Electrodeposition of ZnO Thin Films with Controllable Impurities and Microstructures

Article Preview

Abstract:

To enhance the conductivity and reduce the surface roughness of ZnO films, electrodeposition of ZnO films on the ITO substrate had been studied for the application of inverted organic solar cells. ZnO films with the grain size range from 0.4 to 2 μm had been fabricated by varying the temperature, ion concentration and deposition potentials. Moreover, ZnO films with the impurity energy level of 2.28±0.20 eV origin from the oxygen vacancy, had been found in the PL emission. It is found that as the applied potential went more negative, the concentration of the oxygen vacancies increased, and the emission peak of the impurity level had higher intensity. By changing the ion concentration and temperature of the electrolyte, the controllable microstructure and impurity levels of ZnO thin films had been achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-201

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, Small Vo.6 (2010), P.307.

Google Scholar

[2] C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds, and F. So, Nature Photonics Vol.6 (2012), p.115

Google Scholar

[3] S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, and H. Wei, Applied Physics Letters Vol.100 (2012), P.203906.

Google Scholar

[4] Y. Qin, X. Wang, and Z. L. Wang, Nature Vol.451 (2008) , P.809.

Google Scholar

[5] G. Zhu, R. Yang, S. Wang, and Z. L. Wang, Nano Lett Vol.10 (2010), p.3151.

Google Scholar

[6] G. Hirata, J. McKittrick, T. Cheeks, J. Siqueiros, J. Diaz, O. Contreras, and O. Lopez, Thin Solid Films Vol.288 (1996), p.29.

DOI: 10.1016/s0040-6090(96)08862-1

Google Scholar

[7] R. G. Gordon, Mrs Bulletin Vol.25 (2000), P.52.

Google Scholar

[8] T. Minami, Mrs Bulletin Vol.25 (2000), P. 38.

Google Scholar

[9] P. Sharma, A. Gupta, K. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. Gehring, Nature materials Vol.2 (2003), P.673.

DOI: 10.1038/nmat984

Google Scholar

[10] J. Coey, M. Venkatesan, and C. Fitzgerald, Nature materials Vol.4 (2005), P.173.

Google Scholar

[11] A. Behan, A. Mokhtari, H. Blythe, D. Score, X. Xu, J. Neal, A. Fox, and G. Gehring, Physical review letters Vol.100 (2008), P.47206.

Google Scholar

[12] V. M. Guérin, J. Rathousky, and T. Pauporté, Solar Energy Materials and Solar Cells Vol.12 (2011), p.8.

Google Scholar

[13] Y. Gao, M. Nagai, T. C. Chang, and J. J. Shyue, Crystal Growth and Design Vol.7 (2007), P.2467.

Google Scholar

[14] S. Haller, T. Suguira, D. Lincot, and T. Yoshida, physica status solidi (a) Vol.207 (2010), p.2252.

DOI: 10.1002/pssa.201090021

Google Scholar

[15] O. Lupan, V. Guérin, I. Tiginyanu, V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, Journal of Photochemistry and Photobiology A: Chemistry Vol.211 (2010), p.65.

DOI: 10.1016/j.jphotochem.2010.02.004

Google Scholar

[16] J. J. Wu, Y. R. Chen, W. P. Liao, C. T. Wu, and C. Y. Chen, ACS Nano Vol.4 (2010), p.5679.

Google Scholar

[17] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat Photon Vol.6 (2012), p.593.

Google Scholar

[18] B. Cao, Y. Li, G. Duan, and W. Cai, Crystal growth & design Vol.6 (2006), p.1091.

Google Scholar

[19] C. L. Perkins, S. H. Lee, X. Li, S. E. Asher, and T. J. Coutts, Journal of Applied Physics Vol.97 (2005), p.034907.

Google Scholar

[20] Ang Yu, Jieshu Qian, Hao Pan, Yuming Cui, Meigui Xu, Luo Tu, Qingli Chai, Xingfu Zhou, Sensors and Actuators B Vol.158 (2011), p.9.

Google Scholar

[21] C.Jagadish and S. pearton: Zinc Oxide Bulk, Thin Films and Nanostrctures(Elsevier publication, UK and 2008).

Google Scholar

[22] D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. Look, and Y. Park, Applied Physics Letters Vol.86 (2005), p.151917.

Google Scholar

[23] C. H. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, and S. T. Lee, Advanced Materials Vol.15 (2003), p.838.

DOI: 10.1002/adma.200304430

Google Scholar

[24] Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, Small Vol.6 (2009), p.307.

Google Scholar

[25] L. Li, Y. Zhang, P. Xiao, Y. Yang, L. Lu, and X. Zhang, in Nanoelectronics Conference (INEC), 2010 3rd International, IEEE(2010), p.1001.

Google Scholar

[26] J. Wu and D. Xue, Science of Advanced Materials Vol.3 (2011), p.127.

Google Scholar

[27] L. Li, S. Pan, X. Dou, Y. Zhu, X. Huang, Y. Yang, G. Li, and L. Zhang, The Journal of Physical Chemistry C Vol.111 (2007), p.7288.

Google Scholar

[28] M. Wong, A. Berenov, X. Qi, M. Kappers, Z. Barber, B. Illy, Z. Lockman, M. Ryan, and J. MacManus-Driscoll, Nanotechnology Vol.14 (2003), p.968.

DOI: 10.1088/0957-4484/14/9/306

Google Scholar

[29] M. Chen, X. Wang, Y. Yu, Z. Pei, X. Bai, C. Sun, R. Huang, and L. Wen, Applied Surface Science Vol.158 (2000), p.134.

Google Scholar

[30] Y. Ryu, S. Zhu, J. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. White, Journal of Applied Physics Vol.88 (2000), p.201.

Google Scholar