[1]
J. Qiu, X. Zhang, Y. Feng, X. Zhang, H. Wang, J. Yao. Modified metal-organic frameworks as photocatalysts. Appl. Catal. B: Environ. 231 (2018) 317–342.
DOI: 10.1016/j.apcatb.2018.03.039
Google Scholar
[2]
M. B. Chambers, X. Wang, L. Ellezam, O. Ersen, M. Fontecave, C. Sanchez, L. Rozes, C. Mellot-Draznieks. Maximizing the photocatalytic activity of metal−organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH2. J. Am. Chem. Soc. 139 (2017) 8222–8228.
DOI: 10.1021/jacs.7b02186
Google Scholar
[3]
B.C. Yallur, V. Adimule, W. Nabgan, M.S. Raghu, A. Fahad. A. Byong-Hun Jeon, L. Parashuram. Solar-light-sensitive Zr/Cu-(H2BDC-BPD) metal organic framework for photocatalytic dye degradation and hydrogen evolution. Surf. Interfaces. 36 (2023) 68-0230.
DOI: 10.1016/j.surfin.2022.102587
Google Scholar
[4]
M. Challa, M.R. Ambika, S.R. Usharani, B.C. Yallur, V. Adimule, Enhancement of Band Gap Energy and Crystallinity of Cu-MOFs due to Doping of Nano Metal Oxide. Adv. Mater. Res. 1173 (2022) 13-22.
DOI: 10.4028/p-f9yx5h
Google Scholar
[5]
P. Nugent, Y. Belmabkhout, S.D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. Zaworotko. J. Porous. Materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495 (2013) 80-84.
DOI: 10.1038/nature11893
Google Scholar
[6]
J-J. Zheng, S. Kusaka, R. Matsuda, S. Kitagawa, S. Sakaki. Characteristic Features of CO2 and CO Adsorptions to Paddle-Wheeltype Porous Coordination Polymer. J. Phys. Chem. C. 35 (2017) 19129-19139.
DOI: 10.1021/acs.jpcc.7b02707
Google Scholar
[7]
L. Li, R. B. Lin, R. Krishna,X. Wang, B. Li, H. Wu, J. Li, W. Zhou, B. Chen, Flexible–Robust Metal–Organic Framework for Efficient Removal of Propyne from Propylene. J. Am. Chem. Soc. 23 (2017) 7733-7736.
DOI: 10.1021/jacs.7b04268
Google Scholar
[8]
Y. L. Peng, T. Pham,P. Li,T. Wang, Y. Chen, K. J. Chen, K. A. Forrest, B. Space, P. Cheng, M. J. Zaworotko, Z. Zhang, Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angew. Chem. Int. Ed.57 (2018) 10971-10975.
DOI: 10.1002/anie.201806732
Google Scholar
[9]
S. Y. Zhang,S. Jensen, K. Tan, L. Wojtas, M. Roveto, J. Cure, T. Thonhauser, Y. J. Chabal, M. J. Zaworotko. Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. J. Am. Chem. Soc. 140 (2018) 12545-12552.
DOI: 10.1021/jacs.8b07290
Google Scholar
[10]
M. J. Kalmutzki, C. S. Diercks, O. M. Yaghi, Metal–Organic Frameworks for Water Harvesting from Air. Adv. Mater. 30 (2018) 1704304.
DOI: 10.1002/adma.201704304
Google Scholar
[11]
Y. Belmabkhout, P. M. Bhatt, K.Adil, R. S. Pillai, A. Cadiau, A. Shkurenko, G. Maurin, G. Liu, W. J. Koros, M. Eddaoudi, Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nat. Energy 3 (2018) 1059-1066.
DOI: 10.1038/s41560-018-0267-0
Google Scholar
[12]
Y. Li, Z. Yang, Y. Wang,Z. Bai, T. Zheng,X. Dai, S. Liu, D. Gui, W. Liu, M. Chen, L. Chen, J. Diwu, L. Zhu, R. Zhou, Z. Chai, T. E. Albrecht-Schmitt, S. A. Wang. mesoporous cationic thoriumorganic framework that rapidly traps anionic persistent organic pollutants. Nat. Commun. 8 (2017) 1354.
DOI: 10.1038/s41467-017-01208-w
Google Scholar
[13]
P. S. Nugent, V. L. Rhodus, T. Pham, K. Forrest,L. Wojtas, B. Space, M.A. Zaworotko. A Robust Molecular Porous Material with High CO2 Uptake and Selectivity. J. Am. Chem. Soc. 135 (2013) 10950-10953.
