Pyroelectric Properties of SBN/BST by Powder-Sol Method

Article Preview

Abstract:

0.7BaO·0.3SrO·0.3Nb2O5·0.7TiO2 (SBN/BST) composite ceramics werefabricated using a Powder-Sol (P-S) method with Nb2O5fine powder suspended in the barium strontium titanate (abbreviated as BST) solsolution. By X-ray diffraction (XRD) investigations, it is found that thetetragonal tungsten bronze (TTB) phase and perovskite phase were co-present incompositions. The average grain size of BST and SBN phase is 140 nm and 2.2 μm,respectively. The room temperature relative dielectric constant is 1445 forthis sample measured at 1 kHz and zero bias. In the room temperature, thepyroelectric coefficient of the 0.7BaO·0.3SrO·0.3Nb2O5·0.7TiO2is 39 nc/cm2·°C. The maximum value of FD is about 2.4×10-5 Pa-1/2at 45°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

190-195

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.C. Chan, Y.T. Hsieh, C.Y. Chen, W.C. Tzou, C.C. Wu and C.F. Yang. Effects of deposition parameters and annealing temperatures on the characteristics of the Sr0.6Ba0.4Nb2O6 thin films[J], Advanced Materials Research, Vol. 415-417. (2012), pp.1867-1870.

DOI: 10.4028/www.scientific.net/amr.415-417.1867

Google Scholar

[2] M.S. Bozgeyik, J.S. Cross, H. Ishiwara and K. Shinozaki. Electrical and memory window properties of Sr0.8-xBaxBi2.2Ta2-yZryO9 ferroelectric gate in metal-ferroelectric-insulator- semiconductor structure[J]. Journal of Electroceramics, Vol. 28. (2012) No.2-3, pp.158-164.

DOI: 10.1007/s10832-012-9698-3

Google Scholar

[3] T.S. Chernaya , T.R. Volk and I.A. Verin. Atomic Structure of (Sr0.50Ba0.50)Nb2O6 Single Crystals in the Series of (SrxBa1-x)Nb2O6 Compounds[J]. Crystallography Reports, Vol. 47. (2002) No. 2, pp.249-252.

DOI: 10.1134/1.1466494

Google Scholar

[4] D.C. Woo, C.J. Lee, J.J. Kim and H.Y. Lee. Pyroelectric properties of Sr0.6Ba0.4Nb2O6 thin films[J]. Ferroelectrics, Vol. 385. (2009) No. 1, pp.82-88.

Google Scholar

[5] J. Yang, P. Yun, J.D.Q. Xiao, C. Tang and M. Chen. The fabrication of highly (100)-oriented Ba0.8Sr 0.2TiO3/LaNiO3 multilayers via sol-gel method[J]. Ferroelectrics, Vol. 406. (2010), pp.90-96.

DOI: 10.1080/00150193.2010.484358

Google Scholar

[6] R.W. Whatmoree and R. Watton. Pyroelectric Ceramics and Thin Films for Uncooled Thermal Imaging[J]. Ferroelectr, Vol.236. (2000) No.11, pp.259-279.

DOI: 10.1080/00150190008016057

Google Scholar

[7] Q.W. Huang, P.L. Wang, Y.B. Cheng and D.S. Yan. XRD Analysis of Formation of Strontium Barium Niobate Phase[J]. Mater Lett, Vol.56. (2002), pp.915-920.

DOI: 10.1016/s0167-577x(02)00637-7

Google Scholar

[8] Y.P. Ding, C.Y. Jin and Z.Y. Meng. Investigation on the Amorphous-Crystalline Transition and Microstructure of Sol-Gel Derived (Ba1-xSrx)TiO3 Thin Films[J]. Mater Res Bulletin, Vol.35. (2000), pp.1187-1193.

DOI: 10.1016/s0025-5408(00)00315-9

Google Scholar

[9] J.F. Moulder, W.F. Stickle, P.E. SOBOL and K.D. BOMBEN. Handbook X-ray photoelectron spectroscopy[M], Perkin Elmer Corporation, U.S.A., October, 1992.

Google Scholar

[10] L.W. Shan and X.Y. ZhangG. X-ray Photoelectron Spectroscopy Study of Lanthanum Doped Barium Magnesium Niobate [J]: Joural of Rare Earth, vol. 24.(2006), pp.310-313.

Google Scholar

[11] Y. Hu, T O K, J.S. Pan and X. Yao. A New Form of Nanosized SrTiO3 Material for Near-Human-Body Temperature Oxygen Sensing Applications. J. Phys. Chem. B, Vol.108. (2004), pp.11214-11218.

DOI: 10.1021/jp048973z

Google Scholar

[12] J.G. Cheng, X.J. Mao, J. Tang, S.L. Guo and J.H. Chu. Pyroelectric Ba0.8Sr0.2TiO3 Thin Films Derived from a 0.05 M Solution Precursor by Sol-Gel Processing[J]. Appl Phys Lett, Vol. 75. (1999) No.21, pp.3402-3404.

DOI: 10.1063/1.125307

Google Scholar

[13] Z.H. Zhou, P. Y. Du and W.J. Weng. Dielectric Properties of 0.7BaO.0.3SrO.(1-y)TiO2∙yNb2O5 Composite Ceramics[J]. Mater Chem and Phys, Vol. 87. (2004) No. 2-3, pp.430-434.

Google Scholar