Hybrid MOFs Supercapacitor: A Mini Review

Article Preview

Abstract:

In the world of energy storage devices, Supercapacitors occupy a very unique and pivotal position. Their rapid rate of discharge gives them high power density. They have high reversibility and are robust to a large number of charging and discharging cycles. Sustained research has revealed a certain set of properties and behaviour, that every prospective candidate supercapacitor material must possess. Metal organic frameworks (MOFs) with unique textural properties, excellent specific surface area, tuneable porous structure and distinctively advantageous electrochemical behaviour are prominent candidates for the use in energy storage applications. However pristine MOF based materials are handicapped due to their low conductivity and poor mechanical stability. These inherent deficiencies can be overcome by hybridizing pristine MOFs with other materials like carbon materials (Activated Carbon, Graphene and Carbon Nano Tubes), conducting polymers, metals, and small molecules through variety of methods. This review puts the spotlight on the utilization, growth and various forms of hybrid materials based on MOFs for supercapacitor applications. It also highlights the various surface engineering techniques on the materials for high potential applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-76

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Xu, Q. Li, X. Guo, S. Zhang, W. Li, H. Pang, Metal organic frameworks and their composites for supercapacitor application, Journal of Energy Storage 56 (2022) 105819.

DOI: 10.1016/j.est.2022.105819

Google Scholar

[2] R. Yogamalar N, K. Sharma, P. M. Shafi, An overview, methods of synthesis and modification of carbon-based electrodes for supercapacitor, Journal of Energy Storage, 55, Part D (2022) 105727.

DOI: 10.1016/j.est.2022.105727

Google Scholar

[3] R. Shashanka, D. Chaira, B.E. Kumara Swamy, Electrocatalytic Response of Duplex and Yittria Dispersed Duplex Stainless Steel Modified Carbon Paste Electrode in Detecting Folic Acid Using Cyclic Voltammetry, Int. J. Electrochem. Sci. 10 (2015) 5586–5598. http://www.electrochemsci.org/papers/vol10/100705586.pdf

Google Scholar

[4] R. Shashanka, D. Chaira, B.E. Kumara Swamy, Electrochemical investigation of duplex stainless steel at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid, International Journal of Scientific & Engineering Research. 6 (2015) 1863–1871.

Google Scholar

[5] S. Rajendrachari, V. Adimule, M. Gulen, F. Khosravi, K.K. Somashekharappa, Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications. Materials, 15 (2022) 7591.

DOI: 10.3390/ma15217591

Google Scholar

[6] R. Shashanka, D. Chaira, B.E. Kumara Swamy, Fabrication of yttria dispersed duplex stainless steel electrode to determine dopamine, ascorbic and uric acid electrochemically by using cyclic voltammetry, International Journal of Scientific & Engineering Research, 7 (2016) 1275-1285.

Google Scholar

[7] R. Shashanka, Effect of Sintering Temperature on the Pitting Corrosion of Ball Milled Duplex Stainless Steel by using Linear Sweep Voltammetry, Anal. Bioanal. Electrochem. 10 (2018) 349-361.

Google Scholar

[8] R. S. Mahale, S. Vasanth, H. Krishna, R. Shashanka, P.C. Sharath, N.V. Sreekanth, Electrochemical Sensor Applications of Nanoparticle Modified Carbon Paste Electrodes to Detect Various Neurotransmitters: A Review, Applied Mechanics and Materials, 908 (2022) 69-88.

DOI: 10.4028/p-mizm85

Google Scholar

[9] S. Rajendrachari, K. K. Somashekharappa, R. S. Mahale, S. Vasanth & S. P. Chikkegouda, A Review on Cyclic Voltammetric Investigation of Toxic Heavy Metals. In S. Rajendrachari, K. K. Somashekharappa, S. P. Chikkegouda, & S. Vasanth (Eds.), Frontiers in Voltammetry [Working Title] (2022). IntechOpen

DOI: 10.5772/intechopen.108411/

Google Scholar

[10] R.S. Keri, V. Adimule, P. Kendrekar, B. S. Sasidhar, The Nano-Based Catalyst for the Synthesis of Benzimidazoles. Top Catal (2022)

DOI: 10.1007/s11244-022-01562-0

Google Scholar

[11] N.M. Shaikh, V. Adimule, G.B. Bagihalli, Rangappa S. Keri. A Novel Mixed Ag–Pd Nanoparticles Supported on SBA Silica Through [DMAP-TMSP-DABCO]OH Basic Ionic Liquid for Suzuki Coupling Reaction. Top Catal (2022).