DOI: 10.1021/ja4054948
Google Scholar
[14]
X. Zhang, Z. Huang, M. Ferrandon,D. Yang, L. Robison, P. Li, T. C. Wang, M. Delferro, O. K. Farha. Catalytic chemoselective functionalization of methane in a metal−organic framework. Nat. Catal. 1 (2018) 356-362.
DOI: 10.1038/s41929-018-0069-6
Google Scholar
[15]
Z. Li, A. W. Peters, V. Bernales, M.A. Ortuño, N.M. Schweitzer, M.R. DeStefano, L.C. Gallington, A. E. Platero-Prats, K.W. Chapman, C.J. Cramer, L. Gagliardi, J. T. Hupp, O. K. Farha, Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. ACS Cent. Sci. 3 (2017) 31-38.
DOI: 10.1021/acscentsci.6b00290
Google Scholar
[16]
C. R. Kim, T. Uemura, S. Kitagawa. Inorganic nanoparticles in porous coordination polymers. Chem. Soc. Rev. 45 (2016) 3828-3845.
DOI: 10.1039/c5cs00940e
Google Scholar
[17]
T. Simon-Yarza,A. Mielcarek, P. Couvreur, C. Serre. Drug Delivery: Nanoparticles of Metal-Organic Frameworks: On the Road to In Vivo Efficacy in Biomedicine. Adv. Mater. 30 (2018) 1870281.
DOI: 10.1002/adma.201870281
Google Scholar
[18]
Y. Chen, P. Li, J. A. Modica, R. J. Drout, O. K. Farha. Acid-Resistant Mesoporous Metal–Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. J. Am. Chem. Soc. 140 (2018) 5678-5681.
DOI: 10.1021/jacs.8b02089
Google Scholar
[19]
X. Zhang, M. R. Saber, A. P. Prosvirin, J. H. Reibenspies, L. Sun, M. Ballesteros-Rivas, H. Zhao, K. R. Dunbar. Magnetic ordering in TCNQ-based metal–organic frameworks with host–guest interactions. Inorg. Chem. Front. 2 (2015) 904-911.
DOI: 10.1039/c5qi00128e
Google Scholar
[20]
S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K. P. Lillerud, M. Bjorgen, A. Zecchina. Chem. Commun. (2004) 2300–2301.
DOI: 10.1039/b407246d
Google Scholar
[21]
M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabrés i Xamena, H. Garcia. Chem. Eur. J. 22 (2007) 5106–5112.
DOI: 10.1002/chem.200601003
Google Scholar
[22]
F. Xamena, A. Corma, H. Garcia. J. Phys. Chem. C. 111 (2007) 80–85.
DOI: 10.1021/jp063600e
Google Scholar
[23]
J. Gascon, M. D. Hernández-Alonso, A. R. Almeida, G. P. M. van Klink, F. Kapteijn, G. Mul. Chem. Sus. Chem, 1 (2008) 981–983.
DOI: 10.1002/cssc.200800203
Google Scholar
[24]
Y. Kataoka, K. Sato, Y. Miyazaki, K. Masuda, H. Tanaka, S. Naito, W. Mori. Energy Environ. Sci., 2 (2009) 397–400.
DOI: 10.1039/B814539C
Google Scholar
[25]
Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li. Angew. Chem., Int. Ed. 51 (2012) 3364–3367.
DOI: 10.1002/anie.201108357
Google Scholar
[26]
D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li. Chem. Eur. J. 19 (2013) 14279–14285.
DOI: 10.1002/chem.201301728
Google Scholar
[27]
M. A. Nasalevich, R. Becker, E. V. Ramos-Fernandez, S. Castellanos, S. L. Veber, M. V. Fedin, F. Kapteijn, J. N. H. Reek, J. I. van der Vlugt, J. Gascon. Energy Environ. Sci., 8 (2015) 364–375.
DOI: 10.1039/c4ee02853h
Google Scholar
[28]
R. S. Keri, V. Adimule, P. Kendrekar, et al. The Nano-Based Catalyst for the Synthesis of Benzimidazoles. Top. Catal. (2022).
DOI: 10.1007/s11244-022-01562-0
Google Scholar
[29]
R. Shashanka, D. Chaira, B.E. Kumara Swamy, Electrocatalytic Response of Duplex and Yittria Dispersed Duplex Stainless Steel Modified Carbon Paste Electrode in Detecting Folic Acid Using Cyclic Voltammetry, Int. J. Electrochem. Sci. 10 (2015) 5586–5598.
Google Scholar
[30]
R. Shashanka, Carbon composite voltammetric sensors for food quality assessment, Edited by J.G. Manjunatha, Electrochemical Sensors Based on Carbon Composite Materials: Fabrication, Properties and Applications, IOP, 2022.
