[1]
S. Wang, C. M. McGuirk, A. d'Aquino, J. A. Mason, C. A. Mirkin, Metal-Organic Framework nanoparticles, Adv. Mater. (2018) 1800202.
DOI: 10.1002/adma.201800202
Google Scholar
[2]
M. Safaei, M. M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, M.Khatami, A review on metal-organic frameworks: Synthesis and Applications, Trends in Analytical chemistry, 118 (2019) 401-425.
DOI: 10.1016/j.trac.2019.06.007
Google Scholar
[3]
C. Hu, J. D.Xiao, X. D. Mao, L. L. Song, X. Y. Yang, S. J. Liu, Toughing mechnaisms of epoxy resin using aminated metal-organic framework as additive, mater. Lett. 240 (2019) 113-117.
DOI: 10.1016/j.matlet.2018.12.123
Google Scholar
[4]
X. S. Xing, Z. H. Fu, N. N. Zhang, X. Q. Yu, M. S. Wang, G. C. Guo. High proton conduction in an excellent water stable gadolinium metal organic framework. Chem. Commun. 55 (2019) 1241-1244.
DOI: 10.1039/c8cc08700h
Google Scholar
[5]
I. Mirkovic, L. Lei, D. Ljubic, S. Zhu. Crystal growth of metal oeganic framework-5 around cellulose based fibers having a necklace morphology, ACS Omega 4 (2019) 169-175.
DOI: 10.1021/acsomega.8b02332
Google Scholar
[6]
H. Yang, J. Bright, S. K. Asani, P. Zheng, T. Musho, B. Chen, N. Wu, Metal organic framework coated titanium dioxide nanorod array p-n heterojunction photoanode for solar water splitting, Nano Res.12 (2019) 1-8.
DOI: 10.1007/s12274-019-2272-4
Google Scholar
[7]
J. J. I. V. Perry, J. A. Perman, M. J. Zaworotko. Design and synthesis of metal-organic frameworks using metal organic polyhedral as supramolecular building block. Chem. Soc. Rev. 38 (2009) 1400-1417.
DOI: 10.1039/b807086p
Google Scholar
[8]
M. Vallet-Regi, F. Balas, D. Arcos. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed.46 (2007) 7548-7558.
DOI: 10.1002/anie.200604488
Google Scholar
[9]
M. Gimenez-Marques, T. Hidalgo, C. Serre, P. Horcajada. Nanostructured metal organic frameworks and their bio-related applications. Coord. Chem. Rev.307 (2016) 342-360.
DOI: 10.1016/j.ccr.2015.08.008
Google Scholar
[10]
Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian. Metal organic frameworks as platforms for functional materials. Acc. Chem. Res. 49 (2016) 483-493.
DOI: 10.1021/acs.accounts.5b00530
Google Scholar
[11]
C. He, D. Liu, W. Lin. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal organic frameworks and nanoscale coordination polymers. Chem. Rev. 115 (2015) 11079-11108.
DOI: 10.1021/acs.chemrev.5b00125
Google Scholar
[12]
H. Kobayashi, Y. Mitsuka, H. Kitagawa. Metal nanoparticles covered with a metal-organic framework: from one pot synthetic methods to synergistic energy storage and conversions functions. Inorg. Chem. 55 (2016) 7301-7310.
DOI: 10.1021/acs.inorgchem.6b00911
Google Scholar
[13]
L. Wang, Y. Z. Han, X. Feng, J. W. Zhou, P. F. Qi, B. Wang. Metal organic frameworks for energy storage: betteries and supercapacitors. Coord. Chem. Rev. 307 (2016) 361-381.
DOI: 10.1016/j.ccr.2015.09.002
Google Scholar
[14]
J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp. Metal organic framework materials as catalysts. Chem. Soc. Rev. 38 (2009) 1450-1459.
DOI: 10.1039/b807080f
Google Scholar
[15]
H. Furukawa, K. E. Cordova, M. O. Keeffe, O. M. Yaghi. The chemistry and applications of metal organic frameworks. Science. 341 (2013) 1230444.
