[1]
H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia and I.M. Hasnain, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review, J. Industrial and Engg. Chemistry, 26 (2015).
DOI: 10.1016/j.jiec.2014.10.043
Google Scholar
[2]
N. Nuhoglu and B. Yalcin, Modeling of phenol removal in a batch reactor, J. Pro Biochem, 40 (3-4) (2005) 1233–1239.
DOI: 10.1016/j.procbio.2004.04.003
Google Scholar
[3]
Y. Jiang, J.P. Wen, J. Bai, D.Q. Wang, and Z.D. Hu, Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol, J. Biochem Engg., 29 (3) (2006) 227–234.
Google Scholar
[4]
N.G. Buckman, J.O. Hill, and R.J. Magee, Separation of substituted phenols, including eleven priority pollutants using high-performance liquid chromatography, J. Chromatogr, 284 (1984) 441-446.
DOI: 10.1016/s0021-9673(01)87845-6
Google Scholar
[5]
ATSDR/CDC. Subcommittee report on biological indicators of organ damage. Agency for Toxic Substances and Disease Registry, Centres for Disease Control and Prevention, Atlanta GA (1990).
Google Scholar
[6]
M.N. Chong, C.W.K. Chow, B. Jin, and C. Saint, Recent Developments in Photocatalytic, Water Treatment Catal. Technol.: A Review. Water Research, 44 (2010) 2997-3027.
DOI: 10.1016/j.watres.2010.02.039
Google Scholar
[7]
Y.T. Wei, Y.Y. Wang and C. Wan, Photocatalytic oxidation of phenol in the presence of hydrogen peroxide and titanium dioxide powders, J. of Photochem. and Photobiol. A: Chemistry, 55 (1990) 115-126.
DOI: 10.1016/1010-6030(90)80024-r
Google Scholar
[8]
B. Carre, D. Cubyanes, P. d'Oliveira, M. Ferray, P. Fournier and F. Gounand, Photoionization of highly excited atomic sodium involving core-excited resonances, Zeitschrift für Physik D, 15 (2) (1990) 117-132.
DOI: 10.1007/bf01437005
Google Scholar
[9]
H. Shu, J. Xie, H. Xu, H. Li, Z. Gu, G. Sun and Y. Xu, Structural characterization and photocatalytic activity of NiO/AgNbO3, J. Alloys Compd., 496 (2010) 633–637.
DOI: 10.1016/j.jallcom.2010.02.148
Google Scholar
[10]
A. Fujishima, and K. Honda, Electrochemical photolysis of water at semiconductor Electrode, J. Nature, 238 (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[11]
S. Helali, C. Guillard, N. Perol, E. Puzenat and M.J. Safi, Methylamine and dimethylamine photocatalytic degradation-Adsorption isotherms and kinetics, Appl. Catal. A: General, 402 (2011) 201-207.
DOI: 10.1016/j.apcata.2011.06.004
Google Scholar
[12]
Y. Li, Li. Leiyong, Li. Chenwan, W. Chen and M. Zeng, Carbon nanotube/titania composites prepared by a micro-emulsion method exhibiting improved photocatalytic activity, Appl. Catal. A: General, 427 (428) (2012) 1-7.
DOI: 10.1016/j.apcata.2012.03.004
Google Scholar
[13]
A.A. Vega, G.E. Imoberdorf, M. Mohseni, Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid in a fluidised bed photoreactor with composite template-free TiO2 photocatal., Appl. Catal. A, 405 (2011) 120-128.
DOI: 10.1016/j.apcata.2011.07.033
Google Scholar
[14]
J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 53 (1999), 115-129.
DOI: 10.1016/s0920-5861(99)00107-8
Google Scholar
[15]
M. Aslam, I.M. Ismail, S. Chandrasekaran AND A. Hameed, Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of phenols, J. Hazard Mater. 276C (2014) 120-128.
