Effect of Electrode Types on the Resistive Switching Behavior of Titania Thin Films

Article Preview

Abstract:

The resistive switching or memristive behavior of sputtered titania thin films sandwiched in between of three types of metal electrodes (Au, Pt and Ti) was investigated. The active region of the device consisted of two titania thin films, in which, the first layer was exposed to a plasma treatment to create the oxygen vacancies, before the deposition of the second layer. The whole active layer sputtering deposition process was conducted in a one-flow process without exposing the sample to the room ambient. From the I-V measurements, titania thin films in between Ti and Au did not show any resistive switching, but those sandwiched between Pt electrodes exhibit a noticeable memristive behavior. This may due to the metal work function of the platinum itself.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-78

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Chua, S. Kang, Memristive devices and systems, Proc IEEE, 64 (1976) 209-223.

Google Scholar

[2] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams , The missing memristor found, Nature, 453 (2008) 80-83.

DOI: 10.1038/nature06932

Google Scholar

[3] K. -H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, A Functional Hybrid Memristor Crossbar-Array/CMOS System for Data Storage and Neuromorphic Applications, Nano Letters, 12 (2011) 389-395.

DOI: 10.1021/nl203687n

Google Scholar

[4] N. Gergel-Hackett, J.L. Tedesco, C.A. Richter, Memristors With Flexible Electronic Applications, Proceedings of the IEEE, PP (2011) 1-8.

Google Scholar

[5] S. Won, S. Go, K. Lee, J. Lee, Resistive switching properties of Pt/TiO2/n+-Si ReRAM for nonvolatile memory application, Electronic Materials Letters, 5 (2009) 29-33.

Google Scholar

[6] N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo, K.H. Choi, Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching, Current Applied Physics, 13 (2013) 90-96.

DOI: 10.1016/j.cap.2012.06.017

Google Scholar

[7] K. Miller, K.S. Nalwa, A. Bergerud, N.M. Neihart, S. Chaudhary, Memristive Behavior in Thin Anodic Titania, Electron Device Letters, IEEE, 31 (2010) 737-739.

DOI: 10.1109/led.2010.2049092

Google Scholar

[8] M.N. Awais, N.M. Muhammad, D. Navaneethan, H.C. Kim, J. Jo, K.H. Choi, Fabrication of ZrO2 layer through electrohydrodynamic atomization for the printed resistive switch (memristor), Microelectronic Engineering, 103 (2013) 167-172.

DOI: 10.1016/j.mee.2012.09.005

Google Scholar

[9] S. Carrara, D. Sacchetto, M. -A. Doucey, C. Baj-Rossi, G. De Micheli, Y. Leblebici, Memristive-biosensors: A new detection method by using nanofabricated memristors, Sensors and Actuators B: Chemical, 171–172 (2012) 449-457.

DOI: 10.1016/j.snb.2012.04.089

Google Scholar

[10] Z. Aznilinda , S.H. Herman, M. Rusop , Effect of Plasma Treatment on Memristive Behavior of Sputtered Titania, Presented at the 7th NANOSMAT Conference, International Conference on Surfaces, Coatings and Nanostructured Materials, Prague , Czech Republic on 19th September (2012).

Google Scholar

[11] Z. Aznilinda, S.H. Herman, M. Rusop, Physical characteristic of room-temperature deposited TiO2 thin films by RF magnetron sputtering at different RF power, Humanities, Science and Engineering Research (SHUSER), 2012 IEEE Symposium on2012, pp.685-689.

DOI: 10.1109/shuser.2012.6268904

Google Scholar

[12] T. -G. Woo, I. -S. Park, K. -H. Jung, W. -Y. Jeon, Y. -K. Hwang, K. -W. Seol, Effects of plasma treatment on the peel strength of Ni on polyimide, Electronic Materials Letters, 8 (2012) 151-156.

DOI: 10.1007/s13391-012-1075-5

Google Scholar

[13] G.V. Strukov, V.S. Stolyarov, G.K. Strukova, V.N. Zverev, Physica C: The superconducting properties of nanostructured Pb7Bi3 films obtained by pulse electroplating, Superconductivity, 483 (2012) 162-164.

DOI: 10.1016/j.physc.2012.09.002

Google Scholar

[14] R. Williams, How We Found The Missing Memristor, Spectrum, IEEE, 45 (2008) 28-35.

DOI: 10.1109/mspec.2008.4687366

Google Scholar

[15] F. Zhuge, B. Hu, C. He, X. Zhou, Z. Liu, R. -W. Li, Mechanism of nonvolatile resistive switching in graphene oxide thin films, Carbon, 49 (2011) 3796-3802.

DOI: 10.1016/j.carbon.2011.04.071

Google Scholar

[16] H. Akinaga, H. Shima, Resistive Random Access Memory (ReRAM) Based on Metal Oxides, Proceedings of the IEEE, 98 (2010) 2237-2251.

DOI: 10.1109/jproc.2010.2070830

Google Scholar

[17] F. Hernandez-Ramirez, S. Barth, A. Tarancon, O. Casals, E. Pellicer, J. Rodriguez, A. Romano-Rodriguez, J.R. Morante, S. Mathur, Water vapor detection with individual tin oxide nanowires, Nanotechnology, 18 (2007) 424016.

DOI: 10.1088/0957-4484/18/42/424016

Google Scholar

[18] S.V.J. Chandra, E. Fortunato, R. Martins, C. -J. Choi, Modulations in effective work function of platinum gate electrode in metal-oxide-semiconductor devices, Thin Solid Films, 520 (2012) 4556-4558.

DOI: 10.1016/j.tsf.2011.10.137

Google Scholar

[19] M. Chen, X. Xia, Z. Wang, Y. Li, J. Li, C. Gu, Rectifying behavior of individual SnO2 nanowire by different metal electrode contacts, Microelectronic Engineering, 85 (2008) 1379-1381.

DOI: 10.1016/j.mee.2008.01.027

Google Scholar