DOI: 10.1007/s11244-022-01586-6

Google Scholar

[12] V. Adimule, S. Medapa, P.K. Rao and L.S. Kumar, Synthesis of Schiff bases of 5-[5-(4-fluorophenyl) thiophen-2-yl]-1, 3, 4-thiadiazol-2-amine and its anticancer activity. Int J Adv Pharm Sci, 5(1) (2014) 1761-1768.

DOI: 10.7897/2230-8407.041214

Google Scholar

[13] B. Yang, B. Li, & Z. Xiang. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano Res. 16(1) (2023) 1338-1361.

DOI: 10.1007/s12274-022-4682-y

Google Scholar

[14] R. Shashanka, Halil Esgin, Volkan Murat Yilmaz, Yasemin Caglar, Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cell, Journal of Science: Advanced Materials and Devices, 5 (2020) 185-191.

DOI: 10.1016/j.jsamd.2020.04.005

Google Scholar

[15] M. Pamei, A.G. Achumi, and A. Puzari. Recent development in MOFs for supercapacitor applications. In Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage 2022 (365-391).

DOI: 10.1016/b978-0-323-91179-5.00015-2

Google Scholar

[16] N.M. Shaikh, A.D. Sawant, Bagihalli, G.B Malathi Challa & Vinayak M. Adimule, Highly Active Mixed Au–Pd Nanoparticles Supported on RHA Silica Through Immobilised Ionic Liquid for Suzuki Coupling Reaction. Top Catal (2022)

DOI: 10.1007/s11244-021-01547-5

Google Scholar

[17] N.M. Shaikh, G.B. Bagihalli, V. Adimule, R. S. Keri. A Novel Silica Immobilised Acidic Ionic Liquid [BMIM][AlCl4]as an Effective Catalyst for Biscoumarine Synthesis. Top Catal (2022)

DOI: 10.1007/s11244-022-01591-9

Google Scholar

[18] S.K. Shinde, D.Y. Kim, M. Kumar, G. Murugadoss, S. Ramesh, A.M. Tamboli, H.M. Yadav, MOFs-Graphene Composites Synthesis and Application for Electrochemical Supercapacitor: A Review, Polymers (Basel). 14(3) (2022) 511.

DOI: 10.3390/polym14030511

Google Scholar

[19] R. Shashanka, B.E. Kumara Swamy, Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and its application as dopamine and hydrogen peroxide sensors, Physical Chemistry Research, 8(1) (2020) 1-18.

Google Scholar

[20] R. Shashanka, Kevser Betül Ceylan, The activation energy and antibacterial investigation of spherical Fe3O4 nanoparticles prepared by Crocus sativus (Saffron) flowers, Biointerface Research in Applied Chemistry, 10(4) (2020) 5951–5959.

DOI: 10.33263/briac104.951959

Google Scholar

[21] R. Shashanka, B.E. Kumara Swamy, Simultaneous electro‑generation and electro‑deposition of copper oxide nanoparticles on glassy carbon electrode and its sensor application, SN Applied Sciences, 2(5) (2020) 956.

DOI: 10.1007/s42452-020-2785-1

Google Scholar

[22] Y. Guo, K. Wang, Y. Hong, H. Wu and Q. Zhang. Recent progress on pristine two-dimensional metal–organic frameworks as active components in supercapacitors, Dalton Trans., 50 (2021) 11331–11346

DOI: 10.1039/d1dt01729b

Google Scholar

[23] V. Adimule, B.C. Yallur, A. Gowda, Crystal Structure, Morphology, Optical and Super-Capacitor Properties of Srx: α-Sb2O4 Nanostructures, Analytical and Bioanalytical Electrochemistry, 14(1) (2022) 1-17

DOI: 10.4028/p-3pkhf6

Google Scholar

[24] Z. Cao, R. Momen, S. Tao, D. Xiong, Z. Song, X. Xiao, W. Deng, H. Hou, S. Yasar, S. Altin and F. Bulut. Metal–Organic Framework Materials for Electrochemical Supercapacitors. Nano-Micro Letters, 14(1) (2022)1-33.

