Parametric Optimization of Aluminium Alloy 1100 Friction Stir Welding Using Adapted Vertical Milling Machine

Article Preview

Abstract:

Friction stir welding is now increasingly being applied to joining aluminum alloys and other non-ferrous metals because the process has been established to be more suitable for joining soft metals. Compared with the facilities required for fusion welding, procuring friction stir welding machine is capital intensive and its utilization in the underdeveloped nations is very scanty. In this work, some experimental works were done so as determine the optimized process parameters for friction stir welding of aluminium alloys using an adapted vertical milling machine. The focus is to optimize the friction stir welding of AA1100 using an adapted vertical milling machine so as to obtain high quality weldments in terms of hardness and tensile strength. Friction stir welding of AA1100 was performed within a process window. The process parameters were optimized for improved hardness and tensile strength. The hardness property of the welded joints was measured using Brinnel hardness tester while the tensile strength was measured using Instron universal testing machine. Within the range of parameters utilized in this work, the hardness and tensile strength of the friction stir welded joint of AA1100 ranged between 15.30—35.32 BHN and 48.66 – 99.12 MPa respectively. The highest hardness value of 35.32 BHN was found at optimum parametric setting of 900 rpm rotational speed, 40 mm/min traverse speed and 2o tilt angle while the highest tensile strength of 99.12 MPa was obtained at optimal processing parameters of 900 rpm rotational speed, 25 mm/min traverse speed and 2o tilt angle. The ANOVA revealed that rotational speed followed by tilt angle has the most significant effect on the tensile strength of the weldment. The tilt angle and the traverse speed effects were found significant on the hardness of the weldments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-16

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Threadgill, P. L., Leonard, A. J., Shercliff, H. R., Withers, P. J. (2009). "Friction stir welding of aluminium alloys", International Materials Reviews. Vol. 54(2), p.49–93.

DOI: 10.1179/174328009x411136

Google Scholar

[2] Stephen Leon, J., Bharathiraja, G., Jayakumar, V. (2020). "A review on Friction Stir Welding in Aluminium Alloys", IOP Conference Series: Materials Science and Engineering. Vol. 954, 012007

DOI: 10.1088/1757-899x/954/1/012007

Google Scholar

[3] Shrivastava, A., Krones, M., Pfefferkorn, F. E. (2015). "Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum", CIRP Journal of Manufacturing Science and Technology. Vol. 9, p.159–168

DOI: 10.1016/j.cirpj.2014.10.001

Google Scholar

[4] Esa, H., Paul, K., Jukka, M., Katajisto J., (2009). "Environmental investigation of welding of aluminium alloys profiles and wrought plate by FSW". January 2009.

Google Scholar

[5] Ogunsemi, B.T., Abioye, T.E., Ogedengbe, T.I., Zuhailawati, H., (2021). "A Review of Various Improvement Strategies for Joint Quality of AA 6061-T6 Friction Stir Weldments", Journal of Materials Research and Technology. Vol. 11, pp.1061-1089.

DOI: 10.1016/j.jmrt.2021.01.070

Google Scholar

[6] Mishra, R. S., De, P. S., Kumar, N. (2014). Friction Stir Welding and Processing.

Google Scholar

[7] Abioye, T. E., Mustar, N., Zuhailawati, H., Suhaina, I. (2019). "Prediction of the tensile strength of aluminium alloy 5052-H32 fibre laser weldments using regression analysis", The International Journal of Advanced Manufacturing Technology. Vol. 102, p.1951–1962

DOI: 10.1007/s00170-019-03310-3

Google Scholar

[8] Abioye, T.E., Zuhailawati, H., Aizad, S. Anasyida, A.S. (2019). "Geometrical, microstructural and mechanical characterization of pulse laser welded thin sheet 5052-H32 aluminium alloy for aerospace applications", Transactions of Nonferrous Metals Society of China. Vol. 29 (4), pp.667-679.

