Production and Applications of Intense Pulsed, Slow Positron Beams

Article Preview

Abstract:

Positron annihilation lifetime spectroscopy (PALS) is an experimental technique whereby the lifetime spectrum of positrons injected into a material is measured. Analysis of this spectrum can be used to characterize defects in the material. While radioisotope positron sources are often used for PALS, there are several advantages of using mono-energetic, slow positron beams. In order to measure lifetime spectra with such beams it is necessary to produce a pulsed beam with an extremely short pulse length (~ 200 ps). In this article we discuss the advantages of using pulsed, slow-positron beams, the various methods of beam production and pulsing methods. We focus in particular on intense beams generated by electron accelerators and describe the current status and future plans for the accelerator based facility at AIST.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-91

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Coleman (Ed. ), Positron Beams and their applications, World Scientific, Singapore, (2000).

Google Scholar

[2] M. Charlton, J. Humberston, Positron Physics, Cambridge University Press, Cambridge, (2001).

Google Scholar

[3] R. Krause-Rehberg, H. S. Leipner, Positron Annihilation in Semi-conductors, Springer-Verlag, Berlin, (1999).

Google Scholar

[4] Y. C. Jean, P. E. Mallon, D. M. Schrader, Principles and Applications of Positron & Positronium Chemistry, World Scientific, Singapore, (2003).

DOI: 10.1142/9789812775610_0001

Google Scholar

[5] P. J. Schultz, K. G. Lynn, Interaction of positron beams with surfaces, thin films and interfaces, Rev. Mod. Phys. 60 (1988) 701-779.

DOI: 10.1103/revmodphys.60.701

Google Scholar

[6] H. Saito, Y. Nagashima, T. Kurihara, T. Hyodo, A newpositron lifetime spectrometer using a fast digital oscilloscope and BaF2 scintillators, Nucl. Instrum. Meth. Phys. Res. A 487 (2002) 612-617.

DOI: 10.1016/s0168-9002(01)02172-6

Google Scholar

[7] A. Krille, R. Krause-Rehberg, M. Jungmanna, F. Becvar, G. Brauer, Digital positron lifetime spectroscopy at EPOS, Appl. Surf. Sci. 255 (2008) 93-95.

DOI: 10.1016/j.apsusc.2008.05.215

Google Scholar

[8] L. Hui, S. Yundong, Z. Kai, P. Jingbiao, W. Zhun, A simplified digital positron lifetime spectrometer based on a fast digital oscilloscope, Nucl. Instrum. Meth. Phys. Res. A 625 (2011) 29-34.

DOI: 10.1016/j.nima.2010.10.005

Google Scholar

[9] S. Szpala, M. Petkov, K.G. Lynn, A simple positron lifetime spectrometer for a magnetically guided low energy beam, Rev. Sci. Instr. 73 (2002) 147-155.

DOI: 10.1063/1.1424905

Google Scholar

[10] D.W. Gidley, H-G. Peng, R.S. Vallery, Positron Annihilation as a Method to Characterize Porous Materials, Annual Rev. Materials Res. 36 (2006) 49-79.

DOI: 10.1146/annurev.matsci.36.111904.135144

Google Scholar

[11] S. Valkealahti, R. M. Nieminen, Monte-Carlo Calculations of keV Electron and Positron Slowing Down in Solids, Appl. Phys. A 32 (1983) 95-106.

DOI: 10.1007/bf00617834

Google Scholar

[12] A. Vehanen, K. Saarinen, P. Hautojärvi, H. Huomo, Profiling multilayer structures with monoenergetic positrons, Phys. Rev. B 35 (1987) 4606-4610.

DOI: 10.1103/physrevb.35.4606

Google Scholar

[13] D.G. Costello, D.E. Groce, D.F. Herring, J.W. McGowan, Evidence for the Negative Work Function Associated with Positrons in Gold, Phys. Rev. B 5 (1972) 1433-1436.

DOI: 10.1103/physrevb.5.1433

Google Scholar

[14] G. Graff, R. Ley, A. Osipowitz, G. Werth, Intense Source of Slow Positrons from Pulsed Electron Accelerators, Appl. Phys. A 33 (1984) 59-62.