DOI: 10.1007/s40820-022-00910-9

Google Scholar

[25] J. Yan, T. Liu, X. Liu, Y. Yan, Y. Huang, Metal-organic framework-based materials for flexible supercapacitor application, Coordination Chemistry Reviews, 452 (2022) 214300.

DOI: 10.1016/j.ccr.2021.214300

Google Scholar

[26] D. Tian, C. Wang and X. Lu. Metal–organic frameworks and their derived functional materials for supercapacitor electrode application. Advanced Energy and Sustainability Research, 2(7) (2021) 2100024.

DOI: 10.1002/aesr.202100024

Google Scholar

[27] R. Shashanka, G.K. Jayaprakash, B.G. Prakashaiah, M. Kumar, B.E. Kumara Swamy, Electrocatalytic determination of ascorbic acid using a green synthesised magnetite nanoflake modified carbon paste electrode by cyclic voltammetric method, Materials Research Innovations, (2021)

DOI: 10.1080/14328917.2021.1945795

Google Scholar

[28] V. Pavitra, B.M. Praveen, G. Nagaraju, R. Shashanka, Energy storage, Photocatalytic and Electrochemical nitrite sensing of ultrasound-assisted stable Ta2O5 nanoparticles, Topics in Catalysis, (2022).

DOI: 10.1007/s11244-021-01553-7

Google Scholar

[29] V. Adimule, B.C. Yallur & R. Keri, Studies on Synthesis, Characterization of Smx ZnO:CoO Nanocomposites and Its Effect on Photo Catalytic Degradation of Textile Dyes. Top Catal (2022)

DOI: 10.1007/s11244-022-01574-w

Google Scholar

[30] V. Adimule, B. C. Yallur, S. R. Batakurki, S. S. Nandi, Synthesis, Morphology and Enhanced Optical Properties of Novel GdxCo3O4 Nanostructures. AMR 1173 (2022) 71–82.

DOI: 10.4028/p-3pkhf6

Google Scholar

[31] S. S. Nandi, V. Adimule, B.C. Yallur, Synthesis, Structural and Optical Properties of Co Doped Sm2O3 Nanostructures, Advanced Materials Research 1173 (2022) 59–69.

DOI: 10.4028/p-h1j61s

Google Scholar

[32] M. Maya, Pai, S. R. Batakurki, V. Adimule, and B. C. Yallur. "Optical Graphene for Biosensor Application: A Review." Applied Mechanics and Materials. 908 (2022) 51-68.

DOI: 10.4028/p-rs3qal

Google Scholar

[33] V. Adimule, S. R. Batakurki, B.C. Yallur, R. Keri, Enhanced photoluminescence, optical, structural properties of ZrO2-incorporated Sm2O3:Co3O4 nanocomposite and their applications in photocatalytic degradation of methylene blue. Journal of Materials Research 37 (2022) 2396–2405

DOI: 10.1557/s43578-022-00641-y

Google Scholar

[34] V. Adimule, S. R. Batakurki, B.C. Yallur, Chinna Bathula & L. Parashuram, Samarium-decorated ZrO2@SnO2 nanostructures, their electrical, optical and enhanced photoluminescence properties. J Mater Sci: Mater Electron 33 (2022) 18699–18715.

DOI: 10.1007/s10854-022-08718-4

Google Scholar

[35] A. Vinayak, M. Sudha, S.K. Lalita and K.R. Prakash, Synthesis, characterization and in-vitro cytotoxic evaluation of novel amide derivatives of 5-[2-(4-methoxyphenyl) pyridin-3-Yl]-1, 3, 4-thiadiazol-2-amine. World J Pharm Res, 3(6) (2014) 525-535.

Google Scholar

[36] S.R. Batakurki, V. Adimule, M. M. Pai, E. Ahmed and P. Kendrekar, Synthesis of Cs-Ag/Fe2O3 Nanoparticles Using Vitis labrusca Rachis Extract as Green Hybrid Nanocatalyst for the Reduction of Arylnitro Compounds. Top Catal (2022)

DOI: 10.1007/s11244-022-01593-7

Google Scholar

[37] V. Adimule, B.C. Yallur, M.M. Pai, S. R. Batakurki, S. S. Nandi, Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Top Catal (2022)

DOI: 10.1007/s11244-022-01672-9

Google Scholar

[38] K.P. Shwetha, S.G. Divakara, M.K.S. Kamath, T. Gupta, Synthesis and electrochemical characterization of mesoporous graphitic carbon nitride for super capacitor applications, Materials Today: Proceedings 2023 (in press).

