Effect of the Chemical Modification of Diatomite/Isotactic Polypropylene Composite on the Rheological, Morphological and Mechanical Properties

Article Preview

Abstract:

The present study deals with the effect of the Diatomite (D) microcomposite with and without chemical modification in a polypropylene (iPP) blend. The objective is to achieve a material with a better performance at a lower cost and more accessible and more suitable processing. The chemical surface modification of Diatomite (MD) was achieved using a crosslinking system based on a mixture of sulfur, accelerator, and peroxide. The iPP/Diatomite composite was prepared by batch melt mixing in a Brabender Plasti-Corde under intense shearing at high temperatures and varying the Diatomite content from 0 to 15 wt%. The rheological behavior was examined by monitoring the Brabender Plasti-Corde torque/time rheographs. Different techniques were used to characterize the sample: Fourier transform infrared spectroscopy (FTIR), WAXS, SEM, and DSC. In addition, tensile strength tests and impact strength mechanical tests were conducted to study the performance. It was found that chemical modification strongly affected rheological behavior and generated a new rheological characteristic compared to the composites without modification. This has induced a new structure form that has improved mechanical properties. Moreover, the chemical modification used and due to its simplicity, can be successfully used on an industrial scale with the appropriate process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-136

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.Z. Liang, Effects of extrusion conditions on die-swell behavior of polypropylene/diatomite composite melts, Polymer Testing. 27 (2008) 936–940.

DOI: 10.1016/j.polymertesting.2008.08.001

Google Scholar

[2] G. Wu, S. Ma, Y. Bai, H. Zhang, The surface modification of diatomite, thermal, and mechanical properties of poly(vinyl chloride)/diatomite composites: modification of diatomite, properties of pvc/diatomite composites, J Vinyl Addit Technol. 25 (2019) E39–E47.

DOI: 10.1002/vnl.21664

Google Scholar

[3] H. Hadjar, B. Hamdi, M. Jaber, J. Brendlé, Z. Kessaïssia, H. Balard, J.B. Donnet, Elaboration and characterisation of new mesoporous materials from diatomite and charcoal, Microporous and Mesoporous Materials. 107 (2008) 219–226.

DOI: 10.1016/j.micromeso.2007.01.053

Google Scholar

[4] G. Zhang, D. Cai, M. Wang, C. Zhang, J. Zhang, Z. Wu, Microstructural modification of diatomite by acid treatment, high-speed shear, and ultrasound, Microporous and Mesoporous Materials. 165 (2013) 106–112.

DOI: 10.1016/j.micromeso.2012.08.005

Google Scholar

[5] K. Khezri, Y. Fazli, A study on the kinetics and thermal properties of polystyrene/diatomite nanocomposites prepared via in situ ATRP, Journal of Thermoplastic Composite Materials. 33 (2020) 180–197.

DOI: 10.1177/0892705718805128

Google Scholar

[6] M. Dobrosielska, R. Dobrucka, P. Kozera, R. Kozera, M. Kołodziejczak, E. Gabriel, J. Głowacka, M. Jałbrzykowski, K.J. Kurzydłowski, R.E. Przekop, Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustules, Polymers. 14 (2022) 3153.

DOI: 10.3390/polym14153153

Google Scholar

[7] M. Dobrosielska, R. Dobrucka, M. Pajewska-Szmyt, P. Kozera, E. Gabriel, J. Głowacka, D. Brząkalski, K.J. Kurzydłowski, R.E. Przekop, Effect of Wax Additives and Silanization of Diatom Surfaces on Thermomechanical Properties of Polylactide Composites, Polymers. 14 (2022) 5511.

DOI: 10.3390/polym14245511

Google Scholar

[8] S.Bouhelal, method for cross-linking isotactic polymers in the presence of peroxde. U.S. Patent 7,241,844B2. (2007).

Google Scholar

[9] J.Z. Liang, Melt Rheology during Extrusion of Polypropylene Composites Filled with Diatomite Particles, Journal of Thermoplastic Composite Materials. 23 (2010) 265–276.

DOI: 10.1177/0892705709103400

Google Scholar

[10] Ö. Demirbaş, O. Ulus, Synthesis and Characterization of Polypropylene and CTAB Modified Diatomite Composites, IRJPAC. 13 (2016) 1–9.

