Annihilation Lifetime Spectroscopy Using Positrons from Bremsstrahlung Production

Abstract:

Article Preview

A new type of a positron annihilation lifetime spectroscopy (PALS) system has been set up at the superconducting electron accelerator ELBE [ at Helmholtz-Zentrum Dresden-Rossendorf. In contrast to existing source-based PALS systems, the approach described here makes use of an intense photon beam from electron bremsstrahlung which converts through pair production into positrons inside the sample under study. The article focusses on the production of intense bremsstrahlung using a superconducting electron linear accelerator, the production of positrons inside the sample under study, the efficient detector setup which allows for annihilation lifetime and Doppler-broadening spectroscopy simultaneously. Selected examples of positron annihilation spectroscopy are presented.

Info:

Periodical:

Edited by:

B.N. Ganguly and G. Brauer

Pages:

41-52

Citation:

A. Wagner et al., "Annihilation Lifetime Spectroscopy Using Positrons from Bremsstrahlung Production", Defect and Diffusion Forum, Vol. 331, pp. 41-52, 2012

Online since:

September 2012

Export:

Price:

$38.00

[1] F. Gabriel, P. Gippner, E. Grosse, D. Janssen, P. Michel, H. Prade, A. Schamlott, W. Seidel, A. Wolf, R. Wünsch, The Rossendorf radiation source ELBE and its FEL projects, ucl. Inst. Meth. Phys. Res. B 161 (2000) 1143.

DOI: https://doi.org/10.1016/s0168-583x(99)00909-x

[2] K. Koepke, TESLA superconducting RF cavity development, Nucl. Inst. Meth. Phys. Res. B 99 (1995) 706.

[3] R. Schwengner, R. Beyer, F. Dönau, E. Grosse, A. Hartmann, A.R. Junghans, S. Mallion, G. Rusev, K.D. Schilling, W. Schulze, A. Wagner, The photon-scattering facility at the superconducting electron accelerator ELBE, Nucl. Inst. Meth. Phys. Res. A 555 (2005).

DOI: https://doi.org/10.1016/j.nima.2005.09.024

[4] G. Schramm, R. Massarczyk, A.R. Junghans, T. Belgya, R. Beyer, E. Birgersson, E. Grosse, M. Kempe, Z. Kis, K. Kosev, M. Krticka, A. Matic, K.D. Schilling, R. Schwengner, L. Szentmiklosi, A. Wagner, J.L. Weil, Dipole strength in 78Se below the neutron-separation energy from a combined analysis of 77Se(γ, n) and 78Se(γ, γ') experiments, Phys. Rev. C 85 (2012).

DOI: https://doi.org/10.1103/physrevc.85.014311

[5] A. Makinaga, R. Schwengner, G. Rusev, F. Dönau, S. Frauendorf, D. Bemmerer, R. Beyer, P. Crespo, M. Erhard, A.R. Junghans, J. Klug, K. Kosev, C. Nair, K.D. Schilling, A. Wagner, Dipole strength in 139La below the neutron-separation energy, Phys. Rev. C 82 (2010).

DOI: https://doi.org/10.1103/physrevc.82.024314

[6] R. Schwengner, R. Massarczyk, B.A. Brown, R. Beyer, F. Dönau, M. Erhard, E. Grosse, A.R. Junghans, K. Kosev, C. Nair, G. Rusev, K.D. Schilling, A. Wagner, E1 strength in 208Pb within the shell model, Phys. Rev. C 81 (2010).

DOI: https://doi.org/10.1103/physrevc.81.054315

[7] A. Wagner, M. Erhard, E. Grosse, A.R. Junghans, J. Klug, K. Kosev, C. Nair, N. Nankov, G. Rusev, K.D. Schilling, R. Schwengner, Photodissociation experiments for p-process nuclei, AIP CP831 (2006) 16.

DOI: https://doi.org/10.1140/epja/i2006-08-019-4

[8] C. Nair, M. Erhard, A.R. Junghans, D. Bemmerer, R. Beyer, E. Grosse, J. Klug, K. Kosev, G. Rusev, K.D. Schilling, R. Schwengner, A. Wagner, Photoactivation experiment on 197Au and its implications for the dipole strength in heavy nuclei, Phys. Rev. C 78 (2008).

DOI: https://doi.org/10.1103/physrevc.78.055802

[9] S.Q. Zhang, I. Bentley, S. Brant, F. Dönau, S. Frauendorf, B. Kämpfer, R. Schwengner, A. Wagner, Instantaneous-shape sampling for calculation of the electromagnetic dipole strength in transitional nuclei, Phys. Rev. C 80 (2009) 021307(R).

