[1]
N.A. Wong, H. Bahmani, A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon 8 (2022).
DOI: 10.1016/j.heliyon.2022.e10282
Google Scholar
[2]
D. B. Moyano, Y. Sola, R. A. González-Lezcano, Blue-Light levels emitted from portable electronic devices compared to sunlight Energies. 13 (2020) 1-9.
DOI: 10.3390/en13164276
Google Scholar
[3]
K. Matsumori, K. Nishimura et al, Melatonin suppression and sleepiness in children exposed to blue-enriched white LED lighting at night," Physiological Reports, vol. 6, Article ID e13942, 2018.
DOI: 10.14814/phy2.13942
Google Scholar
[4]
R. Nagare, M.S. Rea, B. Plitnick, and M.G. Figueiro, Nocturnal melatonin suppression by adolescents and adults for different levels, spectra, and durations of light exposure. Journal of Biological Rhythms. 34 (2019) 178–194.
DOI: 10.1177/0748730419828056
Google Scholar
[5]
C.W. Lin, F.M. Yeh, B.W. Wu, and C.H. Yang, The effects of reflected glare and visual field lighting on computer vision syndrome. Clinical and Experimental Optometry. 102 (2019)513-520.
DOI: 10.1111/cxo.12878
Google Scholar
[6]
S. Lepoutre, D. Boyer, R. Mahiou, Quantum cutting abilities of sol–gel derived LiGdF4:Eu3+ powders. J. Lumin. 128 (2008) 635-641.
DOI: 10.1016/j.jlumin.2007.10.033
Google Scholar
[7]
S. R. Jaiswal, P. A. Nagpure, S. K. Omanwar, Energy transfer process in MgF2:Gd3+, Eu3+ phosphor: Application to visible quantum cutting, International Journal of Scientific Research in Science and Technology, 2021 | IJSRST | Volume 8 - Issue 1.
Google Scholar
[8]
B. Liu et al., Visible quantum cutting in BaF2: Gd,Eu via downconversion. J. Lumin. 101 (2003) 155-159.
DOI: 10.1016/s0022-2313(02)00408-8
Google Scholar
[9]
K. D. Oskam et al. J. Alloys Compd. 421 (2000) 300-301
Google Scholar
[10]
C. Feldmann, T. Jüstel, C. R. Ronda, D. U. Wiechert, Quantum efficiency of down-conversion phosphor LiGdF4: Eu3+. J. Lumin. 92 (2001) 245-254
DOI: 10.1016/s0022-2313(00)00240-4
Google Scholar
[11]
H. Kondo, T. Hirai, S. Hashimoto, Dynamical behavior of quantum cutting in alkali gadolinium fluoride phosphors. J. Lumin. 108 (2004) 59-63.
DOI: 10.1016/j.jlumin.2004.01.011
Google Scholar
[12]
F. T. You, S. H. Huang, S. M. Liu, Y. Tao, VUV excited luminescence of MGdF4:Eu3+ (M=Na, K, NH4). J. Lumin. 110 (2004) 95-99
DOI: 10.1016/j.jlumin.2004.04.007
Google Scholar
[13]
Y. H. Chen, B. Liu, C. S. Shi, G. Zimmerer. J. Chin. Rare Earth Soc. 23 (2005) 429.
Google Scholar
[14]
V. Ogorodnyk et al. Cryst. Res. Technol. 1002 (2007) 1.
Google Scholar
[15]
C. X. Liu, J. Y. Liu, K. Dou, Judd-Ofelt intensity parameters and spectral properties of Gd2O3:Eu3+ nanocrystals. J. Phys. Chem. B 110 (2006) 20277-20281.
DOI: 10.1021/jp063075j
Google Scholar
[16]
Y. H. Wang, D. Wang, Photoluminescence properties of La(PO3)3:Tb3+ under VUV excitation. J. Solid State Chem. 180 (2007) 3450-3455
DOI: 10.1016/j.jssc.2007.10.008
Google Scholar
[17]
L. He, Y. H. Wang, H. Gao, Characterization of the VUV excitation spectrum of BaZr(BO3)2:Eu. J. Lumin. 126 (2007) 182-186.
DOI: 10.1016/j.jlumin.2006.06.004
Google Scholar
[18]
L. Dechuan, Z. Guangping, Quantum cutting in ultraviolet B-excited KY(CO3)2 Tb3+ Phosphors. Materials. 15 (2022) 6160.
DOI: 10.3390/ma15176160
Google Scholar
[19]
S.R. Jaiswal et al. J. Mater. Sci. Mater. Electron. 28 (2017) 2407.
Google Scholar
[20]
S.K. Omanwar et al., Ultra-violet to visible quantum cutting in YPO4: Gd3+, Tb3+ phosphor via down conversion. Mater. Discov. 7 (2017) 15-20.
DOI: 10.1016/j.md.2017.05.003
Google Scholar
[21]
S.R. Jaiswal, P.A. Nagpure, S. K. Omanwar. J. Biol. Chem. Lumin. 6 (2021) 1395.
Google Scholar
[22]
S.K. Omanwar et al., Visible quantum cutting in green-emitting BaF2: Gd3+, Tb3+ phosphor: An approach toward mercury-free lamps. St. Petersburg Polytech. Univ. J. Phys. Math. 3 (2017) 218-224
DOI: 10.1016/j.spjpm.2017.06.005
Google Scholar
[23]
S.R. Jaiswal et al. Adv. Mater. Res., The Highly Efficient Inorganic SrF2:Gd3+, Eu3+ Phosphor for Mercury Free Fluorescence Lamps 1171 (2022) 17-24
Google Scholar