DOI: 10.1016/j.jhazmat.2014.05.022
Google Scholar
[16]
J. Bandara, U. Klehm and J. Kiwi, Raschig rings Fe2O3 composite photoCatal. activate in the degradation of 4 chlorophenol and orange II under daylight irradiation, Appl. Catal. B environ. 34 (2007) 321- 333.
DOI: 10.1016/j.apcatb.2007.05.007
Google Scholar
[17]
R. Hengerer, B. Bolliger, M. Erbudak and M. Grätzel, Structure and stability of the anatase TiO2 (101) and (001) surfaces, Surface Sci., 460 (2000) 162–169.
DOI: 10.1016/s0039-6028(00)00527-6
Google Scholar
[18]
G.L. Puma, A. Bono, D. Krishnaiah and J.G. Collin, Preparation of titanium dioxide photoCatal. loaded onto activated carbon support using chemical vapor deposition: A review paper, J. of Hazard. Mater., 157 (2008) 209–219.
DOI: 10.1016/j.jhazmat.2008.01.040
Google Scholar
[19]
G. Meacock, K.D.A. Taylor, M. Knowles and A. Himonides, The improved whitening of minced cod flesh using dispersed titanium dioxide, J. Sci. Food Agric., 73 (2) (1997) 221–225.
DOI: 10.1002/(sici)1097-0010(199702)73:2<221::aid-jsfa708>3.0.co;2-u
Google Scholar
[20]
S. Gupta, Mital and M. Tripathi, A review of TiO2 nanoparticles, Chinese Sci. Bulletin, 56 (2011).
Google Scholar
[21]
A.T. Paxton and L. Thiên-Nga, Electronic structure of reduced titanium dioxide, Phys. Rev. B, 57 (1998) 1579–1584.
DOI: 10.1103/physrevb.57.1579
Google Scholar
[22]
S. Banerjee, J. Gopal, P. Muraleedharan, B. Raj and A.K. Tyagi, Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy, Current Sci., 90 (2006) 1378–1383.
Google Scholar
[23]
R. Kun, S. Tarján, A. Oszkó, T. Seemann, V. Zöllmer, M. Busse and I. Dékány, Prepa-ration and characterization of mesoporous N-doped and sulfuric acid treated anatase TiO2 Catal. s and their photocatalytic activity under UV and Vis illumination, J. Solid State Chem., 182 (2009).
DOI: 10.1016/j.jssc.2009.08.022
Google Scholar
[24]
S. Carbonaro, T.J. Strathmann and M.N. Sugihara, Continuous-flow photocatalytic treatment, Appl. Catal. B: Environ., 129 (2013) 1-12.
Google Scholar
[25]
M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff and K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation, Int'l J. of Electrochem. Sci., 7 (2012).
DOI: 10.1016/s1452-3981(23)19588-5
Google Scholar
[26]
M. A. Barakat, H. Schaeffera, G. Hayes, and S. Ismat-Shah, Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles, Appl. Catal. B: Environ., 57 (2005) 23–30.
DOI: 10.1016/j.apcatb.2004.10.001
Google Scholar
[27]
F.D. Mai, C.S. Lu, C.W. Wu, C.H. Huang, J.Y. Chen and C.C. Chen, Mechanisms of photocatalytic degradation of Victoria Blue R using nano-TiO2, Separation and publication Technol., 62 (2008) 423-436.
DOI: 10.1016/j.seppur.2008.02.006
Google Scholar
[28]
M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin and J. Wu, Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite, Dyes and Pigments, 77 (2008) 2 327–334.
DOI: 10.1016/j.dyepig.2007.01.026
Google Scholar
[29]
N. Sobana, K. Selvam and M. Swaminathan, Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2, Separation and Purification Catal. Technol., 62 (2008) 3 648–653.
DOI: 10.1016/j.seppur.2008.03.002
Google Scholar
[30]
M. J. Pawar and V. B. Nimbalkar, Synthesis and phenol degradation activity of Zn and Cr doped TiO2 nanoparticles, Research J. of Chem. Sci., 2 (2012) 1 32–37.