Google Scholar
[16]
E. D. Bloch, W. L. Queen, M. R. Hudson, J. A. Mason, D. J. Xiao, L. J. Murray, R. Flacau, C. M. Brown, J. R. Long. Hydrogen storage and selective, reversible O-2 adsorption a metal organic framework with open chromium(II) sites. Angew. Chem. Int. Ed. 55 (2016) 8605-8609.
DOI: 10.1002/anie.201602950
Google Scholar
[17]
D. Maspoch, D. Ruiz-Molina, J. Veciana. Old materials with new tricks: multifunctional open framework materials. Chem. Soc. Rev. 36 (2007) 770-818.
DOI: 10.1039/b501600m
Google Scholar
[18]
M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk. Luminescent metal organic frameworks. Chem. Soc. Rev. 38 (2009) 1330-1352.
DOI: 10.1039/b802352m
Google Scholar
[19]
T. N. Nguyen, F. M. Ebrahim, K. C. Stylianou. Lanthanide-based near infrared emitting metal organic frameworks with tunable excitation wavelength and high quantum yields. Coord. Chem. Rev.377 (2018) 259-306.
DOI: 10.1039/c8cc01294f
Google Scholar
[20]
R. Thakar, Y. Chen, P. T. Snee. Efficent emission from core/doped shell nanoparticles: Applications for chemical sensing. Nano Lett. 7 (2007) 3429-3432.
DOI: 10.1021/nl0719168
Google Scholar
[21]
G. Lu, J. T. Hupp. Metal organic frameworks as sensors: A ZIF-8 based Fabry-perot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 132 (2010) 7832-7833.
DOI: 10.1021/ja101415b
Google Scholar
[22]
R.-B. Lin, S.-Y. Liu, J.-W. Ye, X.-Y. Li, J. P. Zhang. Photoluminescent metal organic frameworks for gas sensing, Adv. Sci. 3 (2016) 1500434.
DOI: 10.1002/advs.201500434
Google Scholar
[23]
C. H. Huang, T. W. Kuo, T. M. Chen. Novel Red-emitting phosphor Ca9Y(PO4)7: Ce+3, Mn+2 with energy transfer for fluorescent lamp application. ACS Appl. Mat. Interfaces. 2 (2010) 1395-1399.
DOI: 10.1021/am100043q
Google Scholar
[24]
S. Banerjee, C. D. Malliakas, J. I. Jang, J. B. Ketterson, M. G. Kanatzidis, 1/[ZrPSe6-]: A soluble photoluminescent inorganic polymer and strong second harmonic generation response of its alkali salts. J. Am. Chem. Soc. 130 (2008) 12270-12272.
DOI: 10.1021/ja804166m
Google Scholar
[25]
J. Chen, F. Zhao, D. Ma. Hybrid white OLEDs with fluorophors and phosphors. Mater. Today. 17 (2014) 175-183.
DOI: 10.1016/j.mattod.2014.04.002
Google Scholar
[26]
K.Y. Choi, G. Liu, S. Lee, X. Chen. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and futures perspectives. Nanoscale. 4 (2012) 330-342.
DOI: 10.1039/c1nr11277e
Google Scholar
[27]
C. A. Kent, B. P. Mehl, L. Ma, J. M. Papanikolas, T. J. Meyer, W. Lin. Energy transfer dynamics in metal organic frameworks. J. Am. Chem. Soc. 132 (2010) 12767-12769.
DOI: 10.1021/ja102804s
Google Scholar
[28]
B. Wang, X. L. Lv, D. Feng, L. H. Xie, J. Zhang, M. Li, Y. Xie, J. R. Li, H. C. Zhou. Highly stable Zr(IV)-Based metal organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 138 (2016) 6204-6216.
DOI: 10.1021/jacs.6b01663
Google Scholar
[29]
R.S. Keri, V.Adimule, P. Kendrekar et al. The Nano-Based Catalyst for the Synthesis of Benzimidazoles. Top Catal (2022)
DOI: 10.1007/s11244-022-01562-0
Google Scholar
[30]
N.M. Shaikh, V.Adimule, G.B. Bagihalli et al. A Novel Mixed Ag–Pd Nanoparticles Supported on SBA Silica Through [DMAP-TMSP-DABCO]OH Basic Ionic Liquid for Suzuki Coupling Reaction. Top Catal (2022).
