Coulomb Effects in the Ge/Si Single Quantum Dot

Article Preview

Abstract:

Using scanning probe microscopy (SPM) technique, the electronic properties of Ge/Si quantum dots (QDs) have been characterized. Our results demonstrate that a layer of a disordered structure is formed between the Ge/Si QDs and the surface of Si substrate due to the defects in QDs during the bias voltage applied. That is, a double tunneling system in which the Coulomb blocking effect can be observed is constructed during the electronic measurement for the single quantum dot (SQD).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

176-180

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.D. Zhang, J.M. MOU: Nanomaterials and Nanostructures (Science Press, China 2001), 51-67.

Google Scholar

[2] K. Schmalz, L.N. Yassievich, E.J. Collart, and D.J. Gravesteijn: Physical Review B, Vol.54 (1996) No.23, P.16799.

Google Scholar

[3] K.S. Novoselov, Z Jiang, Y Zhang, et al: Science, Vol.315(2007)No.5817, P.1379.

Google Scholar

[4] N. Motta, F. Boscherini, A. Sgarlata, et al: Phy. Rev. B, Vol.75(2007)No.3, P. 035337.

Google Scholar

[5] S.A. StePanov, E.A. Kondrashkina, M. Schmidbauer, et al: Phy. Rev. B, Vol.54(1996)No.11, P 8150.

Google Scholar

[6] S. Zhang, X. Wang, Z. Chen, et al: Phy. Rev. B, Vol.60(1999)No.8, P.5904.

Google Scholar

[7] R. Leon, D. Margolese, G. Stucky, et al: Phy. Rev. B, Vol.52(1995)No.4, P. R2285.

Google Scholar

[8] S. Shusterman, A. Raizman, A. Sher, et al: Nano. Lett. , Vol. 7 (2007), P.2089.

Google Scholar

[9] D. Toker, I. Balberg, O. Zelaya-Angel, et al: Phys. Rev. B, Vol.73 (2006), P. 045317.

Google Scholar

[10] I. Tanaka, I. Kamiya, H. Sakaki, et al: Appl. Phys. Lett., Vol.74 (1999), P. 844-846.

Google Scholar

[11] J. Oh and R.J. Nemanich: Journal of Applied Physics, Vol.92(2002)No.6, P. 3326.

Google Scholar

[12] K.O. Vicaro, M.A. Cotta, H.R. Gutierrez, et al: Nano. Lett. , Vol.14 (2003), P.509.

Google Scholar

[13] K. Smaali, M. Troyon, A.El Hdiy, et al: Appl. Phys. Lett., Vol.89 (2006), P.112115.

Google Scholar

[14] H.C. Chung, W.H. Chu and C.P. Liu: Appl. Phys. Lett., Vol.89 (2006), P. 082105.

Google Scholar

[15] F. Xue, J. Qin, J.Cui, et al: Suif. Sci., Vol.592 (2005), P.65-71.

Google Scholar

[16] R. Wu, F.H. Li, Z.M. Jiang, et al: Nano. Lett., Vol.17 (2006), P. 5111.

Google Scholar

[17] J. Yang, C. Wang, D.P. Tao, et al: Materials Technology, Vol.27 (2012), P.133.

Google Scholar

[18] J. Yang, Y.X. Jin, C. Wang, et al: Appl. Surf. Sci., Vol.258 (2012), P. 3637.

Google Scholar

[19] X.G. Zhang, C. Wang, Z.Q. Lu, et al: Acta Physica Sinica, Vol. 60(2011)No.9, P. 096101 (in Chinese).

Google Scholar

[20] J.Yang, C.Wang, Y.X. Jin, et al: Acta Physica Sinica, Vol.61(2012)No.1, P. 016804 (in Chinese).

Google Scholar

[21] B. Wang, S. Lu, J.G. Hou: Physics, Vol.31(2002)No.4, P. 200-202(in Chinese).

Google Scholar

[22] L. Wen, Z.H. Lin, S.H. Weng, et al: Chemical Journal of Chinese Universities, Vol.29 (2008) No.2, P. 350-355(in Chinese).

Google Scholar

[23] D.D. Yang, B. Wang, J.G. Hou: J. Chin. Electr. Microsc. Soc., Vol.26(2007)No.4, P. 370-386(in Chinese).

Google Scholar

[24] D. Ferry, S.M. Goodnick. Transport in Nanostructures(Cambridge University Press, England 1997), 209- 279.

Google Scholar