[1]
J.Z. Liang, Effects of extrusion conditions on die-swell behavior of polypropylene/diatomite composite melts, Polymer Testing. 27 (2008) 936–940.
DOI: 10.1016/j.polymertesting.2008.08.001
Google Scholar
[2]
G. Wu, S. Ma, Y. Bai, H. Zhang, The surface modification of diatomite, thermal, and mechanical properties of poly(vinyl chloride)/diatomite composites: modification of diatomite, properties of pvc/diatomite composites, J Vinyl Addit Technol. 25 (2019) E39–E47.
DOI: 10.1002/vnl.21664
Google Scholar
[3]
H. Hadjar, B. Hamdi, M. Jaber, J. Brendlé, Z. Kessaïssia, H. Balard, J.B. Donnet, Elaboration and characterisation of new mesoporous materials from diatomite and charcoal, Microporous and Mesoporous Materials. 107 (2008) 219–226.
DOI: 10.1016/j.micromeso.2007.01.053
Google Scholar
[4]
G. Zhang, D. Cai, M. Wang, C. Zhang, J. Zhang, Z. Wu, Microstructural modification of diatomite by acid treatment, high-speed shear, and ultrasound, Microporous and Mesoporous Materials. 165 (2013) 106–112.
DOI: 10.1016/j.micromeso.2012.08.005
Google Scholar
[5]
K. Khezri, Y. Fazli, A study on the kinetics and thermal properties of polystyrene/diatomite nanocomposites prepared via in situ ATRP, Journal of Thermoplastic Composite Materials. 33 (2020) 180–197.
DOI: 10.1177/0892705718805128
Google Scholar
[6]
M. Dobrosielska, R. Dobrucka, P. Kozera, R. Kozera, M. Kołodziejczak, E. Gabriel, J. Głowacka, M. Jałbrzykowski, K.J. Kurzydłowski, R.E. Przekop, Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustules, Polymers. 14 (2022) 3153.
DOI: 10.3390/polym14153153
Google Scholar
[7]
M. Dobrosielska, R. Dobrucka, M. Pajewska-Szmyt, P. Kozera, E. Gabriel, J. Głowacka, D. Brząkalski, K.J. Kurzydłowski, R.E. Przekop, Effect of Wax Additives and Silanization of Diatom Surfaces on Thermomechanical Properties of Polylactide Composites, Polymers. 14 (2022) 5511.
DOI: 10.3390/polym14245511
Google Scholar
[8]
S.Bouhelal, method for cross-linking isotactic polymers in the presence of peroxde. U.S. Patent 7,241,844B2. (2007).
Google Scholar
[9]
J.Z. Liang, Melt Rheology during Extrusion of Polypropylene Composites Filled with Diatomite Particles, Journal of Thermoplastic Composite Materials. 23 (2010) 265–276.
DOI: 10.1177/0892705709103400
Google Scholar
[10]
Ö. Demirbaş, O. Ulus, Synthesis and Characterization of Polypropylene and CTAB Modified Diatomite Composites, IRJPAC. 13 (2016) 1–9.
DOI: 10.9734/irjpac/2016/30960
Google Scholar
[11]
I. Ilia, M. Stamatakis, T. Perraki, Mineralogy and technical properties of clayey diatomites from north and central Greece, Open Geosciences. 1 (2009) 393–403.
DOI: 10.2478/v10085-009-0034-3
Google Scholar
[12]
S. Thammarong, N. Lertcumfu, P. Jaita, S. Manotham, T. Tunkasiri, N. Pimpha, G. Rujijanagul, The Effects of Replacement Metakaolin with Diatomite in Geopolymer Materials, KEM. 798 (2019) 267–272.
DOI: 10.4028/www.scientific.net/kem.798.267
Google Scholar
[13]
S. Kerakra, S. Bouhelal, M. Ponçot, Study of Na-Montmorillonite–Polyamide Fiber/Polypropylene Hybrid Composite Prepared by Reactive Melt Mixing, International Journal of Polymer Science. 2017 (2017) 1–12.
