenberg, M.J. Fluss, Production and Use of Low-Energy, Monoenergetic Positron Beams from Electron LINACS, Appl. Phys. A 43 (1987) 247-255.
DOI: 10.1007/bf00635179
Google Scholar
[16]
T. Akahane, T. Chiba, N. Shiotani, S. Tanigawa, T. Mikado, R. Suzuki, M. Chiwaki, T. Yamazaki, T. Tomimasu, Stretching of Slow Positron Pulses Generated with an Electron Linac, Appl. Phys. 51 (1990) 146-150.
DOI: 10.1007/bf00324279
Google Scholar
[17]
H. Tanaka, T. Nakanishi, Slow positron production using an 18 MeV electron linac, Nucl. Instrum. Meth. Phys. Res. B 62 (1991) 259-263.
Google Scholar
[18]
M.M. White, E.S. Lessner, The advanced photon source (APS) linear accelerator as a source of slow positrons, Appl. Surf. Sci. 116 (1997) 87-90.
DOI: 10.1016/s0169-4332(96)01034-3
Google Scholar
[19]
M. Tashiro, Y. Honda, T. Yamaguchi, P.K. Pujari, N. Kimura, T. Kozawa, G. Isoyama, S. Tagawa, Development of a short-pulsed slow positron beam for application to polymer films, Rad. Phys. & Chem. 60 (2001) 529-533.
DOI: 10.1016/s0969-806x(00)00403-5
Google Scholar
[20]
R. Krause-Rehberg, S. Sachert, G. Brauer, A. Rogov, K. Noack, EPOS—An intense positron beam project at the ELBE radiation source in Rossendorf, Appl. Surf. Sci. 252 (2006) 3106–3110.
DOI: 10.1016/j.apsusc.2005.08.109
Google Scholar
[21]
T. Hyodo, K. Wada, A. Yagishita, T. Kosuge, Y. Saito, T. Kurihara, T. Kikuchi, A. Shirakawa, T. Sanami, M. Ikeda, S. Ohsawa, K. Kakihara, T. Shidara, KEK-IMSS Slow Positron Facility, J. Phys. Conf. Series 262 (2011) 012026.
DOI: 10.1088/1742-6596/262/1/012026
Google Scholar
[22]
R. Ley, Positron production using accelerators, Hyperfine Int. 109 (1997) 167-180.
Google Scholar
[23]
J.P. Merrison, N. Hertel, H. Knudsen, S. Stahl, E. Uggerhøj, A new electro-produced pulsed slow positron facility, Appl. Surf. Sci. 149 (1999) 11-15.
DOI: 10.1016/s0169-4332(99)00164-6
Google Scholar
[24]
M. Hirose, M. Washio, K. Takahashi, Production of an intense slow positron beam using a compact cyclotron, Appl. Surf. Sci. 85 (1995) 111-117.
DOI: 10.1016/0169-4332(94)00318-1
Google Scholar
[25]
M. Hirose, T. Nakajyo, The SHI slow positron beam facility with a compact cyclotron, Appl. Surf. Sci. 149 (1999) 24-29.
DOI: 10.1016/s0169-4332(99)00166-x
Google Scholar
[26]
A. van Veen, K. H. Schut, F. Labohm, J. de Roode, Positron extraction and transport in a nuclear-reactor-based positron beam, Nucl. Instr. Meth. Phys. Res. A 427 (1999) 266-270.
DOI: 10.1016/s0168-9002(98)01517-4
Google Scholar
[27]
C. Hugenschmidt, G. Kögel, R. Repper, K. Schreckenbach, P. Sperr, B. Straber, W. Trifthäuser, Monoenergetic positron beam at the reactor based positron source at FRM-II, Nucl. Instrum. Meth. Phys. Res. B 192 (2002) 97-101.
DOI: 10.1016/s0168-583x(02)00788-7
Google Scholar
[28]
A.G. Hathaway, M. Skalsey, W.E. Frieze, R.S. Vallery, D.W. Gidley, A.I. Hawaria, J. Xu, Implementation of a prototype slow positron beam at the NC State University PULSTAR reactor, Nucl. Instrum. Meth. Phys. Res. A 579 (2007) 538-541.
