[1]
Threadgill, P. L., Leonard, A. J., Shercliff, H. R., Withers, P. J. (2009). "Friction stir welding of aluminium alloys", International Materials Reviews. Vol. 54(2), p.49–93.
DOI: 10.1179/174328009x411136
Google Scholar
[2]
Stephen Leon, J., Bharathiraja, G., Jayakumar, V. (2020). "A review on Friction Stir Welding in Aluminium Alloys", IOP Conference Series: Materials Science and Engineering. Vol. 954, 012007
DOI: 10.1088/1757-899x/954/1/012007
Google Scholar
[3]
Shrivastava, A., Krones, M., Pfefferkorn, F. E. (2015). "Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum", CIRP Journal of Manufacturing Science and Technology. Vol. 9, p.159–168
DOI: 10.1016/j.cirpj.2014.10.001
Google Scholar
[4]
Esa, H., Paul, K., Jukka, M., Katajisto J., (2009). "Environmental investigation of welding of aluminium alloys profiles and wrought plate by FSW". January 2009.
Google Scholar
[5]
Ogunsemi, B.T., Abioye, T.E., Ogedengbe, T.I., Zuhailawati, H., (2021). "A Review of Various Improvement Strategies for Joint Quality of AA 6061-T6 Friction Stir Weldments", Journal of Materials Research and Technology. Vol. 11, pp.1061-1089.
DOI: 10.1016/j.jmrt.2021.01.070
Google Scholar
[6]
Mishra, R. S., De, P. S., Kumar, N. (2014). Friction Stir Welding and Processing.
Google Scholar
[7]
Abioye, T. E., Mustar, N., Zuhailawati, H., Suhaina, I. (2019). "Prediction of the tensile strength of aluminium alloy 5052-H32 fibre laser weldments using regression analysis", The International Journal of Advanced Manufacturing Technology. Vol. 102, p.1951–1962
DOI: 10.1007/s00170-019-03310-3
Google Scholar
[8]
Abioye, T.E., Zuhailawati, H., Aizad, S. Anasyida, A.S. (2019). "Geometrical, microstructural and mechanical characterization of pulse laser welded thin sheet 5052-H32 aluminium alloy for aerospace applications", Transactions of Nonferrous Metals Society of China. Vol. 29 (4), pp.667-679.
DOI: 10.1016/s1003-6326(19)64977-0
Google Scholar
[9]
Zhou, W., Yu, J., Lu, X., Lin, J., & Dean, T. A. (2021). "A comparative study on deformation mechanisms, microstructures and mechanical properties of wide thin-ribbed sections formed by sideways and forward extrusion", International Journal of Machine Tools and Manufacture. Vol. 168, p.103771.
DOI: 10.1016/j.ijmachtools.2021.103771
Google Scholar
[10]
Cadoni, E., Dotta, M., Forni, D., Kaufmann, H. (2017). "Tensile behaviour of commercial aluminium alloys used in the Armoured applcations at high strain rates", Procedia Engineering. Vol. 197, pp.168-175.
DOI: 10.1016/j.proeng.2017.08.093
Google Scholar
[11]
Abioye, T. E., Anas, N. M., Irfan, M.K., Anasyida, A.S., Zuhailawati, H. (2019). "Parametric Optimization for Resistance Spot-Welded Thin-Sheet Aluminium Alloy 5052-H32", Arabian Journal of Science and Engineering. Vol. 44, p.7617–7626
DOI: 10.1007/s13369-019-03869-9
Google Scholar
[12]
Rajakumar, S. and Balasubramanian, V., (2012). "Establishing relationship between mechanical properties of Aluminum alloys and optimized friction stir welding process parameters", Materials and Design. Vol. 40, p.17 – 35.
DOI: 10.1016/j.matdes.2012.02.054
Google Scholar
[13]
Ramanjaneyulu,K., Gokhale, H., Reddy, G.M., (2015). Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology. Defence Technology. Vol. 11(3), p.209 – 219.
DOI: 10.1016/j.dt.2015.03.003
Google Scholar
[14]
Guo, J., Amira, S., Gougeon, P., Chen, X. G., (2011). "Effect of the surface preparation techniques on the EBSD analysis of friction stir welded AA1100 – B4C metal matrix composite", Materials characterization. Vol. 6(9), p.865 – 877.
DOI: 10.1016/j.matchar.2011.06.007
Google Scholar
[15]
Vignesh, R. V., Padmanaban R. (2018). "Artificial neural network model for predicting the tensile strength of friction stir welded AA1100", Materials today; Proceedings. Vol. 5(8), p.16716 – 16723.
DOI: 10.1016/j.matpr.2018.06.035
Google Scholar
[16]
Rajakumar, S. and Balasubramanian, V., (2012). "Correlation between weld nugget grain size, weld nugget hardness and tensile strength of friction stir welded commercial grade aluminum alloy joints", Materials and Design. Vol. 34, p.242 – 251.
DOI: 10.1016/j.matdes.2011.07.054
Google Scholar
[17]
Rambabu, G., Naik, D. B., Rao, C. H. V., Rao, K. S., Reddy, G. M., (2015). "Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints", Defence Technology. Vol. 11, p.330 – 337.
