[1]
F. Gabriel, P. Gippner, E. Grosse, D. Janssen, P. Michel, H. Prade, A. Schamlott, W. Seidel, A. Wolf, R. Wünsch, The Rossendorf radiation source ELBE and its FEL projects, ucl. Inst. Meth. Phys. Res. B 161 (2000) 1143.
DOI: 10.1016/s0168-583x(99)00909-x
Google Scholar
[2]
K. Koepke, TESLA superconducting RF cavity development, Nucl. Inst. Meth. Phys. Res. B 99 (1995) 706.
Google Scholar
[3]
R. Schwengner, R. Beyer, F. Dönau, E. Grosse, A. Hartmann, A.R. Junghans, S. Mallion, G. Rusev, K.D. Schilling, W. Schulze, A. Wagner, The photon-scattering facility at the superconducting electron accelerator ELBE, Nucl. Inst. Meth. Phys. Res. A 555 (2005).
DOI: 10.1016/j.nima.2005.09.024
Google Scholar
[4]
G. Schramm, R. Massarczyk, A.R. Junghans, T. Belgya, R. Beyer, E. Birgersson, E. Grosse, M. Kempe, Z. Kis, K. Kosev, M. Krticka, A. Matic, K.D. Schilling, R. Schwengner, L. Szentmiklosi, A. Wagner, J.L. Weil, Dipole strength in 78Se below the neutron-separation energy from a combined analysis of 77Se(γ, n) and 78Se(γ, γ') experiments, Phys. Rev. C 85 (2012).
DOI: 10.1142/9789814383646_0063
Google Scholar
[5]
A. Makinaga, R. Schwengner, G. Rusev, F. Dönau, S. Frauendorf, D. Bemmerer, R. Beyer, P. Crespo, M. Erhard, A.R. Junghans, J. Klug, K. Kosev, C. Nair, K.D. Schilling, A. Wagner, Dipole strength in 139La below the neutron-separation energy, Phys. Rev. C 82 (2010).
DOI: 10.1103/physrevc.82.024314
Google Scholar
[6]
R. Schwengner, R. Massarczyk, B.A. Brown, R. Beyer, F. Dönau, M. Erhard, E. Grosse, A.R. Junghans, K. Kosev, C. Nair, G. Rusev, K.D. Schilling, A. Wagner, E1 strength in 208Pb within the shell model, Phys. Rev. C 81 (2010).
DOI: 10.1103/physrevc.79.061302
Google Scholar
[7]
A. Wagner, M. Erhard, E. Grosse, A.R. Junghans, J. Klug, K. Kosev, C. Nair, N. Nankov, G. Rusev, K.D. Schilling, R. Schwengner, Photodissociation experiments for p-process nuclei, AIP CP831 (2006) 16.
DOI: 10.1007/3-540-32843-2_19
Google Scholar
[8]
C. Nair, M. Erhard, A.R. Junghans, D. Bemmerer, R. Beyer, E. Grosse, J. Klug, K. Kosev, G. Rusev, K.D. Schilling, R. Schwengner, A. Wagner, Photoactivation experiment on 197Au and its implications for the dipole strength in heavy nuclei, Phys. Rev. C 78 (2008).
DOI: 10.1103/physrevc.78.055802
Google Scholar
[9]
S.Q. Zhang, I. Bentley, S. Brant, F. Dönau, S. Frauendorf, B. Kämpfer, R. Schwengner, A. Wagner, Instantaneous-shape sampling for calculation of the electromagnetic dipole strength in transitional nuclei, Phys. Rev. C 80 (2009) 021307(R).
DOI: 10.1103/physrevc.80.021307
Google Scholar
[10]
A.R. Junghans, G. Rusev, R. Schwengner, A. Wagner, E. Grosse, Photon data shed new light upon the GDR spreading width in heavy nuclei, Phys. Lett. B 670 (2008) 200.