DOI: 10.9734/irjpac/2016/30960

Google Scholar

[11] I. Ilia, M. Stamatakis, T. Perraki, Mineralogy and technical properties of clayey diatomites from north and central Greece, Open Geosciences. 1 (2009) 393–403.

DOI: 10.2478/v10085-009-0034-3

Google Scholar

[12] S. Thammarong, N. Lertcumfu, P. Jaita, S. Manotham, T. Tunkasiri, N. Pimpha, G. Rujijanagul, The Effects of Replacement Metakaolin with Diatomite in Geopolymer Materials, KEM. 798 (2019) 267–272.

DOI: 10.4028/www.scientific.net/kem.798.267

Google Scholar

[13] S. Kerakra, S. Bouhelal, M. Ponçot, Study of Na-Montmorillonite–Polyamide Fiber/Polypropylene Hybrid Composite Prepared by Reactive Melt Mixing, International Journal of Polymer Science. 2017 (2017) 1–12.

DOI: 10.1155/2017/3920524

Google Scholar

[14] S. Shi, R. Ocampo-Pérez, J. Lv, Q. Liu, F. Nan, X. Liu, S. Xie, J. Feng, Diatomite cross-linked β -Cyclodextrin polymers: A novel vision of diatomite adsorbent for the removal of bisphenol A, Environmental Technology & Innovation. 23 (2021) 101602.

DOI: 10.1016/j.eti.2021.101602

Google Scholar

[15] V.S. Wadi, K. Halique, S.M. Alhassan, Polypropylene–Elemental Sulfur (S8) Composites: Effect of Sulfur on Morphological, Thermal, and Mechanical Properties, Ind. Eng. Chem. Res. 59 (2020) 13079–13087.

DOI: 10.1021/acs.iecr.0c01687

Google Scholar

[16] S. Bouhelal, M.E. Cagiao, S. Khellaf, H. Tabet, B. Djellouli, D. Benachour, F.J. Baltá Calleja, Nanostructure and micromechanical properties of reversibly crosslinked isotactic polypropylene/clay composites: Reversibly Crosslinked iPP/Clay Composites, J. Appl. Polym. Sci. 115 (2010) 2654–2662.

DOI: 10.1002/app.29682

Google Scholar

[17] X. Zhao, J.-K. Kim, H.-J. Ahn, K.-K. Cho, J.-H. Ahn, A ternary sulfur/polyaniline/carbon composite as cathode material for lithium sulfur batteries, Electrochimica Acta. 109(2013)145-152.

DOI: 10.1016/j.electacta.2013.07.067

Google Scholar

[18] M.M. Favaro, M.C. Branciforti, R.E.S. Bretas, A X-ray study of β-phase and molecular orientation in nucleated and non-nucleated injection molded polypropylene resins, Mat. Res. 12 (2009) 455–464.

DOI: 10.1590/s1516-14392009000400014

Google Scholar

[19] F. Luo, K. Wang, N. Ning, C. Geng, H. Deng, F. Chen, Q. Fu, Y. Qian, D. Zheng, Dependence of mechanical properties on β-form content and crystalline morphology for β-nucleated isotactic polypropylene, Polym. Adv. Technol. 22 (2011) 2044–2054.

DOI: 10.1002/pat.1718

Google Scholar

[20] B. Wunderlich, H.-C. Shu, The crystallization and melting of selenium, Journal of Crystal Growth. 48 (1980) 227–239.

DOI: 10.1016/0022-0248(80)90212-2

Google Scholar

[21] Z. Shen, F. Luo, Q. Xing, P. Si, X. Lei, L. Ji, S. Ding, K. Wang, Effect of an aryl amide derivative on the crystallization behaviour and impact toughness of poly(ethylene terephthalate), CrystEngComm. 18 (2016) 2135–2143.

DOI: 10.1039/c6ce00114a

Google Scholar

[22] Y. Ye, K.Y. Wang, G. Chang, Q.Y. Jiang, Thermal Stability and Crystallization Behavior of PP/Organoclay Phase Change Composites, AMR. 785–786 (2013) 123–126.

DOI: 10.4028/www.scientific.net/amr.785-786.123

Google Scholar

[23] H.M. Shaikh, Thermal, rheological, and mechanical properties of polypropylene/phosphate ore composites, Construction and Building Materials. 263 (2020) 120151.