DOI: 10.1016/s1003-6326(19)64977-0

Google Scholar

[9] Zhou, W., Yu, J., Lu, X., Lin, J., & Dean, T. A. (2021). "A comparative study on deformation mechanisms, microstructures and mechanical properties of wide thin-ribbed sections formed by sideways and forward extrusion", International Journal of Machine Tools and Manufacture. Vol. 168, p.103771.

DOI: 10.1016/j.ijmachtools.2021.103771

Google Scholar

[10] Cadoni, E., Dotta, M., Forni, D., Kaufmann, H. (2017). "Tensile behaviour of commercial aluminium alloys used in the Armoured applcations at high strain rates", Procedia Engineering. Vol. 197, pp.168-175.

DOI: 10.1016/j.proeng.2017.08.093

Google Scholar

[11] Abioye, T. E., Anas, N. M., Irfan, M.K., Anasyida, A.S., Zuhailawati, H. (2019). "Parametric Optimization for Resistance Spot-Welded Thin-Sheet Aluminium Alloy 5052-H32", Arabian Journal of Science and Engineering. Vol. 44, p.7617–7626

DOI: 10.1007/s13369-019-03869-9

Google Scholar

[12] Rajakumar, S. and Balasubramanian, V., (2012). "Establishing relationship between mechanical properties of Aluminum alloys and optimized friction stir welding process parameters", Materials and Design. Vol. 40, p.17 – 35.

DOI: 10.1016/j.matdes.2012.02.054

Google Scholar

[13] Ramanjaneyulu,K., Gokhale, H., Reddy, G.M., (2015). Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology. Defence Technology. Vol. 11(3), p.209 – 219.

DOI: 10.1016/j.dt.2015.03.003

Google Scholar

[14] Guo, J., Amira, S., Gougeon, P., Chen, X. G., (2011). "Effect of the surface preparation techniques on the EBSD analysis of friction stir welded AA1100 – B4C metal matrix composite", Materials characterization. Vol. 6(9), p.865 – 877.

DOI: 10.1016/j.matchar.2011.06.007

Google Scholar

[15] Vignesh, R. V., Padmanaban R. (2018). "Artificial neural network model for predicting the tensile strength of friction stir welded AA1100", Materials today; Proceedings. Vol. 5(8), p.16716 – 16723.

DOI: 10.1016/j.matpr.2018.06.035

Google Scholar

[16] Rajakumar, S. and Balasubramanian, V., (2012). "Correlation between weld nugget grain size, weld nugget hardness and tensile strength of friction stir welded commercial grade aluminum alloy joints", Materials and Design. Vol. 34, p.242 – 251.

DOI: 10.1016/j.matdes.2011.07.054

Google Scholar

[17] Rambabu, G., Naik, D. B., Rao, C. H. V., Rao, K. S., Reddy, G. M., (2015). "Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints", Defence Technology. Vol. 11, p.330 – 337.

DOI: 10.1016/j.dt.2015.05.003

Google Scholar

[18] Zhao, Y., Lin, S., Wu, L., Qu, F. (2005). "The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy", Materials Letters. Vol. 59(23), p.2948–2952

DOI: 10.1016/j.matlet.2005.04.048

Google Scholar

[19] Vijayavel, P., Balasubramanian, V., Rajkumar, I. (2018). "Effect of Tool Traverse Speed on Strength, Hardness, and Ductility of Friction-Stir-Processed LM25AA-5% SiCp Metal Matrix Composites", Metallography, Microstructure, and Analysis. Vol. 7(3), p.321–333

DOI: 10.1007/s13632-018-0442-5

Google Scholar

[20] Tan, C., Jiang, Z., Li, L., Chen, X. (2013). "Microstructural Evolution and Mechanical Properties of Dissimilar Al-Cu joints Produced by Friction Stir Welding", Materials & Design. Vol. 51, pp.466-473.