DOI: 10.1007/s11244-022-01586-6
Google Scholar
[31]
V. Adimule, S. Medapa, P.K. Rao and L.S. Kumar,. Synthesis of Schiff bases of 5-[5-(4-fluorophenyl) thiophen-2-yl]-1, 3, 4-thiadiazol-2-amine and its anticancer activity. Int J Adv Pharm Sci, 5(1) (2014) 1761-1768.
DOI: 10.7897/2230-8407.041214
Google Scholar
[32]
V. Adimule, B.C. Yallur & R. Keri, Studies on Synthesis, Characterization of Smx ZnO:CoO Nanocomposites and Its Effect on Photo Catalytic Degradation of Textile Dyes. Top Catal (2022)
DOI: 10.1007/s11244-022-01574-w
Google Scholar
[33]
N.M. Shaikh, A.D. Sawant, G.B. Bagihalli et al. Highly Active Mixed Au–Pd Nanoparticles Supported on RHA Silica Through Immobilised Ionic Liquid for Suzuki Coupling Reaction. Top Catal (2022)
DOI: 10.1007/s11244-021-01547-5
Google Scholar
[34]
V.Adimule, B. Yallur, A. Gowda, 'Crystal Structure, Morphology, Optical and Super-Capacitor Properties of Srx: α-Sb2O4 Nanostructures', Analytical and Bioanalytical Electrochemistry, 14(1), (2022) 1-17.
Google Scholar
[35]
A. Vinayak, M. Sudha, A.H. Jaadeesha, P. Kulkarni, K.S. Lalita and P.K. Rao,. Synthesis, characterization of some novel 1, 3, 4-oxadiazole compounds containing 8-hydroxy quinolone moiety as potential antibacterial and anticancer agents. Int J Pharm Res, 4(4), 2014,180-185.
Google Scholar
[36]
N.M. Shaikh ,G.B. Bagihalli,V. Adimule, et al. A Novel Silica Immobilised Acidic Ionic Liquid [BMIM][AlCl4]as an Effective Catalyst for Biscoumarine Synthesis. Top Catal (2022)
DOI: 10.1007/s11244-022-01591-9
Google Scholar
[37]
S.R. Batakurki, V.Adimule, M.M. Pai et al. Synthesis of Cs-Ag/Fe2O3 Nanoparticles Using Vitis labrusca Rachis Extract as Green Hybrid Nanocatalyst for the Reduction of Arylnitro Compounds. Top Catal (2022)
DOI: 10.1007/s11244-022-01593-7
Google Scholar
[38]
R.Keri, M. Patil, V.P. Brahmkhatri et al. Copper (II)-β-Cyclodextrin Promoted Kabachnik-Fields Reaction: An Efficient, One-Pot Synthesis of α-Aminophosphonates. Top Catal (2022)
DOI: 10.1007/s11244-021-01556-4
Google Scholar
[39]
A.Vinayak, N. Santosh, Y. Basappa, B. Debdas and A.H. Jagadeesha,. Enhanced photoluminescence properties of Gd (x–1) SrxO: CdO nanocores and their study of optical, structural, and morphological characteristics. Mater Today Chem, 20(3), (2021).100438.
DOI: 10.1016/j.mtchem.2021.100438
Google Scholar
[40]
A.Vinayak, M. Sudha, S.K. Lalita and K. R. Prakash. Synthesis, characterization and in-vitro cytotoxic evaluation of novel amide derivatives of 5-[2-(4-methoxyphenyl) pyridin-3-Yl]-1, 3, 4-thiadiazol-2-amine. World J Pharm Res, 3(6) (2014) 525-535.
Google Scholar
[41]
A.Vinayak, M. Sudha, K. Rao, and K.S. Lalita. synthesis of n-{[5-(2, 4-dichlorophenyl)-1, 3, 4-oxadiazol-2-yl] methyl} amine derivatives as anticancer precursors. Int J Med Chem Anal, 4, (2014) 231-235.