DOI: 10.1016/j.matpr.2023.01.049

Google Scholar

[39] Shashanka Rajendrachari, Bahaddureghatta E. Kumara Swamy, Sathish Reddy, Debasis Chaira, Synthesis of Silver Nanoparticles and their Applications Anal. Bioanal. Electrochem. 5 (2013) 455–466.

Google Scholar

[40] R. Shashanka, Y. Kamacı, R. Taş, Y. Ceylan, A.S. Bülbül, O. Uzun, A.C. Karaoglanli, Antimicrobial investigation of CuO and ZnO nanoparticles prepared by a rapid combustion method, Physical Chemistry Research, 7(4) (2019) 799-812.

Google Scholar

[41] D. G. Wang, Z. Liang, S. Gao, C. Qu, R. Zou, Metal-organic framework-based materials for hybrid supercapacitor application, Coordination Chemistry Reviews, 404 (2020) 213093.

DOI: 10.1016/j.ccr.2019.213093

Google Scholar

[42] Z. Wang, Y. Zhong, N. C. Wei, L. Jiang and H. Liu. Metal-Organic Framework-Based Supercapacitors. Journal of The Electrochemical Society. 169 (2022) 010516

DOI: 10.1149/1945-7111/ac4841

Google Scholar

[43] M. Maya Pai, B.C. Yallur, S. R. Batakurki, V. Adimule. Synthesis and Catalytic Activity of Heterogenous Hybrid Nanocatalyst of Copper/Palladium MOF, RIT 62-Cu/Pd for Stille Polycondensation of Thieno[2,3-b]pyrrol-5-One Derivatives. Top Catal (2022).

DOI: 10.1007/s11244-022-01618-1

Google Scholar

[44] M. Challa, B.C. Yallur, M.R. Ambika, and V. Adimule. "Influence of Nano Particles on Optical Properties of Cu-MOFs." Advanced Materials Research. Trans Tech Publications, Ltd., (2022).

DOI: 10.4028/p-vn4hd4

Google Scholar

[45] Y. Dai, C. Liu, Y. Bai, Q. Kong and H. Pang. Framework materials for supercapacitors. Nanotechnology Reviews, 11(1) (2022) 1005-1046.

DOI: 10.1515/ntrev-2022-0042

Google Scholar

[46] M.A. Tahir, N. Arshad and M. Akram, M. Recent advances in metal organic framework (MOF) as electrode material for super capacitor: A mini review. Journal of Energy Storage, 47 (2021) 103530.

DOI: 10.1016/j.est.2021.103530

Google Scholar

[47] V. Adimule, N. Santosh, B.C. Yallur, B. Debdas and A.H. Jagadeesha, Enhanced photoluminescence properties of Gd (x–1) SrxO: CdO nanocores and their study of optical, structural, and morphological characteristics. Mater Today Chem, 20(3), (2021) 100438.

DOI: 10.1016/j.mtchem.2021.100438

Google Scholar

[48] V. Adimule, S.S. Nandi, B.C. Yallur. Devices and Sensors Based on Additively Manufactured Shape-Memory of Hybrid Nanocomposites. In: Maurya, M.R., Sadasivuni, K.K., Cabibihan, JJ., Ahmad, S., Kazim, S. (eds) Shape Memory Composites Based on Polymers and Metals for 4D Printing. Springer, Cham. (2022)

DOI: 10.1007/978-3-030-94114-7_15

Google Scholar

[49] V. Adimule, S.S. Nandi, S.S Kerur, S. A. Khadapure & S. Chinnam Recent Advances in the One-Pot Synthesis of Coumarin Derivatives from Different Starting Materials Using Nanoparticles: A Review. Top Catal (2022)

DOI: 10.1007/s11244-022-01571-z

Google Scholar

[50] T. Wang, J. Lei, Y. Wang, L. Pang, F. Pan, K. J. Chen, H. Wang. Approaches to Enhancing Electrical Conductivity of Pristine Metal–Organic Frameworks for Supercapacitor Applications. Small 18(32) (2022) 2203307.