Google Scholar
[31]
R. Rajeshwari and S. Kanmani, A study on degradation of pesticide wastewater by TiO2 photocatalysis. J. of Scientific & Industrial Research, 68 (2009) 1063-1067.
Google Scholar
[32]
V. Buscio, S. Brosillon, J. Mendret , M. Crespi and C. Gutiérrez-Bouzán, Photocatalytic Membrane Reactor for the Removal of C.I. Disperse Red 73, J. Mater. 8 (2015) 3633-3647.
DOI: 10.3390/ma8063633
Google Scholar
[33]
A.E. Cassano and O.M. Alfano, Reaction Engg. of suspended solid heterogeneous photocatalytic reactors, Catal. Today, 58 (2–3) (2000) 167–197.
DOI: 10.1016/s0920-5861(00)00251-0
Google Scholar
[34]
H.P. Shivaraju, Removal of Organic Pollutants in the Municipal Sewage Water by TiO2 based Heterogeneous Photocatalysis. Int'l J. of Environ. Sci. 1 (2011) 911–923.
Google Scholar
[35]
M. Muruganandham and M. Swaminathan, TiO2-UV photocatalytic oxidation of Reactive Yellow 14: effect of operational parameters. J. Hazard. Mater., 135 (1-3) (2006) 78-86.
DOI: 10.1016/j.jhazmat.2005.11.022
Google Scholar
[36]
J.L. Shie, C.H. Lee, C.S. Chiou, C.T. Chang, C.C. Chang and C.Y. Chang, Photdegra-dation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium dioxide photoCatal., J. of Hazard. Mater. 155 (2008).
DOI: 10.1016/j.jhazmat.2007.11.043
Google Scholar
[37]
A. Jamalia, R. Vanraesb, P. Hanselaerb, T. Van Gervena, A batch LED reactor for the photocatalytic degradation of phenol, J. of Chem. Engg. and Processing, 71 (2013) 43– 50.
Google Scholar
[38]
K. Dai, L. Lub, C. Liangc, Q. Liud, G. Zhua, Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation Appl. Catal. B: Environ. 156–157 (2014) 331–340.
DOI: 10.1016/j.apcatb.2014.03.039
Google Scholar
[39]
U.I. Gaya and A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C. Photochem. Rev., 9 (1) (2008) 1-12.
DOI: 10.1016/j.jphotochemrev.2007.12.003
Google Scholar
[40]
S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol., 73 (2010) 71–91.
DOI: 10.1016/j.seppur.2010.03.021
Google Scholar
[41]
H.Y. Kim, A.M. Nasser, M. Barakata and I.S.C. Kanjwalc, Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers, J. of Molecular Catal. A: Chem. 366 (2013) 333– 340.
DOI: 10.1016/j.molcata.2012.10.012
Google Scholar
[42]
B.M. Hussaina, N. Russoa and G. Saraccoa, Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles Chem. Engg. J. 166 (2011) 138–149.
Google Scholar
[43]
S.J. Yoo, D.H. Kwak, K.G. Kim, K.J. Hwang, J.W. Lee, U.Y. Hwang, H.S. Park and J.O. Kim. Photocatalytic degradation of methylene blue and acetaldehyde by TiO2/glaze coated porous red clay tile. Korean J. Chem. Engg., 25 (5) (2008) 1232-1238.
DOI: 10.1007/s11814-008-0204-1
Google Scholar
[44]
R. Thiruvenkatachari, S. Vigneswaran and S. Moon, A review on UV/TiO2 photocatalytic oxidation process (J. Review). Korean J. Chem. Engg., 25 (2008) 64-72.