DOI: 10.1088/978-0-7503-5127-0ch8
Google Scholar
[31]
N. M. Shaikh, V. Adimule, G. B. Bagihalli, R. S. Keri. A Novel Mixed Ag–Pd Nanoparticles Supported on SBA Silica Through [DMAP-TMSP-DABCO]OH Basic Ionic Liquid for Suzuki Coupling Reaction. Top. Catal. (2022).
DOI: 10.1007/s11244-022-01586-6
Google Scholar
[32]
V. Adimule, S. Medapa, P. K. Rao, L. S. Kumar, Synthesis of Schiff bases of 5-[5-(4-fluorophenyl) thiophen-2-yl]-1, 3, 4-thiadiazol-2-amine and its anticancer activity. Int. J. Adv. Pharm. Sci. 5 (2014) 1761-1768.
DOI: 10.7897/2230-8407.041214
Google Scholar
[33]
V. Adimule, B. C. Yallur, R. Keri. Studies on Synthesis, Characterization of Smx ZnO:CoO Nanocomposites and Its Effect on Photo Catalytic Degradation of Textile Dyes. Top. Catal. (2022).
DOI: 10.1007/s11244-022-01574-w
Google Scholar
[34]
R. Shashanka, D. Chaira, B.E. Kumara Swamy, Fabrication of yttria dispersed duplex stainless steel electrode to determine dopamine, ascorbic and uric acid electrochemically by using cyclic voltammetry, International Journal of Scientific & Engineering Research, 7 (2016) 1275-1285.
Google Scholar
[35]
R. Shashanka, B.E. Kumara Swamy, Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and its application as dopamine and hydrogen peroxide sensors, Physical Chemistry Research, 8(1) (2020) 1-18.
Google Scholar
[36]
R. Shashanka, B.E. Kumara Swamy, Simultaneous electro‑generation and electro‑deposition of copper oxide nanoparticles on glassy carbon electrode and its sensor application, SN Applied Sciences, 2(5) (2020) 956.
DOI: 10.1007/s42452-020-2785-1
Google Scholar
[37]
N. M. Shaikh, A. D. Sawant, G. B. Bagihalli, M. Challa, V. Adimule. Highly Active Mixed Au–Pd Nanoparticles Supported on RHA Silica Through Immobilised Ionic Liquid for Suzuki Coupling Reaction. Top. Catal. (2022).
DOI: 10.1007/s11244-021-01547-5
Google Scholar
[38]
V. Adimule, B. C. Yallur, A. Gowda. 'Crystal Structure, Morphology, Optical and Super-Capacitor Properties of Srx: α-Sb2O4 Nanostructures'. Anal. Bioanal. Electrochem. 14 (2022) 1-17.
Google Scholar
[39]
A. Vinayak, M. Sudha, A. H. Jaadeesha, P. Kulkarni, K. S. Lalita, P. K. Rao. Synthesis, characterization of some novel 1, 3, 4-oxadiazole compounds containing 8-hydroxy quinolone moiety as potential antibacterial and anticancer agents. Int. J. Pharm. Res. 4 (2014) 180-185
Google Scholar
[40]
R. Shashanka, Volkan Murat YILMAZ, Abdullah Cahit Karaoglanli, Orhan Uzun, Investigation of activation energy and antibacterial activity of CuO nano-rods prepared by Tilia Tomentosa (Ihlamur) leaves, Moroccan Journal of Chemistry, 8(2) (2020) 497-509.
Google Scholar
[41]
R.S. Mahale, R. Shashanka, V. Shamanth, R. Vinaykumar, Voltammetric Determination of Various Food Azo Dyes Using Different Modified Carbon Paste Electrodes, 12 (4) (2022) 4557–4566.
DOI: 10.33263/briac124.45574566
Google Scholar
[42]
V. Pavitra, B.M. Praveen, G. Nagaraju, R. Shashanka, Energy storage, Photocatalytic and Electrochemical nitrite sensing of ultrasound-assisted stable Ta2O5 nanoparticles, Topics in Catalysis, (2022).
DOI: 10.1007/s11244-021-01553-7
Google Scholar
[43]
B. Avar, M. Panigrahi, A. K. Soguksu, S. Rajendrachari, A. Gundes. Photocatalytic activity of soft magnetic Fe80−xCoxZr10Si10 (x = 0, 40, and 80) nanocrystalline melt-spun ribbons, Top. Catal. (2022).
