Electrochemical High-Performance Hybrid Supercapacitors of Carbon Nanosphere Doped 3D Zr (II) Linked 4-{[(1E)-1-Hydroxy-3-Oxoprop-1-En-2-Yl]Sulfanyl}Benzoic Acid Metal Organic Frameworks

Article Preview

Abstract:

In the present research work, carbon nanosphere (5 wt. %, 10 wt. % and 15 wt. %)/Zr- based metal organic frame works (CNS: Zr (II)-MOFs) with different molar ratios of the legend 4-{[(1E)-1-Hydroxy-3-Oxoprop-1-En-2-yl] Sulfanyl} Benzoic Acid (HOSBA) have been successfully synthesized by hydrothermal method. Studies using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) have validated certain structural, optical, and morphological features. The supercapacitance performance of the synthesized MOFs was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). At a current density of 0.5 A g-1 and at a scan rate of 10 mV/s, the 15% CNS doped Zr-MOF demonstrated highest specific capacitance (Cs) of 239.4 F g-1. 15 wt.% CNS doped Zr-MOF proven power density of 2100 W kg-1 and maximum energy density of 14.82 Wh Kg-1 with capacitive retention of 77.63 % following 2000 cycles mark this combination a good for supercapacitors (SCs) material. Regardless of the synthetic conditions, we achieved MOFs which exhibited hetero structure formation with spherical morphologies. The results open us new and energy approach for the supercapacitor of the Zr-metal based MOFs and applications in the photonics, optoelectronics, and promising electrode material for electrochemical energy storage systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-100

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Yang, Z. Han, J. Sun, X. Yang, X. Hu, C. Li, B. Cao, Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode, Electrochim. Acta. 268 (2018) 20-26.

DOI: 10.1016/j.electacta.2018.02.028

Google Scholar

[2] D. Li, H. Xu, L. Jiao, H. Jiang, Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities, Energy Chem. 1 (2019) 100005.

DOI: 10.1016/j.enchem.2019.100005

Google Scholar

[3] R. Shashanka, K. B. Ceylan, The activation energy and antibacterial investigation of spherical Fe3O4 nanoparticles prepared by Crocus sativus (Saffron) flowers, Biointerface Res. Appl. Chem., 10(4) (2020) 5951–5959.

DOI: 10.33263/briac104.951959

Google Scholar

[4] V. Adimule, B. Sheetal, Y.C. Basappa, K. Rangappa, Enhanced photoluminescence, optical, structural properties of ZrO2-incorporated Sm2O3:Co3O4 nanocomposite and their applications in photocatalytic degradation of methylene blue. J. Mater. Res. 37 (2022) 2396–2405.

DOI: 10.1557/s43578-022-00641-y

Google Scholar

[5] R.S. Mahale, R. Shashanka, V. Shamanth, R. Vinaykumar, Voltammetric Determination of Various Food Azo Dyes Using Different Modified Carbon Paste Electrodes, Biosensor Materials, 12 (4) (2022) 4557–4566.

DOI: 10.33263/briac124.45574566

Google Scholar

[6] S. K. Tiwari, A. K. Thakur, A. Adhikari, Y. Zhu, N. Wang. Current Research of Graphene-Based Nanocomposites and Their Application for Supercapacitors. Nanomaterials (Basel). 16 (2020) 2046.

DOI: 10.3390/nano10102046

Google Scholar

[7] H. B. Wu, X. W. Lou, Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges, Science Advances, 3 (2017).

DOI: 10.1126/sciadv.aap9252

Google Scholar

[8] V. Adimule, B. C. Yallur, H. J. Adarsha Gowda, Crystal Structure, Morphology, Optical and Super-Capacitor Properties of Srx: α-Sb2O4 Nanostructures. Anal. Bioanal. Electrochem. 14 (2022) 1-17.

Google Scholar

[9] H. Filik, A. A. Avan, Review on applications of carbon nanomaterials for simultaneous electrochemical sensing of environmental contaminant dihydroxy benzene isomers, Arab. J. Chem. 13 (2020) 6092-6105.