DOI: 10.1016/j.physletb.2008.10.055
Google Scholar
[11]
M. Beard, S. Frauendorf, B. Kämpfer, R. Schwengner, M. Wiescher, Photonuclear and radiative-capture reaction rates for nuclear astrophysics and transmutation: 92–100Mo, 88Sr, 90Zr, and 139La, Phys. Rev. C. 85 (2012) 065808.
Google Scholar
[12]
M. Butterling, W. Anwand, G. Brauer, T.E. Cowan, A. Hartmann, M. Jungmann, K. Kosev, R. Krause-Rehberg, A. Krille, R. Schwengner, A. Wagner, Positron annihilation spectroscopy using high-energy photons, Physica Status Solidi (a) 207 (2010).
DOI: 10.1002/pssa.200925340
Google Scholar
[13]
M. Butterling, W. Anwand, T.E. Cowan, A. Hartmann, M. Jungmann, R. Krause-Rehberg, A. Krille, A. Wagner, Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator, Nucl. Inst. Meth. Phys. Res. B 269 (2011).
DOI: 10.1016/j.nimb.2011.06.023
Google Scholar
[14]
K. Kosev, M. Butterling, W. Anwand, T.E. Cowan, A. Hartmann, K. Heidel, M. Jungmann, R. Krause-Rehberg, R. Massarczyk, K.D. Schilling, R. Schwengner, A. Wagner, Evaluation of a microchannel-plate PMT as a potential timing detector suitable for positron lifetime measurements, Nucl. Inst. Meth. Phys. Res. A 624 (2010).
DOI: 10.1016/j.nima.2010.09.131
Google Scholar
[15]
P.K. Pujari, K. Sudarshan, R. Tripathi, D. Dutta, P. Maheshwari, S.K. Sharma, D. Srivastava,R. Krause-Rehberg, M. Butterling, W. Anwand, A. Wagner, Photon induced positron annihilation spectroscopy: A nondestructive method for assay of defects in large engineering materials, Nucl. Inst. Meth. Phys. Res. B 270 (2012).
DOI: 10.1016/j.nimb.2011.09.011
Google Scholar
[16]
A. Vehanen, P. Hautojarvi, J. Johansson, and J. Yli-Kauppila, P. Moser, Vacancies and carbon impurities in a-iron: Electron irradiation, Phys. Rev. B 25 (1982) 762-780.
DOI: 10.1103/physrevb.25.762
Google Scholar
[17]
A. Ulbricht, F. Bergner, J. Böhmert, M. Valo, M.H. Mathon, A. Heinemann, SANS response of VVER440-type weld material after neutron irradiation, post-irradiation annealing and reirradiation, Phil. Mag. 87 (2007) 1855–1870.
DOI: 10.1080/14786430601102999
Google Scholar
[18]
S.V. Stepanov, V.M. Byakov, G. Duplâtre, D.S. Zvezhinskiy, Y.V. Lomachuk, Positronium formation in a liquid phase: Influence of intratrack reactions and temperature, Phys. Status Solidi C 6 (2009) 2476-2481.
DOI: 10.1002/pssc.200982059
Google Scholar
[19]
K. Kotera, T. Saito, T. Yamanaka, Measurement of positron lifetime to probe the mixed molecular states of liquid water, Phys. Lett. A 345 (2005) 184-190.
DOI: 10.1016/j.physleta.2005.07.018
Google Scholar
[20]
S.V. Stepanov, G. Duplâtre, V. M. Byakov, V.S. Subrahmanyam, D.S. Zvezhinski, A.S. Mishagina, Influence of Temperature on Intratrack Processes and Ps Formation and Behaviour in Liquid, Mater. Sci. Forum 607 (2009) 213-217.
DOI: 10.4028/www.scientific.net/msf.607.213
Google Scholar
[21]
P. Sane, E. Salonen, E. Falck, J. Repakova, F. Tuomisto, J. M. Holopainen, I. Vattulainen, Probing Biomembranes with Positrons, J. Phys. Chem. B 113 (2009) 1810–1812.
DOI: 10.1021/jp809308j
Google Scholar