DOI: 10.1007/s11244-022-01569-7
Google Scholar
[44]
K.S. Kiran, R. Shashanka, S.V. Lokesh, Enhanced photocatalytic activity of hydrothermally synthesized perovskite Strontium titanate nanocubes, Topics in Catalysis, (2022).
DOI: 10.1007/s11244-021-01558-2
Google Scholar
[45]
N. M. Shaikh, G. B. Bagihalli, V. Adimule, R. S. Keri. A Novel Silica Immobilised Acidic Ionic Liquid [BMIM][AlCl4]as an Effective Catalyst for Biscoumarine Synthesis. Top. Catal. (2022)
DOI: 10.1007/s11244-022-01591-9
Google Scholar
[46]
S. R. Batakurki, V. Adimule, M. M. Pai, Synthesis of Cs-Ag/Fe2O3 Nanoparticles Using Vitis labrusca Rachis Extract as Green Hybrid Nanocatalyst for the Reduction of Arylnitro Compounds. Top. Catal. (2022).
DOI: 10.1007/s11244-022-01593-7
Google Scholar
[47]
R. Keri, M. Patil, V. P. Brahmkhatri. Copper (II)-β-Cyclodextrin Promoted Kabachnik-Fields Reaction: An Efficient, One-Pot Synthesis of α-Aminophosphonates. Top. Catal. (2022)
DOI: 10.1007/s11244-021-01556-4
Google Scholar
[48]
A. Vinayak, N. Santosh, Y. Basappa, B. Debdas, A. H. Jagadeesha. Enhanced photoluminescence properties of Gd (x–1) SrxO: CdO nanocores and their study of optical, structural, and morphological characteristics. Mater. Today. Chem. 20 (2021) 100438.
DOI: 10.1016/j.mtchem.2021.100438
Google Scholar
[49]
A. Vinayak, M. Sudha, S. K. Lalita, K. R. Prakash. Synthesis, characterization and in-vitro cytotoxic evaluation of novel amide derivatives of 5-[2-(4-methoxyphenyl) pyridin-3-Yl]-1, 3, 4-thiadiazol-2-amine. World. J. Pharm. Res. 3 (2014) 525-535.
Google Scholar
[50]
A. Vinayak, M. Sudha, K. Rao, K. S. Lalita. synthesis of n-{[5-(2, 4-dichlorophenyl)-1, 3, 4-oxadiazol-2-yl] methyl} amine derivatives as anticancer precursors. Int. J. Med. Chem. Anal. 4 (2014) 231-235.
Google Scholar
[51]
V. Adimule, S. S. Nandi, B. C. Yallur. Devices and Sensors Based on Additively Manufactured Shape-Memory of Hybrid Nanocomposites. In: Maurya, M.R., Sadasivuni, K.K., Cabibihan, JJ., Ahmad, S., Kazim, S. (eds) Shape Memory Composites Based on Polymers and Metals for 4D Printing. Springer, Cham. (2022).
DOI: 10.1007/978-3-030-94114-7_15
Google Scholar
[52]
V. M. Adimule, S. S. Nandi, S. S. Kerur, et al. Recent Advances in the One-Pot Synthesis of Coumarin Derivatives from Different Starting Materials Using Nanoparticles: A Review. Top. Catal. (2022)
DOI: 10.1007/s11244-022-01571-z
Google Scholar
[53]
A. Vinayak, M. Sudha, K. S. Lalita, R. P. Kumar. Synthesis, characterization and cytotoxic evaluation of novel derivatives of 1-[2-(aryl substituted)-5-(4'-Fluoro-3-methyl biphenyl-4-yl)-[1, 3, 4] oxadiazole-3-yl]-ethanone. Arch. Appl. Sci. Res. 7 (2015) 4-8.
DOI: 10.9734/bjpr/2015/15486
Google Scholar
[54]
M. Pai, B. C. Yallur, S. R. Batakurki, et al. Synthesis and Catalytic Activity of Heterogenous Hybrid Nanocatalyst of Copper/Palladium MOF, RIT 62-Cu/Pd for Stille Polycondensation of Thieno[2,3-b]pyrrol-5-One Derivatives. Top. Catal. (2022).
DOI: 10.1007/s11244-022-01618-1
Google Scholar
[55]
V. Adimule, B. C. Yallur, S. Batakurki, Chapter 4 - Design, synthesis, and in vitro anticancer activity of thiophene substituted pyridine derivatives,Recent Developments in the Synthesis and Applications of Pyridines. Elsevier, (2023) 127-143.
DOI: 10.1016/B978-0-323-91221-1.00008-7
Google Scholar
[56]
V. Adimule, B. C. Yallur, S. R. Batakurki, S. S. Nandi. Synthesis, Morphology and Enhanced Optical Properties of Novel GdxCo3O4 Nanostructures. Adv. Mater. Res. (2022) 1173 71–82.