DOI: 10.1155/2017/3920524
Google Scholar
[14]
S. Shi, R. Ocampo-Pérez, J. Lv, Q. Liu, F. Nan, X. Liu, S. Xie, J. Feng, Diatomite cross-linked β -Cyclodextrin polymers: A novel vision of diatomite adsorbent for the removal of bisphenol A, Environmental Technology & Innovation. 23 (2021) 101602.
DOI: 10.1016/j.eti.2021.101602
Google Scholar
[15]
V.S. Wadi, K. Halique, S.M. Alhassan, Polypropylene–Elemental Sulfur (S8) Composites: Effect of Sulfur on Morphological, Thermal, and Mechanical Properties, Ind. Eng. Chem. Res. 59 (2020) 13079–13087.
DOI: 10.1021/acs.iecr.0c01687
Google Scholar
[16]
S. Bouhelal, M.E. Cagiao, S. Khellaf, H. Tabet, B. Djellouli, D. Benachour, F.J. Baltá Calleja, Nanostructure and micromechanical properties of reversibly crosslinked isotactic polypropylene/clay composites: Reversibly Crosslinked iPP/Clay Composites, J. Appl. Polym. Sci. 115 (2010) 2654–2662.
DOI: 10.1002/app.29682
Google Scholar
[17]
X. Zhao, J.-K. Kim, H.-J. Ahn, K.-K. Cho, J.-H. Ahn, A ternary sulfur/polyaniline/carbon composite as cathode material for lithium sulfur batteries, Electrochimica Acta. 109(2013)145-152.
DOI: 10.1016/j.electacta.2013.07.067
Google Scholar
[18]
M.M. Favaro, M.C. Branciforti, R.E.S. Bretas, A X-ray study of β-phase and molecular orientation in nucleated and non-nucleated injection molded polypropylene resins, Mat. Res. 12 (2009) 455–464.
DOI: 10.1590/s1516-14392009000400014
Google Scholar
[19]
F. Luo, K. Wang, N. Ning, C. Geng, H. Deng, F. Chen, Q. Fu, Y. Qian, D. Zheng, Dependence of mechanical properties on β-form content and crystalline morphology for β-nucleated isotactic polypropylene, Polym. Adv. Technol. 22 (2011) 2044–2054.
DOI: 10.1002/pat.1718
Google Scholar
[20]
B. Wunderlich, H.-C. Shu, The crystallization and melting of selenium, Journal of Crystal Growth. 48 (1980) 227–239.
DOI: 10.1016/0022-0248(80)90212-2
Google Scholar
[21]
Z. Shen, F. Luo, Q. Xing, P. Si, X. Lei, L. Ji, S. Ding, K. Wang, Effect of an aryl amide derivative on the crystallization behaviour and impact toughness of poly(ethylene terephthalate), CrystEngComm. 18 (2016) 2135–2143.
DOI: 10.1039/c6ce00114a
Google Scholar
[22]
Y. Ye, K.Y. Wang, G. Chang, Q.Y. Jiang, Thermal Stability and Crystallization Behavior of PP/Organoclay Phase Change Composites, AMR. 785–786 (2013) 123–126.
DOI: 10.4028/www.scientific.net/amr.785-786.123
Google Scholar
[23]
H.M. Shaikh, Thermal, rheological, and mechanical properties of polypropylene/phosphate ore composites, Construction and Building Materials. 263 (2020) 120151.
DOI: 10.1016/j.conbuildmat.2020.120151
Google Scholar
[24]
Y. Ding, C. Zhang, C. Luo, Y. Chen, Y. Zhou, B. Yao, L. Dong, X. Du, J. Ji, Effect of talc and diatomite on compatible, morphological, and mechanical behavior of PLA/PBAT blends, E-Polymers. 21 (2021) 234–243.