DOI: 10.1016/j.nima.2007.03.036
Google Scholar
[29]
A.R. Köymen, K. Ünlü, F.M. Jacobsen, S. Göktepeli, B.W. Wehring, Development of Texas intense positron source, Nucl. Instrum. Meth. Phys. Res. A 422 (1999) 479-483.
DOI: 10.1016/s0168-9002(98)01008-0
Google Scholar
[30]
B. E. O'Rourke, N. Hayashizaki, A. Kinomura, R. Kuroda, E. J. Minehara, T. Ohdaira, N. Oshima, and R. Suzuki, Simulations of slow positron production using a low-energy electron accelerator, Rev. Sci. Instrum. 82 (2011) 063302.
DOI: 10.1063/1.3599156
Google Scholar
[31]
D. Schödlbauer, P. Sperr, G. Kögel, W. Triftshäuser, A Pulsing System for Low Energy Positrons, Nucl. Instrum. Methods B 34 (1988) 258-268.
DOI: 10.1016/0168-583x(88)90752-5
Google Scholar
[32]
G. Kögel, D. Schödlbauer, W. Triftshäuser, J. Winter, Investigation of Micropores in Amorphous Hydrogenated Carbon by a Pulsed Positron Beam, Phys. Rev. Lett. 60 (1988) 1550-1553.
DOI: 10.1103/physrevlett.60.1550
Google Scholar
[33]
D.G. Costello, D.E. Groce, D.F. Herring, J.W. McGowan, (e+, He) Total Scattering, Can. J. Phys. 50 (1972) 23-33.
DOI: 10.1139/p72-005
Google Scholar
[34]
L.D. Hulett, Jr., T.A. Lewis, R.G. Alsmiller, Jr., R. Peelle, S. Pendyala, J.M. Dale, T.M. Rosseel, A Design for a High Intensity Slow Positron Facility Using Forward Scattered Radiation from an Electron Linear Accelerator, Nucl. Instrum. Methods B 24/25 (1987).
DOI: 10.1016/s0168-583x(87)80276-8
Google Scholar
[35]
F. Ebel, W. Faust, H. Schneider, I. Tobehn, First Results for Positron Accumulation at the Giessen LINAC, Nucl. Instrum. Methods A 274 (1989) 1-3.
DOI: 10.1016/0168-9002(89)90357-4
Google Scholar
[36]
R. Suzuki, T. Mikado, M. Chiwaki, H. Ohgaki, T. Yamazaki, Generation of an intense pulsed positron beam for positron lifetime and TOF experiments, Appl. Surf. Sci. 85 (1995) 87-91.
DOI: 10.1016/0169-4332(94)00314-9
Google Scholar
[37]
R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, T. Tomimasu, Slow Positron Pulsing System for Variable Energy Positron Lifetime Spectroscopy, Jap. J. App. Phys. 30 (1991) L532-L534.
DOI: 10.1143/jjap.30.l532
Google Scholar
[38]
R. Krause-Rehberg, M. Jungmann, A. Krille, B. Werlich, A. Pohl, W. Anwand, G. Brauer, M. Butterling, H. Büttig, K. M. Kosev, J. Teichert, A. Wagner, T.E. Cowan, Use of superconducting linacs for positron generation: the EPOS system at the Forschungszentrum Dresden-Rossendorf (FZD), J. Phys. Conf. Series 262 (2011).
DOI: 10.1088/1742-6596/262/1/012003
Google Scholar
[39]
C. Hugenschmidt, The status of the positron beam facility at NEPOMUC, J. Phys. Conf. Series 262 (2011) 012002.
DOI: 10.1088/1742-6596/262/1/012002
Google Scholar
[40]
S. Chemerisov, C.D. Jonah, Development of high intensity source of thermal positrons APosS (Argonne Positron Source), J. Phys. Conf. Series 262 (2011) 012012.
DOI: 10.1088/1742-6596/262/1/012012
Google Scholar
[41]
A. I. Hawari, D.W. Gidley, J. Moxom, A. G. Hathaway, S. Mukherjee, Operation and testing of the PULSTAR reactor intense slow positron beam and PALS spectrometers, J. Phys. Conf. Series 262 (2011) 012024.
DOI: 10.1088/1742-6596/262/1/012024
Google Scholar
[42]
C.V. Falub, S.W.H. Eijt, P.E. Mijnarends, H. Schut, A. van Veen, Magnetic focusing of an intense slow positron beam for enhanced depth-resolved analysis of thin films and interfaces, Nucl. Instrum. Methods A 488 (2002) 478-492.