DOI: 10.1007/bf01197087

Google Scholar

[15] R.H. Howell, I.J. Rosenberg, M.J. Fluss, Production and Use of Low-Energy, Monoenergetic Positron Beams from Electron LINACS, Appl. Phys. A 43 (1987) 247-255.

DOI: 10.1007/bf00635179

Google Scholar

[16] T. Akahane, T. Chiba, N. Shiotani, S. Tanigawa, T. Mikado, R. Suzuki, M. Chiwaki, T. Yamazaki, T. Tomimasu, Stretching of Slow Positron Pulses Generated with an Electron Linac, Appl. Phys. 51 (1990) 146-150.

DOI: 10.1007/bf00324279

Google Scholar

[17] H. Tanaka, T. Nakanishi, Slow positron production using an 18 MeV electron linac, Nucl. Instrum. Meth. Phys. Res. B 62 (1991) 259-263.

Google Scholar

[18] M.M. White, E.S. Lessner, The advanced photon source (APS) linear accelerator as a source of slow positrons, Appl. Surf. Sci. 116 (1997) 87-90.

DOI: 10.1016/s0169-4332(96)01034-3

Google Scholar

[19] M. Tashiro, Y. Honda, T. Yamaguchi, P.K. Pujari, N. Kimura, T. Kozawa, G. Isoyama, S. Tagawa, Development of a short-pulsed slow positron beam for application to polymer films, Rad. Phys. & Chem. 60 (2001) 529-533.

DOI: 10.1016/s0969-806x(00)00403-5

Google Scholar

[20] R. Krause-Rehberg, S. Sachert, G. Brauer, A. Rogov, K. Noack, EPOS—An intense positron beam project at the ELBE radiation source in Rossendorf, Appl. Surf. Sci. 252 (2006) 3106–3110.

DOI: 10.1016/j.apsusc.2005.08.109

Google Scholar

[21] T. Hyodo, K. Wada, A. Yagishita, T. Kosuge, Y. Saito, T. Kurihara, T. Kikuchi, A. Shirakawa, T. Sanami, M. Ikeda, S. Ohsawa, K. Kakihara, T. Shidara, KEK-IMSS Slow Positron Facility, J. Phys. Conf. Series 262 (2011) 012026.

DOI: 10.1088/1742-6596/262/1/012026

Google Scholar

[22] R. Ley, Positron production using accelerators, Hyperfine Int. 109 (1997) 167-180.

Google Scholar

[23] J.P. Merrison, N. Hertel, H. Knudsen, S. Stahl, E. Uggerhøj, A new electro-produced pulsed slow positron facility, Appl. Surf. Sci. 149 (1999) 11-15.

DOI: 10.1016/s0169-4332(99)00164-6

Google Scholar

[24] M. Hirose, M. Washio, K. Takahashi, Production of an intense slow positron beam using a compact cyclotron, Appl. Surf. Sci. 85 (1995) 111-117.

DOI: 10.1016/0169-4332(94)00318-1

Google Scholar

[25] M. Hirose, T. Nakajyo, The SHI slow positron beam facility with a compact cyclotron, Appl. Surf. Sci. 149 (1999) 24-29.

DOI: 10.1016/s0169-4332(99)00166-x

Google Scholar

[26] A. van Veen, K. H. Schut, F. Labohm, J. de Roode, Positron extraction and transport in a nuclear-reactor-based positron beam, Nucl. Instr. Meth. Phys. Res. A 427 (1999) 266-270.

DOI: 10.1016/s0168-9002(98)01517-4

Google Scholar

[27] C. Hugenschmidt, G. Kögel, R. Repper, K. Schreckenbach, P. Sperr, B. Straber, W. Trifthäuser, Monoenergetic positron beam at the reactor based positron source at FRM-II, Nucl. Instrum. Meth. Phys. Res. B 192 (2002) 97-101.

DOI: 10.1016/s0168-583x(02)00788-7

Google Scholar

[28] A.G. Hathaway, M. Skalsey, W.E. Frieze, R.S. Vallery, D.W. Gidley, A.I. Hawaria, J. Xu, Implementation of a prototype slow positron beam at the NC State University PULSTAR reactor, Nucl. Instrum. Meth. Phys. Res. A 579 (2007) 538-541.