Google Scholar
[42]
V. Adimule, S.S. Nandi, B.C. Yallur, Devices and Sensors Based on Additively Manufactured Shape-Memory of Hybrid Nanocomposites. In: Maurya, M.R., Sadasivuni, K.K., Cabibihan, JJ., Ahmad, S., Kazim, S. (eds) Shape Memory Composites Based on Polymers and Metals for 4D Printing. (2022) Springer, Cham
DOI: 10.1007/978-3-030-94114-7_15
Google Scholar
[43]
V.M. Adimule, S.S. Nandi, S.S. Kerur et al. Recent Advances in the One-Pot Synthesis of Coumarin Derivatives from Different Starting Materials Using Nanoparticles: A Review. Top Catal (2022)
DOI: 10.1007/s11244-022-01571-z
Google Scholar
[44]
V. Adimule, M.Sudha, K. S. Lalita and R.P. Kumar, Synthesis, characterization and cytotoxic evaluation of novel derivatives of 1-[2-(aryl substituted)-5-(4'-Fluoro-3-methyl biphenyl-4-yl)-[1, 3, 4] oxadiazole-3-yl]-ethanone. Arch Appl Sci Res, 7(5), (2015)4-8.
Google Scholar
[45]
M. Pai, B.C. Yallur, S.R. Batakurki. et al. Synthesis and Catalytic Activity of Heterogenous Hybrid Nanocatalyst of Copper/Palladium MOF, RIT 62-Cu/Pd for Stille Polycondensation of Thieno[2,3-b]pyrrol-5-One Derivatives. Top Catal (2022).
DOI: 10.1007/s11244-022-01618-1
Google Scholar
[46]
V. Adimule, B.C Yallur, S. Batakurki, Chapter 4 - Design, synthesis, and in vitro anticancer activity of thiophene substituted pyridine derivatives, Recent Developments in the Synthesis and Applications of Pyridines, Elsevier, (2023)127-143.
DOI: 10.1016/B978-0-323-91221-1.00008-7
Google Scholar
[47]
V.Adimule, B.C. Yallur, S.R. Batakurki S.S. Nandi, Synthesis, Morphology and Enhanced Optical Properties of Novel GdxCo3O4 Nanostructures. AMR (2022) 1173:71–82.
DOI: 10.4028/p-3pkhf6
Google Scholar
[48]
S.S. Nandi, V.Adimule, & B.C. Yallur. Synthesis, Structural and Optical Properties of Co Doped Sm2O3 Nanostructures. In Advanced Materials Research. Trans Tech Publications, 1173, (2022) 59-69.
DOI: 10.4028/p-h1j61s
Google Scholar
[49]
C. Maalathi, B. C. Yallur, M.R. Ambika, and V. Adimule. Influence of Nano Particles on Optical Properties of Cu-MOFs, Advanced Materials Research. Trans Tech Publications, Ltd., August 25, 2022.
DOI: 10.4028/p-vn4hd4
Google Scholar
[50]
M. Pai, S. R. Batakurki, V. Adimule, and B. C. Yallur. "Optical Graphene for Biosensor Application: A Review." Applied Mechanics and Materials. Trans Tech Publications, Ltd., August 2, 2022.
DOI: 10.4028/p-rs3qal
Google Scholar
[51]
V. Adimule, V., S. Batakurki, B.C. Yallur et al. Enhanced photoluminescence, optical, structural properties of ZrO2-incorporated Sm2O3:Co3O4 nanocomposite and their applications in photocatalytic degradation of methylene blue. Journal of Materials Research 37, 2396–2405 (2022)
DOI: 10.1557/s43578-022-00641-y
Google Scholar
[52]
V. Adimule, S. Batakurki, B.C. Yallur et al. Samarium-decorated ZrO2@SnO2 nanostructures, their electrical, optical and enhanced photoluminescence properties. J Mater Sci: Mater Electron 33, 18699–18715 (2022).