DOI: 10.1016/s0168-9002(02)00566-1
Google Scholar
[43]
T. Akahane, T. Chiba, Proc. of the Eight Int. Conf. on Positron Annihilation, (Gent, 1988), World-Scientific, Singapore, (1989).
Google Scholar
[44]
R. Suzuki, T. Ohdaira, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, Apparatus for positron-annihilation-induced Auger electron spectroscopy with a pulsed positron beam, Appl. Surf. Sci. 100/101 (1996) 297-300.
DOI: 10.1016/0169-4332(96)00230-9
Google Scholar
[45]
T. Ohdaira, R. Suzuki, T. Mikado, T. Yamazaki, Positron annihilation induced Auger electron spectroscopy with an intense slow-positron beam, Journal of Electron Spectroscopy and Related Phenomena 88-91 (1998) 677-681.
DOI: 10.1016/s0368-2048(97)00250-8
Google Scholar
[46]
N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, M. Fujinami, Brightness enhancement method for a high-intensity positron beam produced by an electron accelerator, J. of Appl. Phys. 103 (2008) 094916.
DOI: 10.1063/1.2919783
Google Scholar
[47]
N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, M. Fujinami, Rapid three-dimensional imaging of defect distributions using a high-intensity positron microbeam, Appl. Phys. Lett. 94 (2009) 194104.
DOI: 10.1063/1.3137188
Google Scholar
[48]
N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, M. Fujinami, A positron annihilation lifetime measurement system with an intense positron microbeam, Rad. Phys. & Chem. 78 (2009) 1096-1098.
DOI: 10.1016/j.radphyschem.2009.06.035
Google Scholar
[49]
N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, M. Fujinami, Development of Positron Microbeam in AIST, Mat. Sci. Forum 607 (2009) 238-242.
DOI: 10.4028/www.scientific.net/msf.607.238
Google Scholar
[50]
N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, S. Kubota, H. Watanabe, K. Tenjinbayashi, A. Uedono, M. Fujinami, Imaging of the distribution of average positron lifetimes using a positron probe microanalyzer, J. Phys. Conf. Series 262 (2011).
DOI: 10.1088/1742-6596/262/1/012044
Google Scholar
[51]
N. Oshima, B. E. O'Rourke, R. Kuroda, R. Suzuki, H. Watanabe, S. Kubota, K. Tenjinbayashi, A. Uedono, and N. Hayashizaki, Slow Positron Beam Apparatus for Surface and Subsurface Analysis of Samples in Air, App. Phys. Ex. 4 (2011) 066701.
DOI: 10.1143/apex.4.066701
Google Scholar
[52]
B. E. O'Rourke, N. Oshima, A. Kinomura, T. Ohdaira, R. Suzuki, Recent developments and future plans for the accelerator based slow positron facilities at AIST, Mat. Sci. Forum (SLOPOS13 Proc. to be published).
DOI: 10.4028/www.scientific.net/msf.733.285
Google Scholar
[53]
A. Kinomura, R. Suzuki, T. Ohdaira, N. Oshima, B. E. O'Rourke, T. Nishijima, Development of a Slow Positron Beam System for in-situ Lifetime Measurements during Ion Beam Irradiation, Phys. Procedia (International Workshop on Positron Studies of Defects 2011, to be published).
DOI: 10.1016/j.phpro.2012.06.020
Google Scholar
[54]
T. Iwai, Y. Ito, M. Koshimizu, Vacancy-type defect production in iron under ion beam irradiation investigated with positron beam Doppler broadening technique, J. Nucl. Mater. 329-333 (2004) 963-966.
DOI: 10.1016/j.jnucmat.2004.04.064
Google Scholar
[55]
B. E. O'Rourke, N. Oshima, R. Kuroda, R. Suzuki, T. Ohdaira, A. Kinomura, N. Hayashizaki, E. Minehara, H. Yamauchi,Y. Fukamizu, M. Shikibu, T. Kawamoto and Y. Minehara, Development of a dedicated superconducting accelerator for positron production, J. Phys. Conf. Sers. 262 (2011).
DOI: 10.1088/1742-6596/262/1/012043
Google Scholar