DOI: 10.1016/j.arabjc.2020.05.009

Google Scholar

[10] L. Deng, T. Wei, J. Liu, L. Zhan, W. Chen, J. Cao. Recent Developments of Carbon-Based Anode Materials for Flexible Lithium-Ion Batteries. Crystals. 12 (2022) 1279.

DOI: 10.3390/cryst12091279

Google Scholar

[11] V. Pavitra, B.M. Praveen, G. Nagaraju, R. Shashanka, Energy storage, Photocatalytic and Electrochemical nitrite sensing of ultrasound-assisted stable Ta2O5 nanoparticles, Top Catal, (2022).

DOI: 10.1007/s11244-021-01553-7

Google Scholar

[12] S. Rajagopal, R. Pulapparambil Vallikkattil, M. Mohamed Ibrahim, D.G. Velev, Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress. Condens. Matter, 7 (2022) 6.

DOI: 10.3390/condmat7010006

Google Scholar

[13] R. Shashanka, D. Chaira, B.E. Kumara Swamy, Electrochemical investigation of duplex stainless steel at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid, Int. j. sci. Eng. res. 6 (2015) 1863–1871.

Google Scholar

[14] P. N. Basavarajappa, M. M. Rajath Hegde, S. Rajendrachari, A. O. Surendranathan, Investigation of Structural and Mechanical Properties of Nanostructured TiMgSr Alloy for Biomedical applications, Biointerface Res. Appl. Chem. (2023) 13 118.

DOI: 10.33263/briac132.118

Google Scholar

[15] S. Rajendrachari, N. Basavegowda, V. M. Adimule, B. Avar, P. Somu, S. Kumar RM, K. Baek, Assessing the Food Quality Using Carbon Nanomaterial Based Electrodes by Voltammetric Techniques, Biosensors (2022) 12 1173.

DOI: 10.3390/bios12121173

Google Scholar

[16] H. J. Sathish Reddy, B. E. Kumara Swamya, S. Aruna, M. Kumar, R. Shashanka, Preparation of NiO/ZnO hybrid nanoparticles for electrochemical sensing of dopamine and uric acid, Chemical sensors, (2012) 2 1-8.

Google Scholar

[17] H. Zhang, X. Lu, X. Li, B. Wang, Y. Dong, F. Sun, D. Zhou, Q. Xia, Construction of strong Lewis acidity through pre-calcining octahedral Zr-MOF to exhibit high activity for the selective isomerization of α-epoxypinane, Molecular Catalysis, 526 (2022) 112380.

DOI: 10.1016/j.mcat.2022.112380

Google Scholar

[18] V. Adimule, G. B. Bagihalli, S. N. Unki, Synthesis, Structural and Optical Properties of Co Doped α-Sb2O4 Nanocomposites, Adv. Mater. Res., (2022) 1173 3-11.

DOI: 10.4028/p-6jw1f6

Google Scholar

[19] V Pavitra, BM Praveen, G Nagaraju, R Shashanka, Energy Storage, Photocatalytic and Electrochemical Nitrite Sensing of Ultrasound-Assisted Stable Ta2O5 Nanoparticles, Top Catal., (2022) 1-14.

DOI: 10.1007/s11244-021-01553-7

Google Scholar

[20] B. Avar, M. Panigrahi, A. K. Soguksu, S. Rajendrachari, A. Gundes, Photocatalytic Activity of Soft Magnetic Fe80−xCoxZr10Si10 (x = 0, 40, and 80) Nanocrystalline Melt-Spun Ribbons. Top Catal., (2022) 1-10.

DOI: 10.1007/s11244-022-01569-7

Google Scholar

[21] R. S. Mahale, V. Shamanth, R. Shashanka, Mechanical testing of spark plasma sintered materials: A review, AIP Conf. Proc., (2022) 2469 020026.

