[1]
Ömer Necati Cora, Muammer Koç, Promises and problems of ultra/advanced high strength steel (U/AHSS) utilization in automotive industry, Conference: 7th Automotive Technologies Congress, May 2014
Google Scholar
[2]
Anu Väisänen, Kari Mäntyjärvi, Jussi A. Karjalainen, Bendability of Ultra-High-Strength Steel, Key Engineering Materials Vols. 410-411 (2009) pp.611-620, Trans Tech Publications, March 2009
DOI: 10.4028/www.scientific.net/KEM.410-411.611
Google Scholar
[3]
S. Gothivarekar, S. Coppieters, R. Talemi, D. Debruyne, Effect of bending process on the fatigue behaviour of high strength steel, ScienceDirect, Journal of Constructional Steel Research, Volume 182, July 2021
DOI: 10.1016/j.jcsr.2021.106662
Google Scholar
[4]
Serope Kalpakjian, Manufacturing processes for engineering materials, Sheet-Metal Forming Processes, January 1985
DOI: 10.1007/BF02833667
Google Scholar
[5]
A. Ince, A mean stress correction model for tensile and compressive mean stress fatigue loadings, Fatigue & Fracture of Engineering Materials & Structures (FFEMS), Volume 40, Issue 6, pp.939-948, November 2016
DOI: 10.1111/ffe.12553
Google Scholar
[6]
Ilya Men, Dmitry Naroditsky, Vibration Fatigue Testing Procedure of High Strength MARS 600 Steel, Fillet Welds Using Stainless Steel Consumable Electrode, Scientific.Net, Advanced Engineering Forum, Volume 49, pp.57-78, May 2023
DOI: 10.4028/p-o0a804
Google Scholar
[7]
Dr. P. V. R. Ravindra Reddy, G. Chandra Mohan Reddy, A Review on Finite Element Simulations in Metal Forming, International Journal of Modern Engineering Research (IJMER), Vol.2, Issue.4, July-August 2012, pp.2326-2330, ISSN: 2249-6645
Google Scholar
[8]
C. Jiménez-Peña, C. Goulas, B. Rossi d, D. Debruyne, Influence of hole-making procedures on fatigue behaviour of high strength steel plates, Journal of Constructional Steel Research, Volume 158, pp.1-14, March 2019
DOI: 10.1016/j.jcsr.2019.03.005
Google Scholar
[9]
S. Gothivarekar, S. Coppieters, R. H. Talemi, D. Debruyne, Experimental Model Validation and Fatigue Behaviour of Cold-Formed High Strength Steel, Multidisciplinary Digital Publishing Institute (MDPI), Proceedings, Volume 2, Issue 8, May 2018
DOI: 10.3390/ICEM18-05200
Google Scholar
[10]
Yu Xia, Chu Ding, Zhanjie Li, Benjamin W. Schaferb, Hannah B. Bluma, Numerical modelling of stress-strain relationships for advanced high strength steels, Journal of Constructional Steel Research, Volume 182, July 2021, DOI: org/
DOI: 10.1016/j.jcsr.2021.106687
Google Scholar
[11]
V. Narayanamurthy, C. Lakshmana Rao, B.N. Rao, Numerical Simulation of Ballistic Impact on Armour Plate with a Simple Plasticity Model, DESIDOC, Defence Science Journal, Vol. 64, No. 1, January 2014, pp.55-61
DOI: 10.14429/dsj.64.4521
Google Scholar
[12]
Kalle Lipi¨ainen, Antti Kaijalainen, Antti Ahola, Timo Bj¨ork, Fatigue strength assessment of cut edges considering material strength and cutting quality, International Journal of Fatigue, Volume 149, April 2021
DOI: 10.1016/j.ijfatigue.2021.106263
Google Scholar
[13]
Bimal Das1 | Akhilendra Singh1 | Surajit Kumar Paul1, Correlation between fatigue response of preformed bendDP600 steel specimen and wheel disc, Fatigue & Fracture of Engineering Materials and Structures (FFEMS), pp.1-12, June 2020
DOI: 10.1111/ffe.13299
Google Scholar
[14]
Aki-Petteri Pokkaa, Anna-Maija Arolaa, Antti Kaijalainena, Vili Kestib, Jari Larkiolaa, Strain distribution during air bending of ultra-high strength steels, ESAFORM, March 2021, DOI: org/
DOI: 10.25518/esaform21.2509
Google Scholar
[15]
ANSYS Inc, Century Dynamics, AUTODYN, Explicit Software for Nonlinear Dynamics, Theory Manual, 2005, Revision 4.3
Google Scholar
[16]
Maziar Ramezani, Zaidi Mohd Ripin, Roslan Ahmad, Modelling of kinetic friction in V-bending of ultra-high-strength steel sheets, The International Journal of Advanced Manufacturing and Technology, Volume 46, pp.101-110, April 2008
DOI: 10.1007/s00170-008-1450-4
Google Scholar
[17]