DOI: 10.1007/s11814-008-0011-8
Google Scholar
[45]
N. Guettai and H.A. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study. Desalination, 185 (2005) 427-437.
DOI: 10.1016/j.desal.2005.04.048
Google Scholar
[46]
W. Bahnemann, M.M. Haque and M. Muneer, Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal. Today, 124 (3-4) (2007) 133–148.
DOI: 10.1016/j.cattod.2007.03.031
Google Scholar
[47]
R.C.M. Disha, A Study on Rate of Decolorization of Textile Azo Dye Direct Red 5B by Recently Developed PhotoCatal., Int'l J. of Scientific and Research Publications, 3 (2013) 2250-3153.
Google Scholar
[48]
D. Chen and A.K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Resources 32 (1998) 3223-3234.
DOI: 10.1016/s0043-1354(98)00118-3
Google Scholar
[49]
M. Abdullah, G.K.C. Low and R.W. Matthews, Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem., 94 (1990) 6820-6825.
DOI: 10.1021/j100380a051
Google Scholar
[50]
J.C. Crittenden, D.W. Hand, E.G. Marchand, D.L. Perram and Y. Zhang, Solar detoxification of fuel-contaminated groundwater using fixed-bed photoCatal., Water Environ. Research, 68 (1996) 270-278.
DOI: 10.2175/106143096x127703
Google Scholar
[51]
M.H. Habibi, A. Hassanzadeh and S. Mahdavi, The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions, J. Photochem. and Photobiol. A: Chem., 172 (2005) 89-96.
DOI: 10.1016/j.jphotochem.2004.11.009
Google Scholar
[52]
W. Baran, A. Makowski, W. Wardas, The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiO2 suspensions Chemosphere, 53 (2003) 87–95.
DOI: 10.1016/s0045-6535(03)00435-1
Google Scholar
[53]
C. Hu, J.C. Yu, Z. Hao and P.K. Wong, Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes Appl. Catal. B: Environ. 46 (2003) 35–47.
DOI: 10.1016/s0926-3373(03)00139-5
Google Scholar
[54]
J. Wiszniowski, D. Robert, J. Surmacz-Gorska, K. Miksch, S. Malato and J.V. Weber, Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: Influence of inorganic salts. Appl. Catal. B-Environ., 53 (2) (2004).
DOI: 10.1016/j.apcatb.2004.04.017
Google Scholar
[55]
U. Muhammad and A.A. Hamidi, Photocatalytic Degradation of Organic Pollutants in Water, Organic Pollutants - Monitoring, Risk and Treatment, Intech Open, (2013).
DOI: 10.5772/53699
Google Scholar
[56]
D. Ollis and H. Al-Elkabi, Photocatalytic Purification and Treatment of Water and Air, Elsevier Sci. Ltd., (1993) 481-494.
Google Scholar
[57]
K.J. Green and R.J. Rudham, Photocatalytic oxidation of propan-2-ol by semiconductor–zeolite composites. J. Chem. Soc., Faraday Trans., 89 (11) (1993) 1867–1870.
DOI: 10.1039/ft9938901867
Google Scholar
[58]
T. Szabóa, A. Veresa, E. Cho, J. Khimb, N. Vargaa and I. Dékány, PhotoCatal. separation from aqueous dispersion using grapheme oxide/ TiO2 nanocomposites. Colloids and Surfaces A: Physicochem. Engg. Aspects, 433 (2013) 230– 239.
DOI: 10.1016/j.colsurfa.2013.04.063
Google Scholar
[59]
M. Maicu, M.C. Hidalgo, G. Colón and J.A. Navío, Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. J. of Photochem. and Photobiol. A: Chemistry, 217 (2011) 275–283.
DOI: 10.1016/j.jphotochem.2010.10.020
Google Scholar
[60]
G. Halasi, F. Solymosi and I. Ugrai, Photocatalytic decomposition of ethanol on TiO2 modified by N and promoted by metals. J. Catal., 281 (2011) 309–317.