DOI: 10.1016/j.dt.2015.05.003
Google Scholar
[18]
Zhao, Y., Lin, S., Wu, L., Qu, F. (2005). "The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy", Materials Letters. Vol. 59(23), p.2948–2952
DOI: 10.1016/j.matlet.2005.04.048
Google Scholar
[19]
Vijayavel, P., Balasubramanian, V., Rajkumar, I. (2018). "Effect of Tool Traverse Speed on Strength, Hardness, and Ductility of Friction-Stir-Processed LM25AA-5% SiCp Metal Matrix Composites", Metallography, Microstructure, and Analysis. Vol. 7(3), p.321–333
DOI: 10.1007/s13632-018-0442-5
Google Scholar
[20]
Tan, C., Jiang, Z., Li, L., Chen, X. (2013). "Microstructural Evolution and Mechanical Properties of Dissimilar Al-Cu joints Produced by Friction Stir Welding", Materials & Design. Vol. 51, pp.466-473.
DOI: 10.1016/j.matdes.2013.04.056
Google Scholar
[21]
Crawford, R., Cook, G. E., Strauss, A. M., Hartman, D. A., Stremler, M. A. (2006). "Experimental defect analysis and force prediction simulation of high weld pitch friction stir welding", Science and Technology of Welding and Joining. Vol. 11(6), p.657–665
DOI: 10.1179/174329306x147742
Google Scholar
[22]
Kumar, R., Kumar, P., & Kumar, S. (2019). "Friction Stir Process Tool for Surface Modification of Different Alloy: A Review", A Journal of Composition Theory. Vol. 12(7), pp.860-867.
Google Scholar
[23]
Cao .X, Jahazi .M, Immarigeon J.P., Wallace W. (2006). "A review of laser welding techniques for magnesium alloys", Journal of Materials Processing Technology. Vol. 171, p.188–204.
DOI: 10.1016/j.jmatprotec.2005.06.068
Google Scholar
[24]
Gangil, N., Siddiquee, A. N., & Maheshwari, S. (2017). "Aluminium based in-situ composite fabrication through friction stir processing: A review", Journal of Alloys and Compounds. Vol. 715, p.91–104.
DOI: 10.1016/j.jallcom.2017.04.309
Google Scholar
[25]
Sharma, V., Prakash, U., Kumar, B. V. M. (2015). "Surface composite by friction stir processing; A review", Journal of Material Processing Technology. Vol. 224, pp.117-13.
DOI: 10.1016/j.jmatprotec.2015.04.019
Google Scholar
[26]
Mohammed, M. H., Subhi, A. D. (2021). "Exploring the influence of process parameters on the properties of SiC/A380 Al alloy surface composite fabricated by friction stir processing", Engineering Science and Technology, an International Journal. Vol. 24, p.1272–1280.
DOI: 10.1016/j.jestch.2021.02.013
Google Scholar
[27]
Sulamet-Ariobimo, R. D., Soedarsono, J. W., Sukarnoto, T., Rustandi, A., Mujalis, Y., & Prayitno, D. (2016). "Tensile properties analysis of AA1100 aluminium and SS400 steel using different JIS tensile standard specimen", Journal of Applied Research and Technology. Vol. 14(2), p.148–153.
DOI: 10.1016/j.jart.2016.03.006
Google Scholar
[28]
Rajakumar, S. and Balasubramanian, V. (2011). "Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints", Journal of Materials Engineering and Performance. Vol. 21, pp.809-822
DOI: 10.1007/s11665-011-9979-z
Google Scholar
[29]
Ogunsemi, B.T., Eta, O.M., Olanipekun, E., Abioye, T.E., Ogedengbe, T.I. (2022). "Tensile strength prediction by regression analysis for pulverized glass waste-reinforced aluminium alloy 6061-T6 friction stir weldments", Sādhanā. Vol. 47, p.53
DOI: 10.1007/s12046-022-01830-5
Google Scholar
[30]
Wolcott, P. J., Hehr, A., & Dapino, M. J. (2014). "Optimized welding parameters for Al 6061 ultrasonic additive manufactured structures", Journal of Materials Research. Vol. 29(17), p.2055–2065. https://.
DOI: 10.1557/jmr.2014.139
Google Scholar
[31]
Bilici, M. K., Yükler, A. İ., Kurtulmuş, M. (2011). "The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets", Materials & Design. Vol. 32(7), p.4074–4079. https://.
DOI: 10.1016/j.matdes.2011.03.014
Google Scholar
[32]
Trembach, B., Grin, A., Turchanin, M., Makarenko, N., Markov, O., Trembach, I. (2021). "Application of Taguchi method and ANOVA analysis for optimization of process parameters and exothermic addition (CuO-Al) introduction in the core filler during self-shielded flux-cored arc welding", The International Journal of Advanced Manufacturing Technology. Vol. 114(3-4), p.1099–1118. https://.
DOI: 10.1007/s00170-021-06869-y
Google Scholar
[33]
Sudha, G.T., Stalin, B., Ravichandran, M. (2019). "Optimization of powder metallurgy parameters to obtain low corrosion rate and high compressive strength in Al-MoO3 composites using SN ratio and ANOVA analysis", Materials Research Express. Vol. 6(9), p.096520. https://
DOI: 10.1088/2053-1591/ab2cef
Google Scholar