R. Srinivasan, D. Vasudev, P. Padmanabhan, Influence of friction parameters on spring back and bend force in air bending of electrogalvanized steel sheet: an experimental study, The Brazilian Society of Mechanical Sciences and Engineering, Volume 36, pp.371-376, September 2013
DOI: 10.1007/s40430-013-0097-8
Google Scholar
[18]
Vitalii Vorkov, Dirk Vandepitte, Joost R. Duflou, Finite element modelling of large radius bending operation, International Journal of Manufacturing Research, Volume 15, No. 4, pp.297-320
DOI: 10.1504/IJMR.2020.110518
Google Scholar
[19]
Min Zhang, Xitian Tian, Residual stresses and strains analysis in press-braking bending parts considering multi-step forming effect, Institution of Mechanical Engineers, Journal of Engineering Manufacture, SAGE, Volume 234, Issue 4, November 2019
DOI: 10.1177/0954405419883053
Google Scholar
[20]
S. Gothivarekar1, S. Coppieters1, A. Van de Velde1, D. Debruyne1, Advanced FE model validation of cold-forming process using DIC: Air bending of high strength steel, International Journal of Material Forming, January 2020, DOI: org/
DOI: 10.1007/s12289-020-01536-1
Google Scholar
[21]
Richard Aerensa, Vitalii Vorkovb, Joost R. Dufloub, Physics of large radius air bending, ELSEVIER, ScienceDirect, Procedia Manufacturing 29, Volume 29, pp.161-168, January 2019
DOI: 10.1016/j.promfg.2019.02.121
Google Scholar
[22]
Vitalii Vorkov1, Richard Aerens, Dirk Vandepitte1, Joost R. Duflou1, The Multi-Breakage Phenomenon in Air Bending Process, Key Engineering Materials, Vols 611-612 (2014), pp.1047-1053, May 2014
DOI: 10.4028/www.scientific.net/KEM.611-612.1047
Google Scholar
[23]
Tommy J. George, Jeremy Seidt, M.-H. Herman Shen, Theodore Nicholas, Charles J. Cross, Development of a novel vibration-based fatigue testing methodology, International Journal of Fatigue, Volume 26, pp.477-486, October 2003
DOI: 10.1016/j.ijfatigue.2003.10.012
Google Scholar
[24]
Gyoko Oh, Notch fatigue fracture and crack growth behaviours on a steel sheet under out-of-plane bending, Engineering Fracture Mechanics, Volume 279, February 2023
DOI: 10.1016/j.engfracmech.2023.109062
Google Scholar
[25]
Yuki Banno, Experimental investigation of fatigue strength of out-of-plane gusset welded joints under variable amplitude plate bending loading in long life region, Welding in the World, Volume 66, pp.1883-1896, June 2022
DOI: 10.1007/s40194-022-01312-6
Google Scholar
[26]
Karel Raz, Miloslav Kepka, Julie Volkmannova, Vibration Fatigue - FEM analysis vs. Real testing, MM SCIENCE JOURNAL, November 2020
DOI: 10.17973/MMSJ.2020_11_2020045
Google Scholar
[27]
Gyoko Oh, Yoshiaki Akiniwa, Mean and residual stress effects on fatigue behavior in a pre-strained corner of stainless-steel sheet, ScienceDirect, International Journal of Fatigue, Volume 145, April 2021
DOI: 10.1016/j.ijfatigue.2020.106125
Google Scholar
[28]
Vladimir Milovanovi´c, Dušan Arsi´c, Miroslav Milutinovi´c 2, Miroslav Živkovi´ and Marko Topalovi´c, A Comparison Study of Fatigue Behavior of S355J2+N, S690QL and X37CrMoV5-1 Steel, Multidisciplinary Digital Publishing Institute (MDPI), Metals, December 2022
DOI: 10.3390/met12071199
Google Scholar
[29]
T. Hassan, Z. Liu, On the difference of fatigue strengths from rotating bending, four-point bending, and cantilever bending tests, International Journal of Pressure Vessels and Piping, January 2001, pp.19-30
DOI: 10.1016/S0308-0161(00)00080-6
Google Scholar
[30]
Ilya Men, Force Controlled Low Cycle Fatigue (LCF) Life Evaluation Methodology Based on Unstabilized Material Properties, Scientific.net, Advanced Engineering Forum, Volume 43, pp.17-32, November 202
DOI: 10.4028/www.scientific.net/AEF.43.17
Google Scholar
[31]
Ayad Mutafi, J.M. Irwan, et. All, Residual stresses in cold-formed steel sections: An overview of influences and measurement techniques, Forces in Mechanics, Volume 18, February 2025
DOI: 10.1016/j.finmec.2025.100306
Google Scholar
[32]
North American specifications for the design of cold-formed steel structural members. American Iron and Steel Institute, ANSI AISI100-2016, (2016)
Google Scholar