DOI: 10.1016/j.matdes.2013.04.056

Google Scholar

[21] Crawford, R., Cook, G. E., Strauss, A. M., Hartman, D. A., Stremler, M. A. (2006). "Experimental defect analysis and force prediction simulation of high weld pitch friction stir welding", Science and Technology of Welding and Joining. Vol. 11(6), p.657–665

DOI: 10.1179/174329306x147742

Google Scholar

[22] Kumar, R., Kumar, P., & Kumar, S. (2019). "Friction Stir Process Tool for Surface Modification of Different Alloy: A Review", A Journal of Composition Theory. Vol. 12(7), pp.860-867.

Google Scholar

[23] Cao .X, Jahazi .M, Immarigeon J.P., Wallace W. (2006). "A review of laser welding techniques for magnesium alloys", Journal of Materials Processing Technology. Vol. 171, p.188–204.

DOI: 10.1016/j.jmatprotec.2005.06.068

Google Scholar

[24] Gangil, N., Siddiquee, A. N., & Maheshwari, S. (2017). "Aluminium based in-situ composite fabrication through friction stir processing: A review", Journal of Alloys and Compounds. Vol. 715, p.91–104.

DOI: 10.1016/j.jallcom.2017.04.309

Google Scholar

[25] Sharma, V., Prakash, U., Kumar, B. V. M. (2015). "Surface composite by friction stir processing; A review", Journal of Material Processing Technology. Vol. 224, pp.117-13.

DOI: 10.1016/j.jmatprotec.2015.04.019

Google Scholar

[26] Mohammed, M. H., Subhi, A. D. (2021). "Exploring the influence of process parameters on the properties of SiC/A380 Al alloy surface composite fabricated by friction stir processing", Engineering Science and Technology, an International Journal. Vol. 24, p.1272–1280.

DOI: 10.1016/j.jestch.2021.02.013

Google Scholar

[27] Sulamet-Ariobimo, R. D., Soedarsono, J. W., Sukarnoto, T., Rustandi, A., Mujalis, Y., & Prayitno, D. (2016). "Tensile properties analysis of AA1100 aluminium and SS400 steel using different JIS tensile standard specimen", Journal of Applied Research and Technology. Vol. 14(2), p.148–153.

DOI: 10.1016/j.jart.2016.03.006

Google Scholar

[28] Rajakumar, S. and Balasubramanian, V. (2011). "Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints", Journal of Materials Engineering and Performance. Vol. 21, pp.809-822

DOI: 10.1007/s11665-011-9979-z

Google Scholar

[29] Ogunsemi, B.T., Eta, O.M., Olanipekun, E., Abioye, T.E., Ogedengbe, T.I. (2022). "Tensile strength prediction by regression analysis for pulverized glass waste-reinforced aluminium alloy 6061-T6 friction stir weldments", Sādhanā. Vol. 47, p.53

DOI: 10.1007/s12046-022-01830-5

Google Scholar

[30] Wolcott, P. J., Hehr, A., & Dapino, M. J. (2014). "Optimized welding parameters for Al 6061 ultrasonic additive manufactured structures", Journal of Materials Research. Vol. 29(17), p.2055–2065. https://.

DOI: 10.1557/jmr.2014.139

Google Scholar

[31] Bilici, M. K., Yükler, A. İ., Kurtulmuş, M. (2011). "The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets", Materials & Design. Vol. 32(7), p.4074–4079. https://.

DOI: 10.1016/j.matdes.2011.03.014

Google Scholar

[32] Trembach, B., Grin, A., Turchanin, M., Makarenko, N., Markov, O., Trembach, I. (2021). "Application of Taguchi method and ANOVA analysis for optimization of process parameters and exothermic addition (CuO-Al) introduction in the core filler during self-shielded flux-cored arc welding", The International Journal of Advanced Manufacturing Technology. Vol. 114(3-4), p.1099–1118. https://.

DOI: 10.1007/s00170-021-06869-y

Google Scholar

[33] Sudha, G.T., Stalin, B., Ravichandran, M. (2019). "Optimization of powder metallurgy parameters to obtain low corrosion rate and high compressive strength in Al-MoO3 composites using SN ratio and ANOVA analysis", Materials Research Express. Vol. 6(9), p.096520. https://

DOI: 10.1088/2053-1591/ab2cef

Google Scholar