DOI: 10.1515/epoly-2021-0022
Google Scholar
[25]
F. Zhan, N.C. Chen, X.H. Zhang, B. Huang, Z.N. Wu, Q. Zhu, Abrasion Properties and Thermal Stabilities of Poly(vinyl chloride)/Diatomite Composites, AMR. 833 (2013) 317–321.
DOI: 10.4028/www.scientific.net/amr.833.317
Google Scholar
[26]
H. Aguilar, M. Yazdani-Pedram, P. Toro, R. Quijada, M.Á. López-Manchado, synergic effect of two inorganic fillers on the mechanical and thermal properties of hybrid polypropylene composites, J. Chil. Chem. Soc. 59 (2014) 2468–2473.
DOI: 10.4067/s0717-97072014000200015
Google Scholar
[27]
K.Y. Wang, Q.J. Sun, Y. Liu, J. Lu, Thermal Behavior, Mechanical Property and Microstructure of Low-Density Polyethylene Filled by Diatomite, AMM. 633-634 (2014) 413-416.
DOI: 10.4028/www.scientific.net/amm.633-634.413
Google Scholar
[28]
Z.-L. Cheng, L. Ma, Z. Liu, A study on synergistic reinforcing effect of halloysite nanotubes/diatomite mixture-filled polymer (PP and PA6) composites, Plastics, Rubber and Composites. 47 (2018) 249–257.
DOI: 10.1080/14658011.2018.1471252
Google Scholar
[29]
W. He, Q.H. Fang, W. Lin, A.S. Luyt, T.J. Ge, Study on Anti-Fog Films of Polyethylene Modified with Inorganic Micrometer Diatomite, AMM. 200 (2012) 347–350.
DOI: 10.4028/www.scientific.net/amm.200.347
Google Scholar
[30]
S.-F. Hu, X.-B. Zhu, W. Hu, L. Yan, C. Cai, Crystallization behaviors and foaming properties of diatomite-filled polypropylene composites, Polym. Bull. 70 (2013) 517–533.
DOI: 10.1007/s00289-012-0849-0
Google Scholar
[31]
D. Balkaev, V. Neklyudov, V. Starshinova, M. Stolov, L.M. Amirova, A. Ziyatdinova, R.R. Amirov, Novel nucleating agents for polypropylene and modifier of its physical-mechanical properties, Materials Today Communications. 26 (2021) 101783.
DOI: 10.1016/j.mtcomm.2020.101783
Google Scholar
[32]
Y. Zhao, M. Du, K.X. Zhang, L. Gao, Effect of Modified Diatomite on Crystallinity and Mechanical Properties of Polypropylene, MSF. 913 (2018) 551–557.
DOI: 10.4028/www.scientific.net/msf.913.551
Google Scholar
[33]
J. Liang, Impact fracture toughness and morphology of diatomite-filled polypropylene composites, Polym Eng Sci. 49 (2009) 1603–1607.
DOI: 10.1002/pen.21397
Google Scholar
[34]
A. Pustak, M. Denac, M. Leskovac, I. Švab, V. Musil, I. Šmit, Morphology and Mechanical Properties of iPP/Silica Composites Modified with (Styrene- b -ethylene- co -butylene- b -styrene) Grafted with Maleic Anhydride, Polymer-Plastics Technology and Engineering. 54 (2015) 647–660.
DOI: 10.1080/03602559.2014.979495
Google Scholar
[35]
J.-Z. Liang, Impact and flexural properties of PP/CaSiO 3 composites, Polym. Compos. 39 (2018) 398–404.
DOI: 10.1002/pc.23948
Google Scholar
[36]
C. Liu, C. Wu, J. Wei, Z. Chen, Fracture Surface Fractal Dimension and Its Relationship with the Impact Strength of the PP/Diatomite composites:, in: Hangzhou, China, 2016.
Google Scholar