Google Scholar

[22] R. Sankannavar, V. Adimule, B. C. Yallur, Influence of Y3+ Doping on Dielectric and Optical Properties of Ce2S3 Spherical Shaped Nanostructures Synthesized by Chemical Precipitation Method, NHC, (2023), 38, 37-51.

DOI: 10.4028/p-3agcr7

Google Scholar

[23] B.C. Yallur, V. Adimule, M. S. Raghu, F. A. Alharthi, B. Jeon, L. Parashuram, Solar-light-sensitive Zr/Cu-(H2BDC-BPD) metal organic framework for photocatalytic dye degradation and hydrogen evolution Surf. Interfaces, (2023) 36 102587.

DOI: 10.1016/j.surfin.2022.102587

Google Scholar

[24] M. Challa, Sampath Chinnam, Ambika Madalakote Rajanna, Apurva Nandagudi, Basappa C Yallur, Vinayak Adimule

Google Scholar

[25] V. Adimule, B. C. Yallur, S. Batakurki, C. Bathula, W. Nabgan, F. A. Alharthi, B. Jeon, S. Akshatha, L. Parashuram, Promoting the photocatalytic reduction of CO2 and dye degradation via multi metallic Smx modified CuCo2O4 Reverse spinel hybrid catalyst, Ceram. Int., (2023) 49, 1742-1755.

DOI: 10.1016/j.ceramint.2022.09.138

Google Scholar

[26] V. Adimule, S. Batakurki, V. S. Bhat, B. C. Yallur, G. Hegde, C. Bathula, Enhanced dielectric and Supercapacitive properties of spherical like Sr doped Sm2O3@ CoO triple oxide nanostructures, J Energy Storage, (2023) 57 106318.

DOI: 10.1016/j.est.2022.106318

Google Scholar

[27] V. Adimule, B. C. Yallur, R. Keri, C. Bathula, S. Batakurki, Microstructure, Photoluminescence and Electrical Properties of SmxGd (1− x): SrO Hybrid Nanomaterials Synthesized via Facile Coprecipitation Method, Electron. Mater. Lett., (2022) 1-20.

DOI: 10.1007/s13391-022-00394-0

Google Scholar

[28] S. Rajendrachari, N. Basavegowda, V. Adimule, B. Avar, P. Somu, S. Kumar, K. Baek., Assessing the Food Quality Using Carbon Nanomaterial Based Electrodes by Voltammetric Techniques, Biosensors, (2022) 12 1173.

DOI: 10.3390/bios12121173

Google Scholar

[29] Y. Bai, Y. Dou, L. Xie, W. Rutledge, J. Li, H. Zhou, Zr-based metal–organic frameworks: design, synthesis, structure, and applications, Chem. Soc. Rev., (2016) 45 2327-2367.

DOI: 10.1039/c5cs00837a

Google Scholar

[30] W. Gao, D. Chen, H. Quan, R. Zou, W. Wang, X. Luo, L. Guo, Fabrication of Hierarchical Porous Metal–Organic Framework Electrode for Aqueous Asymmetric Supercapacitor. ACS Sustain. Chem. Eng. 5 (2017) 4144-4153.

DOI: 10.1021/acssuschemeng.7b00112

Google Scholar

[31] X. Tang, N. Li, H. Pang, Metal–organic frameworks-derived metal phosphides for electrochemistry application, Green Energy Environ. 7 (2022) 636-661.

DOI: 10.1016/j.gee.2021.08.003

Google Scholar

[32] A. C. Jayasree, R. Ravichandran, Electrochemical application of zirconium-based metal-organic framework, Inorg. Nano-Met. Chem. 52 (2022) 582-588.

Google Scholar

[33] V. Shrivastav, S. Sundriyal, U. K. Tiwari, K. Kim, A. Deep, Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode, Energy, (2021) 235 121351.

DOI: 10.1016/j.energy.2021.121351

Google Scholar

[34] I. Ahmed, N. A. Khan, S. H. Jhung, Graphite Oxide/Metal–Organic Framework (MIL-101): Remarkable Performance in the Adsorptive Denitrogenation of Model Fuels, Inorg. Chem., 52 (2013) 14155–14161.