DOI: 10.1016/j.jcat.2011.05.016
Google Scholar
[61]
R. Asahi, K. Aoki, T. Morikawa, T. Ohwaki and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium dioxides. Sci., 293 (2001) 269-271.
DOI: 10.1126/science.1061051
Google Scholar
[62]
H. Irie, K. Hashimoto and Y. Watanabe, Nitrogen concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B, 107 (2003) 5483-5486.
DOI: 10.1021/jp030133h
Google Scholar
[63]
T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, Visible-light-active titanium dioxide photoCatal. realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B: Environ., 42 (2003) 403-409.
DOI: 10.1016/s0926-3373(02)00269-2
Google Scholar
[64]
A. Fujishima, D.A. Tryk and X. Zhang, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep., 63 (2008) 515-582.
DOI: 10.1016/j.surfrep.2008.10.001
Google Scholar
[65]
Q. Chen, D. Jiang, W. Shi, D. Wu and Y. Xu, Visible-light-activated Ce–Si co-doped TiO2 photoCatal. Appl. Surface Sci., 255 (2009) 7918–7924.
DOI: 10.1016/j.apsusc.2009.04.167
Google Scholar
[66]
R. Matthews, Solar-electricwater purification using photocatalytic oxidationwith TiO2 as a stationary phase. Solar Energy, 38 (6) (1987) 405–413.
DOI: 10.1016/0038-092x(87)90021-1
Google Scholar
[67]
M. Bideau, B. Claudel, C. Dubien, L. Faure and H. Kazouan, On the immobilization, of titanium dioxide in the photocatalytic oxidation of spent waters. J. Photochem. Photobiol. A, 91 (2) (1995) 137–144.
DOI: 10.1016/1010-6030(95)04098-z
Google Scholar
[68]
R. Matthews, Photooxidation of organic impurities in water using thin films of titanium dioxide, J. Phys. Chem. 91 (12) (1987) 3328–3333.
DOI: 10.1021/j100296a044
Google Scholar
[69]
M. Xiaojun, Y. Hongmei, Y. Lili, C. Yin and L. Ying, Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation J. Mater., 7 (2014) 4431-4441.
DOI: 10.3390/ma7064431
Google Scholar
[70]
I.R. Bellobono, M. Bonardi, L. Castellano, E. Selli and L. Righetto, Degradation of some chloro-aliphatic water contaminants by photocatalytic membranes immobilizing titanium dioxide, J. Photochem. Photobiol. A 67 (1) (1992) 109–115.
DOI: 10.1016/1010-6030(92)85173-r
Google Scholar
[71]
K. Kato, Photocatalytic property of TiO2 anchored on porous alumina ceramic support by the alkoxide method, J. Ceram. Soc. Jpn. 101 (3) (1993) 245–249.
DOI: 10.2109/jcersj.101.245
Google Scholar
[72]
M. Anderson, M.J. Gieselmann and Q. Xu, Titania and alumina ceramic membranes, J. Membr. Sci. 39 (3) (1988) 243–258.
DOI: 10.1016/s0376-7388(00)80932-1
Google Scholar
[73]
R. Mariscal, J.M. Palacios, M. Galan-Ferreres and J.L.G. Fierro, Incorporation of titania into preshaped silica monolith structures, Appl. Catal. A 116 (1–2) (1994) 205–219.
DOI: 10.1016/0926-860x(94)80290-4
Google Scholar
[74]
Y. Xu and H. Langford, Enhanced photoactivity of a titanium (iv) oxide supported on zsm5 and zeolite a at low coverage, J. Phys. Chem. 99 (29) (1995) 11501–11507.
DOI: 10.1021/j100029a031
Google Scholar
[75]
Y.M. Gao, H.S. Shen, K. Dwight and A. Wold, Preparation and photocatalytic properties of titanium (IV) oxide films, Mater. Res. Bull. 27 (9) (1992) 1023–1030.
DOI: 10.1016/0025-5408(92)90240-z
Google Scholar