DOI: 10.1016/j.nima.2007.03.036

Google Scholar

[29] A.R. Köymen, K. Ünlü, F.M. Jacobsen, S. Göktepeli, B.W. Wehring, Development of Texas intense positron source, Nucl. Instrum. Meth. Phys. Res. A 422 (1999) 479-483.

DOI: 10.1016/s0168-9002(98)01008-0

Google Scholar

[30] B. E. O'Rourke, N. Hayashizaki, A. Kinomura, R. Kuroda, E. J. Minehara, T. Ohdaira, N. Oshima, and R. Suzuki, Simulations of slow positron production using a low-energy electron accelerator, Rev. Sci. Instrum. 82 (2011) 063302.

DOI: 10.1063/1.3599156

Google Scholar

[31] D. Schödlbauer, P. Sperr, G. Kögel, W. Triftshäuser, A Pulsing System for Low Energy Positrons, Nucl. Instrum. Methods B 34 (1988) 258-268.

DOI: 10.1016/0168-583x(88)90752-5

Google Scholar

[32] G. Kögel, D. Schödlbauer, W. Triftshäuser, J. Winter, Investigation of Micropores in Amorphous Hydrogenated Carbon by a Pulsed Positron Beam, Phys. Rev. Lett. 60 (1988) 1550-1553.

DOI: 10.1103/physrevlett.60.1550

Google Scholar

[33] D.G. Costello, D.E. Groce, D.F. Herring, J.W. McGowan, (e+, He) Total Scattering, Can. J. Phys. 50 (1972) 23-33.

DOI: 10.1139/p72-005

Google Scholar

[34] L.D. Hulett, Jr., T.A. Lewis, R.G. Alsmiller, Jr., R. Peelle, S. Pendyala, J.M. Dale, T.M. Rosseel, A Design for a High Intensity Slow Positron Facility Using Forward Scattered Radiation from an Electron Linear Accelerator, Nucl. Instrum. Methods B 24/25 (1987).

DOI: 10.1016/s0168-583x(87)80276-8

Google Scholar

[35] F. Ebel, W. Faust, H. Schneider, I. Tobehn, First Results for Positron Accumulation at the Giessen LINAC, Nucl. Instrum. Methods A 274 (1989) 1-3.

DOI: 10.1016/0168-9002(89)90357-4

Google Scholar

[36] R. Suzuki, T. Mikado, M. Chiwaki, H. Ohgaki, T. Yamazaki, Generation of an intense pulsed positron beam for positron lifetime and TOF experiments, Appl. Surf. Sci. 85 (1995) 87-91.

DOI: 10.1016/0169-4332(94)00314-9

Google Scholar

[37] R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, T. Tomimasu, Slow Positron Pulsing System for Variable Energy Positron Lifetime Spectroscopy, Jap. J. App. Phys. 30 (1991) L532-L534.

DOI: 10.1143/jjap.30.l532

Google Scholar

[38] R. Krause-Rehberg, M. Jungmann, A. Krille, B. Werlich, A. Pohl, W. Anwand, G. Brauer, M. Butterling, H. Büttig, K. M. Kosev, J. Teichert, A. Wagner, T.E. Cowan, Use of superconducting linacs for positron generation: the EPOS system at the Forschungszentrum Dresden-Rossendorf (FZD), J. Phys. Conf. Series 262 (2011).

DOI: 10.1088/1742-6596/262/1/012003

Google Scholar

[39] C. Hugenschmidt, The status of the positron beam facility at NEPOMUC, J. Phys. Conf. Series 262 (2011) 012002.

DOI: 10.1088/1742-6596/262/1/012002

Google Scholar

[40] S. Chemerisov, C.D. Jonah, Development of high intensity source of thermal positrons APosS (Argonne Positron Source), J. Phys. Conf. Series 262 (2011) 012012.

DOI: 10.1088/1742-6596/262/1/012012

Google Scholar

[41] A. I. Hawari, D.W. Gidley, J. Moxom, A. G. Hathaway, S. Mukherjee, Operation and testing of the PULSTAR reactor intense slow positron beam and PALS spectrometers, J. Phys. Conf. Series 262 (2011) 012024.

DOI: 10.1088/1742-6596/262/1/012024

Google Scholar

[42] C.V. Falub, S.W.H. Eijt, P.E. Mijnarends, H. Schut, A. van Veen, Magnetic focusing of an intense slow positron beam for enhanced depth-resolved analysis of thin films and interfaces, Nucl. Instrum. Methods A 488 (2002) 478-492.