DOI: 10.4028/p-3pkhf6
Google Scholar
[57]
S. S. Nandi, V. Adimule, B. C. Yallur. Synthesis, Structural and Optical Properties of Co Doped Sm2O3 Nanostructures. In Adv. Mat. Res. (2022) 1173 59-69. Trans Tech Publications, Ltd.
DOI: 10.4028/p-h1j61s
Google Scholar
[58]
C. Maalathi, B. C. Yallur, M. R. Ambika, V. Adimule. "Influence of Nano Particles on Optical Properties of Cu-MOFs." Adv. Mat. Res. Trans. Tech. Publications, Ltd., August (2022) 25.
DOI: 10.4028/p-vn4hd4
Google Scholar
[59]
P. M. Maya, S. R. Batakurki, V. Adimule, B. C. Yallur. "Optical Graphene for Biosensor Application: A Review." Appl. Mech. Mater. Trans. Tech. Publications, Ltd., August 2 (2022).
DOI: 10.4028/p-rs3qal
Google Scholar
[60]
V. Adimule, S. Batakurki, B. C. Yallur, et al. Enhanced photoluminescence, optical, structural properties of ZrO2-incorporated Sm2O3:Co3O4 nanocomposite and their applications in photocatalytic degradation of methylene blue. J. Mat. Res. 37 (2022) 2396-2405
DOI: 10.1557/s43578-022-00641-y
Google Scholar
[61]
V. Adimule, S. Batakurki, B. C. Yallur. C. D. Bathula, L. Parashuram. Samarium-decorated ZrO2@SnO2 nanostructures, their electrical, optical and enhanced photoluminescence properties. J. Mater. Sci. Mater. Electron. 33 (2022) 18699-18715.
DOI: 10.1007/s10854-022-08718-4
Google Scholar
[62]
Adimule, V., Yallur, B.C., Pai, M.M. et al. Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Top. Catal. (2022).
DOI: 10.1007/s11244-022-01672-9
Google Scholar
[63]
D. Ramakrishna, S. Saravu, S. Rajendrachari. A Palladium Complex dispersed in Ionic Liquid as an Efficient Catalytic Combination for the Synthesis of Benzazoles. Top. Catal. (2022).
DOI: 10.1007/s11244-021-01554-6
Google Scholar
[64]
K.S. Kiran, D. Ramesh, R. Shashanka, Photocatalytic Degradation of Rhodamine B Dye by Nanocomposites: A Review, Appl. Mech. Mater. 908 (2022) 119-129.
DOI: 10.4028/p-d1j831
Google Scholar
[65]
R. Shashanka, Halil Esgin, Volkan Murat Yilmaz, Yasemin Caglar, Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cell, Journal of Science: Adv. Mater. Dev. 5 (2020) 185-191.
DOI: 10.1016/j.jsamd.2020.04.005
Google Scholar
[66]
J. Park, Q. Jiang, D. Feng, L. Mao, H.-C. Zhou. Size-Controlled Synthesis of Porphyrinic Metal–Organic Framework and Functionalization for Targeted Photodynamic Therapy J. Am. Chem. Soc. 138 (2016) 3518.
DOI: 10.1021/jacs.6b00007
Google Scholar
[67]
C. Maalathi, B. C. Yallur, M. R. Ambika, V. Adimule. Influence of Nano Particles on Optical Properties of Cu-MOFs. Adv. Mater. Res. Trans Tech Publications, Ltd. 25 (2022).
DOI: 10.4028/p-vn4hd4
Google Scholar
[68]
M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, A new photoactive crystalline highly porous titanium(IV) dicarboxylate, J. Am. Chem. Soc. 131 (2009) 10857–10859.
DOI: 10.1021/ja903726m
Google Scholar
[69]
Y.-H. Fan, S.-W. Zhang, S.-B. Qin, X.-S. Lia, S.-H. Qia, An enhanced adsorption of organic dyes onto NH2 functionalization titanium-based metal-organic frameworks and the mechanism investigation, Microporous Mesoporous Mater. 263 (2018) 120–127.
DOI: 10.1016/j.micromeso.2017.12.016
Google Scholar
[70]
M. Oveisi, M. Alina Asli, N. Mohammad Mahmoodi, MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: synthesis and ultrasoundaided dye adsorption from multicomponent wastewater systems, J. Hazard. Mater. 347 (2018) 123–140.
DOI: 10.1016/j.jhazmat.2017.12.057
Google Scholar