DOI: 10.1007/s10854-022-08718-4
Google Scholar
[53]
V.Adimule, B.C. Yallur, M.M. Pai et al. Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Top Catal (2022)
DOI: 10.1007/s11244-022-01672-9
Google Scholar
[54]
R. Shashanka, D. Chaira, B.E. Kumara Swamy, Electrocatalytic Response of Duplex and Yittria Dispersed Duplex Stainless Steel Modified Carbon Paste Electrode in Detecting Folic Acid Using Cyclic Voltammetry, Int. J. Electrochem. Sci. 10 (2015) 5586–5598.
Google Scholar
[55]
R. Shashanka, D. Chaira, B.E. Kumara Swamy, Electrochemical investigation of duplex stainless steel at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid, International Journal of Scientific & Engineering Research. 6 (2015) 1863–1871.
Google Scholar
[56]
S. Rajendrachari, V. Adimule, M. Gulen, F. Khosravi, K.K. Somashekharappa, Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications. Materials, 15 (2022) 7591.
DOI: 10.3390/ma15217591
Google Scholar
[57]
S. Rajendrachari, Bahaddureghatta E. Kumara Swamy, Sathish Reddy, Debasis Chaira, Synthesis of Silver Nanoparticles and their Applications Anal. Bioanal. Electrochem. 5 (2013) 455–466.
Google Scholar
[58]
R. Shashanka, D. Chaira, B.E. Kumara Swamy, Fabrication of yttria dispersed duplex stainless steel electrode to determine dopamine, ascorbic and uric acid electrochemically by using cyclic voltammetry, International Journal of Scientific & Engineering Research, 7 (2016) 1275-1285.
Google Scholar
[59]
R. Shashanka, Effect of Sintering Temperature on the Pitting Corrosion of Ball Milled Duplex Stainless Steel by using Linear Sweep Voltammetry, Anal. Bioanal. Electrochem. 10 (2018) 349-361.
Google Scholar
[60]
R. Shashanka, Y. Kamacı, R. Taş, Y. Ceylan, A.S. Bülbül, O. Uzun, A.C. Karaoglanli, Antimicrobial investigation of CuO and ZnO nanoparticles prepared by a rapid combustion method, Physical Chemistry Research, 7(4) (2019) 799-812.
Google Scholar
[61]
R. Shashanka, B.E. Kumara Swamy, Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and its application as dopamine and hydrogen peroxide sensors, Physical Chemistry Research, 8(1) (2020) 1-18.
Google Scholar
[62]
R. Shashanka, Kevser Betül Ceylan, The activation energy and antibacterial investigation of spherical Fe3O4 nanoparticles prepared by Crocus sativus (Saffron) flowers, Biointerface Research in Applied Chemistry, 10(4) (2020) 5951–5959.
DOI: 10.33263/briac104.951959
Google Scholar
[63]
R. Shashanka, B.E. Kumara Swamy, Simultaneous electro‑generation and electro‑deposition of copper oxide nanoparticles on glassy carbon electrode and its sensor application, SN Applied Sciences, 2(5) (2020) 956.
DOI: 10.1007/s42452-020-2785-1
Google Scholar
[64]
R. Shashanka, Volkan Murat YILMAZ, Abdullah Cahit Karaoglanli, Orhan Uzun, Investigation of activation energy and antibacterial activity of CuO nano-rods prepared by Tilia Tomentosa (Ihlamur) leaves, Moroccan Journal of Chemistry, 8(2) (2020) 497-509.
Google Scholar
[65]
R. Shashanka, Halil Esgin, Volkan Murat Yilmaz, Yasemin Caglar, Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cell, Journal of Science: Advanced Materials and Devices, 5 (2020) 185-191.
DOI: 10.1016/j.jsamd.2020.04.005
Google Scholar
[66]
R. Shashanka, A.C. Karaoglanli, Y. Ceylan, O. Uzun, A fast and robust approach for the green synthesis of spherical Magnetite (Fe3O4) nanoparticles by Tilia Tomentosa (Ihlamur) leaves and its antibacterial studies, Pharmaceutical Sciences, 26(2) (2020) 175-183.
DOI: 10.34172/ps.2020.5
Google Scholar
[67]
R. Shashanka, Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract, Journal of the Iranian Chemical Society, 18 (2) (2021) 415-427.