DOI: https://doi.org/10.1103/physrevc.80.021307

[10] A.R. Junghans, G. Rusev, R. Schwengner, A. Wagner, E. Grosse, Photon data shed new light upon the GDR spreading width in heavy nuclei, Phys. Lett. B 670 (2008) 200.

DOI: https://doi.org/10.1016/j.physletb.2008.10.055

[11] M. Beard, S. Frauendorf, B. Kämpfer, R. Schwengner, M. Wiescher, Photonuclear and radiative-capture reaction rates for nuclear astrophysics and transmutation: 92–100Mo, 88Sr, 90Zr, and 139La, Phys. Rev. C. 85 (2012) 065808.

DOI: https://doi.org/10.1103/physrevc.85.065808

[12] M. Butterling, W. Anwand, G. Brauer, T.E. Cowan, A. Hartmann, M. Jungmann, K. Kosev, R. Krause-Rehberg, A. Krille, R. Schwengner, A. Wagner, Positron annihilation spectroscopy using high-energy photons, Physica Status Solidi (a) 207 (2010).

DOI: https://doi.org/10.1002/pssa.200925340

[13] M. Butterling, W. Anwand, T.E. Cowan, A. Hartmann, M. Jungmann, R. Krause-Rehberg, A. Krille, A. Wagner, Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator, Nucl. Inst. Meth. Phys. Res. B 269 (2011).

DOI: https://doi.org/10.1016/j.nimb.2011.06.023

[14] K. Kosev, M. Butterling, W. Anwand, T.E. Cowan, A. Hartmann, K. Heidel, M. Jungmann, R. Krause-Rehberg, R. Massarczyk, K.D. Schilling, R. Schwengner, A. Wagner, Evaluation of a microchannel-plate PMT as a potential timing detector suitable for positron lifetime measurements, Nucl. Inst. Meth. Phys. Res. A 624 (2010).

DOI: https://doi.org/10.1016/j.nima.2010.09.131

[15] P.K. Pujari, K. Sudarshan, R. Tripathi, D. Dutta, P. Maheshwari, S.K. Sharma, D. Srivastava,R. Krause-Rehberg, M. Butterling, W. Anwand, A. Wagner, Photon induced positron annihilation spectroscopy: A nondestructive method for assay of defects in large engineering materials, Nucl. Inst. Meth. Phys. Res. B 270 (2012).

DOI: https://doi.org/10.1016/j.nimb.2011.09.011

[16] A. Vehanen, P. Hautojarvi, J. Johansson, and J. Yli-Kauppila, P. Moser, Vacancies and carbon impurities in a-iron: Electron irradiation, Phys. Rev. B 25 (1982) 762-780.

DOI: https://doi.org/10.1103/physrevb.25.762

[17] A. Ulbricht, F. Bergner, J. Böhmert, M. Valo, M.H. Mathon, A. Heinemann, SANS response of VVER440-type weld material after neutron irradiation, post-irradiation annealing and reirradiation, Phil. Mag. 87 (2007) 1855–1870.

DOI: https://doi.org/10.1080/14786430601102999

[18] S.V. Stepanov, V.M. Byakov, G. Duplâtre, D.S. Zvezhinskiy, Y.V. Lomachuk, Positronium formation in a liquid phase: Influence of intratrack reactions and temperature, Phys. Status Solidi C 6 (2009) 2476-2481.

DOI: https://doi.org/10.1002/pssc.200982059

[19] K. Kotera, T. Saito, T. Yamanaka, Measurement of positron lifetime to probe the mixed molecular states of liquid water, Phys. Lett. A 345 (2005) 184-190.

DOI: https://doi.org/10.1016/j.physleta.2005.07.018

[20] S.V. Stepanov, G. Duplâtre, V. M. Byakov, V.S. Subrahmanyam, D.S. Zvezhinski, A.S. Mishagina, Influence of Temperature on Intratrack Processes and Ps Formation and Behaviour in Liquid, Mater. Sci. Forum 607 (2009) 213-217.

DOI: https://doi.org/10.4028/www.scientific.net/msf.607.213

[21] P. Sane, E. Salonen, E. Falck, J. Repakova, F. Tuomisto, J. M. Holopainen, I. Vattulainen, Probing Biomembranes with Positrons, J. Phys. Chem. B 113 (2009) 1810–1812.

DOI: https://doi.org/10.1021/jp809308j