DOI: 10.1021/ic402012d

Google Scholar

[35] R. Shashanka, D. Chaira, B.E. Kumara Swamy, Effect of Y2O3 nanoparticles on corrosion study of spark plasma sintered duplex and ferritic stainless-steel samples by linear sweep voltammetric method, Arch. Metall. Mater. 63 (2018) 749-763.

Google Scholar

[36] H. Wang, Y. Hao, Q. Liu, R. Han, X. Lu, C. Song, D. Ma, N. Ji, C. Liu, Enhanced regenerability of metal-organic frameworks adsorbents: Influence factors and improved methods, J. Environ. Chem. Eng. 10 (2022) 108737.

DOI: 10.1016/j.jece.2022.108737

Google Scholar

[37] V. Adimule, S. Rajendrachari, R. Mahale, S. Batakurki, B. C. Yallur, S. Nandi, G. Bagihalli, Dielectric and Mechanical Properties of Silicone Rubber Composites Reinforced by Conductive Carbon Black and Neopentyl Glycol Diglycidyl Ether, Silicon (2022).

DOI: 10.1007/s12633-022-02210-8

Google Scholar

[38] R. Shashanka, D. Chaira, B.E. Kumara Swamy, Fabrication of yttria dispersed duplex stainless-steel electrode to determine dopamine, ascorbic and uric acid electrochemically by using cyclic voltammetry, Int. j. sci. Eng. res, 7 (2016) 1275-1285.

Google Scholar

[39] R. Shashanka, D. Chaira, B.E. Kumara Swamy, Electrocatalytic Response of Duplex and Yttria Dispersed Duplex Stainless Steel Modified Carbon Paste Electrode in Detecting Folic Acid Using Cyclic Voltammetry, Int. J. Electrochem. Sci. 10 (2015) 5586–5598.

Google Scholar

[40] V. Adimule, M.G. Revaigh, H.J. Adarsha, Synthesis and Fabrication of Y-Doped ZnO Nanoparticles and Their Application as a Gas Sensor for the Detection of Ammonia. J. of Materi Eng and Perform 29 (2020) 4586–4596.

DOI: 10.1007/s11665-020-04979-4

Google Scholar

[41] R. Shashanka, Halil Esgin, Volkan Murat Yilmaz, Yasemin Caglar, Fabrication and characterization of green synthesized ZnO nanoparticle-based dye-sensitized solar cell, J. Sci.: Adv. Mater. Devices, 5 (2020) 185-191.

DOI: 10.1016/j.jsamd.2020.04.005

Google Scholar

[42] V. Adimule, N. Santosh, Y. Basappa, B. Debdas, A. H. Jagadeesha. Enhanced photoluminescence properties of Gd(x–1)SrxO: CdO nanocores and their study of optical, structural, and morphological characteristics. Mater Today Chem 20 (2021): 100438.

DOI: 10.1016/j.mtchem.2021.100438

Google Scholar

[43] R. Shashanka, B.E. Kumara Swamy, Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and its application as dopamine and hydrogen peroxide sensors, Phys. Chem. Res., 8(1) (2020) 1-18.

Google Scholar

[44] V. Adimule, B.C. Yallur, M.M. Pai, N. Santosh, Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Top Catal (2022).

DOI: 10.1007/s11244-022-01672-9

Google Scholar

[45] R. Shashanka, G. K. Jayaprakash, P. BG, M. Kumar, B.E. Swamy, Electrocatalytic determination of ascorbic acid using a green synthesised magnetite nano-flake modified carbon paste electrode by cyclic voltammetric method, Mater. Res. Innov., (2022) 26 229-239.

DOI: 10.1080/14328917.2021.1945795

Google Scholar

[46] S. Rajendrachari, an overview of high-entropy alloys prepared by mechanical alloying followed by the characterization of their microstructure and various properties, Alloys, (2022) 1 116-132.