DOI: 10.1007/s13738-020-02037-3
Google Scholar
[68]
R. Shashanka, G.K. Jayaprakash, B.G. Prakashaiah, M. Kumar, B.E. Kumara Swamy, Electrocatalytic determination of ascorbic acid using a green synthesised magnetite nanoflake modified carbon paste electrode by cyclic voltammetric method, Materials Research Innovations, (2021).
DOI: 10.1080/14328917.2021.1945795
Google Scholar
[69]
Y. Lu, B. Yan, J. Liu. Nanoscalemeatl organic frameworks as highly sensitive luminescent sensor for Fe+2 in a aqueous solution and living cells. Chem. Commun. 50 (2014) 9969-9972.
DOI: 10.1039/c4cc04524f
Google Scholar
[70]
H. Xu, H. C. Hu, C. S. Cao, B. Zhao. Lanthanide organic framework as a regenerable luminescent probe for Fe+3. Inorg. Chem.54 (2015) 4585-4587.
DOI: 10.1021/acs.inorgchem.5b00113
Google Scholar
[71]
X. Sun, Y. Wang, Y. Lei. Fluorescencebased explosive detatection: from mechanisms to sensory materials. Chem. Soc. Rev. 44 (2015) 8019-8061.
DOI: 10.1039/c5cs00496a
Google Scholar
[72]
X. Wang, L. Zhang, J. Yang, F. Liu, F. Dai, R. Wang, D. Sun. Lanthanide meatl organic framework containing novel flexible ligand for luminescence sensing of small organic molecule and selective adsorption. J. Mater. Chem. A3. (2015) 12777-12785.
DOI: 10.1039/c5ta00061k
Google Scholar
[73]
W. Liu, X. Dai, J. Xie, M. A. Silver, D. Zhang, Y. L. Wang, Y. W. Cai, D. W. Juan, J. Wang, R. H. Zhou, Z. F. Chai, S. Wang. Highly sensitive detection of UV radiation using a Uranium coordination polymer. ACS Appl. Mater. Interfaces. 10 (2018) 4844-4850.
DOI: 10.1021/acsami.7b17954
Google Scholar
[74]
J. Xie, Y. X. Wang, W. Liu, X. M. Yin, L. H. Chen, Y. M.Zou, J. Diwu, Z. F. Chai, T. E. AlbertchySchmitt, G. K. Liu, S. A. Wang. Higjly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework. Angew. Chem. Int. Ed.56 (2017) 7500-7504.
DOI: 10.1002/anie.201700919
Google Scholar
[75]
W. Liu, Y. Wang, L. Song, M. A. Silver, J. Xie, L. Zhang, L. Chen, J. Diwu, Z. Chai, S. Wang. Efficient and selective sensing of Cu+2 and UO2+2 by a Europium metal organic framework. Talanta. 196 (2019) 515-522.
DOI: 10.1016/j.talanta.2018.12.088
Google Scholar
[76]
G. Ji, T. Zheng, X. Gao, Z. Liu. A highly selective turn-on luminescent logic gates probe based on post-synthetic MOF for aspartic acid detection. Sensors and actuators: B Chemical 284 (2019) 91-95.
DOI: 10.1016/j.snb.2018.12.114
Google Scholar
[77]
X. L. Qu, B. Yan. Stable Tb (III) based metal organic framework : structure, photoluminescence and chemical sensing of 2-thiazolidinethione-4-carboxylic acid as a biomarker of CS2. Inorg. Chem.58 (2019) 524-534.
DOI: 10.1021/acs.inorgchem.8b02738
Google Scholar
[78]
A. Das, S. Das, V. Trivedi, S. Biswas. A dual functional MOF-based fluorescent sensor for intracellular phosphate and extracellular 4-nitrobenzaldehyde. Dalton Trans. 48 (2019) 1332-1343. .
DOI: 10.1039/c8dt03964j
Google Scholar
[79]
F.Li, Y.S. Hong, K.X. Zuo, Q.Sun, E.Q. Gao,Highly selective fluorescent probe for Hg+2 and MnO4- by the two fold interpenetrating Metal organic framework with Nitro functionalized linkers (2018)
DOI: 10.1016/j.jssc.2018.12.025
Google Scholar