Annihilation Lifetime Spectroscopy Using Positrons from Bremsstrahlung Production

Article Preview

Abstract:

A new type of a positron annihilation lifetime spectroscopy (PALS) system has been set up at the superconducting electron accelerator ELBE [ at Helmholtz-Zentrum Dresden-Rossendorf. In contrast to existing source-based PALS systems, the approach described here makes use of an intense photon beam from electron bremsstrahlung which converts through pair production into positrons inside the sample under study. The article focusses on the production of intense bremsstrahlung using a superconducting electron linear accelerator, the production of positrons inside the sample under study, the efficient detector setup which allows for annihilation lifetime and Doppler-broadening spectroscopy simultaneously. Selected examples of positron annihilation spectroscopy are presented.

You might also be interested in these eBooks

Info:

[1] F. Gabriel, P. Gippner, E. Grosse, D. Janssen, P. Michel, H. Prade, A. Schamlott, W. Seidel, A. Wolf, R. Wünsch, The Rossendorf radiation source ELBE and its FEL projects, ucl. Inst. Meth. Phys. Res. B 161 (2000) 1143.

DOI: 10.1016/s0168-583x(99)00909-x

Google Scholar

[2] K. Koepke, TESLA superconducting RF cavity development, Nucl. Inst. Meth. Phys. Res. B 99 (1995) 706.

Google Scholar

[3] R. Schwengner, R. Beyer, F. Dönau, E. Grosse, A. Hartmann, A.R. Junghans, S. Mallion, G. Rusev, K.D. Schilling, W. Schulze, A. Wagner, The photon-scattering facility at the superconducting electron accelerator ELBE, Nucl. Inst. Meth. Phys. Res. A 555 (2005).

DOI: 10.1016/j.nima.2005.09.024

Google Scholar

[4] G. Schramm, R. Massarczyk, A.R. Junghans, T. Belgya, R. Beyer, E. Birgersson, E. Grosse, M. Kempe, Z. Kis, K. Kosev, M. Krticka, A. Matic, K.D. Schilling, R. Schwengner, L. Szentmiklosi, A. Wagner, J.L. Weil, Dipole strength in 78Se below the neutron-separation energy from a combined analysis of 77Se(γ, n) and 78Se(γ, γ') experiments, Phys. Rev. C 85 (2012).

DOI: 10.1142/9789814383646_0063

Google Scholar

[5] A. Makinaga, R. Schwengner, G. Rusev, F. Dönau, S. Frauendorf, D. Bemmerer, R. Beyer, P. Crespo, M. Erhard, A.R. Junghans, J. Klug, K. Kosev, C. Nair, K.D. Schilling, A. Wagner, Dipole strength in 139La below the neutron-separation energy, Phys. Rev. C 82 (2010).

DOI: 10.1103/physrevc.82.024314

Google Scholar

[6] R. Schwengner, R. Massarczyk, B.A. Brown, R. Beyer, F. Dönau, M. Erhard, E. Grosse, A.R. Junghans, K. Kosev, C. Nair, G. Rusev, K.D. Schilling, A. Wagner, E1 strength in 208Pb within the shell model, Phys. Rev. C 81 (2010).

DOI: 10.1103/physrevc.79.061302

Google Scholar

[7] A. Wagner, M. Erhard, E. Grosse, A.R. Junghans, J. Klug, K. Kosev, C. Nair, N. Nankov, G. Rusev, K.D. Schilling, R. Schwengner, Photodissociation experiments for p-process nuclei, AIP CP831 (2006) 16.

DOI: 10.1007/3-540-32843-2_19

Google Scholar

[8] C. Nair, M. Erhard, A.R. Junghans, D. Bemmerer, R. Beyer, E. Grosse, J. Klug, K. Kosev, G. Rusev, K.D. Schilling, R. Schwengner, A. Wagner, Photoactivation experiment on 197Au and its implications for the dipole strength in heavy nuclei, Phys. Rev. C 78 (2008).

DOI: 10.1103/physrevc.78.055802

Google Scholar

[9] S.Q. Zhang, I. Bentley, S. Brant, F. Dönau, S. Frauendorf, B. Kämpfer, R. Schwengner, A. Wagner, Instantaneous-shape sampling for calculation of the electromagnetic dipole strength in transitional nuclei, Phys. Rev. C 80 (2009) 021307(R).