DOI: 10.1016/j.conbuildmat.2020.120151

Google Scholar

[24] Y. Ding, C. Zhang, C. Luo, Y. Chen, Y. Zhou, B. Yao, L. Dong, X. Du, J. Ji, Effect of talc and diatomite on compatible, morphological, and mechanical behavior of PLA/PBAT blends, E-Polymers. 21 (2021) 234–243.

DOI: 10.1515/epoly-2021-0022

Google Scholar

[25] F. Zhan, N.C. Chen, X.H. Zhang, B. Huang, Z.N. Wu, Q. Zhu, Abrasion Properties and Thermal Stabilities of Poly(vinyl chloride)/Diatomite Composites, AMR. 833 (2013) 317–321.

DOI: 10.4028/www.scientific.net/amr.833.317

Google Scholar

[26] H. Aguilar, M. Yazdani-Pedram, P. Toro, R. Quijada, M.Á. López-Manchado, synergic effect of two inorganic fillers on the mechanical and thermal properties of hybrid polypropylene composites, J. Chil. Chem. Soc. 59 (2014) 2468–2473.

DOI: 10.4067/s0717-97072014000200015

Google Scholar

[27] K.Y. Wang, Q.J. Sun, Y. Liu, J. Lu, Thermal Behavior, Mechanical Property and Microstructure of Low-Density Polyethylene Filled by Diatomite, AMM. 633-634 (2014) 413-416.

DOI: 10.4028/www.scientific.net/amm.633-634.413

Google Scholar

[28] Z.-L. Cheng, L. Ma, Z. Liu, A study on synergistic reinforcing effect of halloysite nanotubes/diatomite mixture-filled polymer (PP and PA6) composites, Plastics, Rubber and Composites. 47 (2018) 249–257.

DOI: 10.1080/14658011.2018.1471252

Google Scholar

[29] W. He, Q.H. Fang, W. Lin, A.S. Luyt, T.J. Ge, Study on Anti-Fog Films of Polyethylene Modified with Inorganic Micrometer Diatomite, AMM. 200 (2012) 347–350.

DOI: 10.4028/www.scientific.net/amm.200.347

Google Scholar

[30] S.-F. Hu, X.-B. Zhu, W. Hu, L. Yan, C. Cai, Crystallization behaviors and foaming properties of diatomite-filled polypropylene composites, Polym. Bull. 70 (2013) 517–533.

DOI: 10.1007/s00289-012-0849-0

Google Scholar

[31] D. Balkaev, V. Neklyudov, V. Starshinova, M. Stolov, L.M. Amirova, A. Ziyatdinova, R.R. Amirov, Novel nucleating agents for polypropylene and modifier of its physical-mechanical properties, Materials Today Communications. 26 (2021) 101783.

DOI: 10.1016/j.mtcomm.2020.101783

Google Scholar

[32] Y. Zhao, M. Du, K.X. Zhang, L. Gao, Effect of Modified Diatomite on Crystallinity and Mechanical Properties of Polypropylene, MSF. 913 (2018) 551–557.

DOI: 10.4028/www.scientific.net/msf.913.551

Google Scholar

[33] J. Liang, Impact fracture toughness and morphology of diatomite-filled polypropylene composites, Polym Eng Sci. 49 (2009) 1603–1607.

DOI: 10.1002/pen.21397

Google Scholar

[34] A. Pustak, M. Denac, M. Leskovac, I. Švab, V. Musil, I. Šmit, Morphology and Mechanical Properties of iPP/Silica Composites Modified with (Styrene- b -ethylene- co -butylene- b -styrene) Grafted with Maleic Anhydride, Polymer-Plastics Technology and Engineering. 54 (2015) 647–660.

DOI: 10.1080/03602559.2014.979495

Google Scholar

[35] J.-Z. Liang, Impact and flexural properties of PP/CaSiO 3 composites, Polym. Compos. 39 (2018) 398–404.

DOI: 10.1002/pc.23948

Google Scholar

[36] C. Liu, C. Wu, J. Wei, Z. Chen, Fracture Surface Fractal Dimension and Its Relationship with the Impact Strength of the PP/Diatomite composites:, in: Hangzhou, China, 2016.

Google Scholar