DOI: 10.1016/s0168-9002(02)00566-1

Google Scholar

[43] T. Akahane, T. Chiba, Proc. of the Eight Int. Conf. on Positron Annihilation, (Gent, 1988), World-Scientific, Singapore, (1989).

Google Scholar

[44] R. Suzuki, T. Ohdaira, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, Apparatus for positron-annihilation-induced Auger electron spectroscopy with a pulsed positron beam, Appl. Surf. Sci. 100/101 (1996) 297-300.

DOI: 10.1016/0169-4332(96)00230-9

Google Scholar

[45] T. Ohdaira, R. Suzuki, T. Mikado, T. Yamazaki, Positron annihilation induced Auger electron spectroscopy with an intense slow-positron beam, Journal of Electron Spectroscopy and Related Phenomena 88-91 (1998) 677-681.

DOI: 10.1016/s0368-2048(97)00250-8

Google Scholar

[46] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, M. Fujinami, Brightness enhancement method for a high-intensity positron beam produced by an electron accelerator, J. of Appl. Phys. 103 (2008) 094916.

DOI: 10.1063/1.2919783

Google Scholar

[47] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, M. Fujinami, Rapid three-dimensional imaging of defect distributions using a high-intensity positron microbeam, Appl. Phys. Lett. 94 (2009) 194104.

DOI: 10.1063/1.3137188

Google Scholar

[48] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, M. Fujinami, A positron annihilation lifetime measurement system with an intense positron microbeam, Rad. Phys. & Chem. 78 (2009) 1096-1098.

DOI: 10.1016/j.radphyschem.2009.06.035

Google Scholar

[49] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, M. Fujinami, Development of Positron Microbeam in AIST, Mat. Sci. Forum 607 (2009) 238-242.

DOI: 10.4028/www.scientific.net/msf.607.238

Google Scholar

[50] N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, S. Kubota, H. Watanabe, K. Tenjinbayashi, A. Uedono, M. Fujinami, Imaging of the distribution of average positron lifetimes using a positron probe microanalyzer, J. Phys. Conf. Series 262 (2011).

DOI: 10.1088/1742-6596/262/1/012044

Google Scholar

[51] N. Oshima, B. E. O'Rourke, R. Kuroda, R. Suzuki, H. Watanabe, S. Kubota, K. Tenjinbayashi, A. Uedono, and N. Hayashizaki, Slow Positron Beam Apparatus for Surface and Subsurface Analysis of Samples in Air, App. Phys. Ex. 4 (2011) 066701.

DOI: 10.1143/apex.4.066701

Google Scholar

[52] B. E. O'Rourke, N. Oshima, A. Kinomura, T. Ohdaira, R. Suzuki, Recent developments and future plans for the accelerator based slow positron facilities at AIST, Mat. Sci. Forum (SLOPOS13 Proc. to be published).

DOI: 10.4028/www.scientific.net/msf.733.285

Google Scholar

[53] A. Kinomura, R. Suzuki, T. Ohdaira, N. Oshima, B. E. O'Rourke, T. Nishijima, Development of a Slow Positron Beam System for in-situ Lifetime Measurements during Ion Beam Irradiation, Phys. Procedia (International Workshop on Positron Studies of Defects 2011, to be published).

DOI: 10.1016/j.phpro.2012.06.020

Google Scholar

[54] T. Iwai, Y. Ito, M. Koshimizu, Vacancy-type defect production in iron under ion beam irradiation investigated with positron beam Doppler broadening technique, J. Nucl. Mater. 329-333 (2004) 963-966.

DOI: 10.1016/j.jnucmat.2004.04.064

Google Scholar

[55] B. E. O'Rourke, N. Oshima, R. Kuroda, R. Suzuki, T. Ohdaira, A. Kinomura, N. Hayashizaki, E. Minehara, H. Yamauchi,Y. Fukamizu, M. Shikibu, T. Kawamoto and Y. Minehara, Development of a dedicated superconducting accelerator for positron production, J. Phys. Conf. Sers. 262 (2011).

DOI: 10.1088/1742-6596/262/1/012043

Google Scholar