DOI: 10.1103/physrevc.80.021307

Google Scholar

[10] A.R. Junghans, G. Rusev, R. Schwengner, A. Wagner, E. Grosse, Photon data shed new light upon the GDR spreading width in heavy nuclei, Phys. Lett. B 670 (2008) 200.

DOI: 10.1016/j.physletb.2008.10.055

Google Scholar

[11] M. Beard, S. Frauendorf, B. Kämpfer, R. Schwengner, M. Wiescher, Photonuclear and radiative-capture reaction rates for nuclear astrophysics and transmutation: 92–100Mo, 88Sr, 90Zr, and 139La, Phys. Rev. C. 85 (2012) 065808.

Google Scholar

[12] M. Butterling, W. Anwand, G. Brauer, T.E. Cowan, A. Hartmann, M. Jungmann, K. Kosev, R. Krause-Rehberg, A. Krille, R. Schwengner, A. Wagner, Positron annihilation spectroscopy using high-energy photons, Physica Status Solidi (a) 207 (2010).

DOI: 10.1002/pssa.200925340

Google Scholar

[13] M. Butterling, W. Anwand, T.E. Cowan, A. Hartmann, M. Jungmann, R. Krause-Rehberg, A. Krille, A. Wagner, Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator, Nucl. Inst. Meth. Phys. Res. B 269 (2011).

DOI: 10.1016/j.nimb.2011.06.023

Google Scholar

[14] K. Kosev, M. Butterling, W. Anwand, T.E. Cowan, A. Hartmann, K. Heidel, M. Jungmann, R. Krause-Rehberg, R. Massarczyk, K.D. Schilling, R. Schwengner, A. Wagner, Evaluation of a microchannel-plate PMT as a potential timing detector suitable for positron lifetime measurements, Nucl. Inst. Meth. Phys. Res. A 624 (2010).

DOI: 10.1016/j.nima.2010.09.131

Google Scholar

[15] P.K. Pujari, K. Sudarshan, R. Tripathi, D. Dutta, P. Maheshwari, S.K. Sharma, D. Srivastava,R. Krause-Rehberg, M. Butterling, W. Anwand, A. Wagner, Photon induced positron annihilation spectroscopy: A nondestructive method for assay of defects in large engineering materials, Nucl. Inst. Meth. Phys. Res. B 270 (2012).

DOI: 10.1016/j.nimb.2011.09.011

Google Scholar

[16] A. Vehanen, P. Hautojarvi, J. Johansson, and J. Yli-Kauppila, P. Moser, Vacancies and carbon impurities in a-iron: Electron irradiation, Phys. Rev. B 25 (1982) 762-780.

DOI: 10.1103/physrevb.25.762

Google Scholar

[17] A. Ulbricht, F. Bergner, J. Böhmert, M. Valo, M.H. Mathon, A. Heinemann, SANS response of VVER440-type weld material after neutron irradiation, post-irradiation annealing and reirradiation, Phil. Mag. 87 (2007) 1855–1870.

DOI: 10.1080/14786430601102999

Google Scholar

[18] S.V. Stepanov, V.M. Byakov, G. Duplâtre, D.S. Zvezhinskiy, Y.V. Lomachuk, Positronium formation in a liquid phase: Influence of intratrack reactions and temperature, Phys. Status Solidi C 6 (2009) 2476-2481.

DOI: 10.1002/pssc.200982059

Google Scholar

[19] K. Kotera, T. Saito, T. Yamanaka, Measurement of positron lifetime to probe the mixed molecular states of liquid water, Phys. Lett. A 345 (2005) 184-190.

DOI: 10.1016/j.physleta.2005.07.018

Google Scholar

[20] S.V. Stepanov, G. Duplâtre, V. M. Byakov, V.S. Subrahmanyam, D.S. Zvezhinski, A.S. Mishagina, Influence of Temperature on Intratrack Processes and Ps Formation and Behaviour in Liquid, Mater. Sci. Forum 607 (2009) 213-217.

DOI: 10.4028/www.scientific.net/msf.607.213

Google Scholar

[21] P. Sane, E. Salonen, E. Falck, J. Repakova, F. Tuomisto, J. M. Holopainen, I. Vattulainen, Probing Biomembranes with Positrons, J. Phys. Chem. B 113 (2009) 1810–1812.

DOI: 10.1021/jp809308j

Google Scholar