DOI: 10.3390/alloys1020008

Google Scholar

[47] N. B. Pradeep, M. M. Rajath Hegde, S. Rajendrachari, A. O. Surendranathan, Investigation of microstructure and mechanical properties of microwave consolidated TiMgSr alloy prepared by high energy ball milling, Powder Technol., (2022) 408 117715.

DOI: 10.1016/j.powtec.2022.117715

Google Scholar

[48] S. A. Kale, V. Adimule, R. Shashanka, M. Tanaka, P. S. Wei, Synthesis and Modifications of Materials and its Properties, Trans Tech Publications Ltd, Switzerland, (2022) 134.

Google Scholar

[49] V. Adimule, Y. Basappa, K. Vinuta, P. M. Krishna, Characterization studies of novel series of cobalt (II), nickel (II) and copper (II) complexes: DNA binding and antibacterial activity. J. Pharm. Investig. 51 (2021).

DOI: 10.1007/s40005-021-00524-0

Google Scholar

[50] V. Shrivastav, S. Sundriyal, U. K. Tiwari, K. Kim, A. Deep, Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode, Energy, 235 (2021) 121351.

DOI: 10.1016/j.energy.2021.121351

Google Scholar

[51] N. M. Shaikh, A. D. Sawant, G. B. Bagihalli, M. Challa, V. Adimule, Highly active mixed Au–Pd nanoparticles supported on RHA silica through immobilised ionic liquid for suzuki coupling reaction, Top Catal., (2022) 1-10.

DOI: 10.1007/s11244-021-01547-5

Google Scholar

[52] V. Adimule, S. Batakurki, B. C. Yallur, R. Keri, Enhanced photoluminescence, optical, structural properties of ZrO2-incorporated Sm2O3:Co3O4 nanocomposite and their applications in photocatalytic, J. Mater. Res., (2022) 37 2396-2405.

DOI: 10.1557/s43578-022-00641-y

Google Scholar

[53] H. J. Adarsha, V. Adimule, D. Bowmik, A facile synthesis of Cr doped WO3 nanocomposites and its effect in enhanced current-voltage and impedance characteristics of thin films, Mater. Lett., (2020) 10 481-485.

DOI: 10.22226/2410-3535-2020-4-481-485

Google Scholar

[54] V. Adimule, B. C. Yallur, S. R. Batakurki, A. H. J. Gowda, Microwave Assisted Synthesis of Cr doped Gd2O3 Nanostructures and Investigation on Morphology, Optical, Photoluminescence Properties Int. J. Nanosci., (2021) 3 1-5.

DOI: 10.1615/nanoscitechnolintj.2021039643

Google Scholar

[55] V. Adimule, R. Shashanka, Optical and Sensor Characteristics of Nanocomposites, Trans Tech Publications Ltd., (2022).

Google Scholar

[56] V. Adimule, K. S. Adarsh, Characterization and Microbial Resistance Properties of Titanium Dioxide Nanoparticles in Food Products, J. Nanosci. Nanotechnol., (2017) 3 240-241.

Google Scholar

[57] V. Adimule, S. Rajendrachari, R. Mahale, S. Batakurki, B. C. Yallur, S. Nandi, G. Bagihalli, Dielectric and Mechanical Properties of Silicone Rubber Composites Reinforced by Conductive Carbon Black and Neopentyl Glycol Diglycidyl Ether, Silicon, (2022) 1-18.

DOI: 10.1007/s12633-022-02210-8

Google Scholar

[58] V. Adimule, Study on Optical Properties of Cu-MOF Nano Metal Oxide Composites, Optical and Sensor Characteristics of Nanocomposites, 2022, 36.

Google Scholar

[59] V. Adimule, S. Batakurki, B. C. Yallur, C. Bathula, L. Parashuram, Samarium-decorated ZrO2@ SnO2 nanostructures, their electrical, optical, and enhanced photoluminescence properties, J. Mater. Sci.: Mater. Electron., (2022) 33 18699-18715.

DOI: 10.1007/s10854-022-08718-4

Google Scholar