DOI: 10.1002/smll.202203307

Google Scholar

[51] S.Q. Zheng, S.S. Lim, C.Y. Foo, C.Y. Haw, W.S. Chiu, C.H. Chia and P.S. Khiew. Recent progress on the applications of carbonaceous and metal-organic framework nanomaterials for supercapacitors. Frontiers in Materials, (2021) 500.

DOI: 10.3389/fmats.2021.777149

Google Scholar

[52] P.E. Lokhande, Sahana Kulkarni, Sandip Chakrabarti, H.M. Pathan, Monika Sindhu, Deepak Kumar, Jashanpreet Singh, Anupam Kumar, Yogendra Kumar Mishra, Dana-Cristina Toncu, Mikael Syväjärvi, Ajit Sharma, Ashutosh Tiwari. The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coordination Chemistry Reviews, 473 (2022) 214771.

DOI: 10.1016/j.ccr.2022.214771

Google Scholar

[53] M. V. Fedorov & A. A. Kornyshev. Ionic liquids at electrified interfaces. Chem. Rev. 114 (2014) 2978–3036.

DOI: 10.1021/cr400374x

Google Scholar

[54] C. Merlet, B. Rotenberg, P. A. Madden, P.L. Taberna, P. Simon, Y. Gogotsi and M. Salanne. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Mater. 11 (2012) 306–310.

DOI: 10.1038/nmat3260

Google Scholar

[55] L. Xing, J. Vatamanu, O. Borodin & D. Bedrov. On the atomistic nature of capacitance enhancement generated by ionic liquid electrolyte confined in subnanometer pores. J. Phys. Chem. Lett. 4 (2013) 132–140.

DOI: 10.1021/jz301782f

Google Scholar

[56] D.T. Limmer, C. Merlet, M. Salanne, D. Chandler, P. A. Madden, R. Roij, and B. Rotenberg. Charge fluctuations in nanoscale capacitors. Phys. Rev. Lett. 111 (2013) 106102.

DOI: 10.1103/physrevlett.111.106102

Google Scholar

[57] C. Merlet, D. T. Limmer, M. Salanne, R. Roij, P. A. Madden, D. Chandler, and B. Rotenberg. The electric double layer has a life of its own. J. Phys. Chem. C 118 (2014) 18291–18298.

DOI: 10.1021/jp503224w

Google Scholar

[58] M. A. Gebbie, M. Valtiner, X. Banquy, and J. N. Israelachvili. Ionic liquids behave as dilute electrolyte solutions. Proc. Natl Acad. Sci. USA 110 (2013) 9674–9679.

DOI: 10.1073/pnas.1307871110

Google Scholar

[59] A. A. Lee, D. Vella, S. Perkin, and A. Goriely. Are room-temperature ionic liquids dilute electrolyte? J. Phys. Chem. Lett. 6 (2015) 159–163.

DOI: 10.1021/jz502250z

Google Scholar

[60] H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Phys. Chem. 165 (1853) 211–233.

DOI: 10.1002/andp.18531650603

Google Scholar

[61] L. Eliad, G. Salitra, A. Soffer & D. Aurbach. Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions. J. Phys. Chem. B 105 (2001) 6880–6887.

DOI: 10.1021/jp010086y

Google Scholar

[62] L. Eliad, G. Salitra, A. Soffer & D. Aurbach. On the mechanism of selective electroadsorption in the pores of carbon molecular sieves. Langmuir 21 (2005) 3198–3202.

DOI: 10.1021/la049238h

Google Scholar

[63] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

DOI: 10.1126/science.1132195

Google Scholar

[64] C. Pean, B. Daffos, B. Rotenberg, P. Levitz, M. Haefele, P. L.Taberna, Patrice Simon, and Mathieu Salanne. Confinement, desolvation and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 137 (2015) 12627–12632.

DOI: 10.1021/jacs.5b07416

Google Scholar

[65] Y. He, R. Qiao, J. Vatamanu, O. Borodin, D. Bedrov, J. Huang, and B. G. Sumpter. Importance of ion packing on the dynamics of ionic liquids during micropore charging. J. Phys. Chem. Lett. 7 (2015) 36–42.

DOI: 10.1021/acs.jpclett.5b02378

Google Scholar

[66] M. Toupin, T. Brousse & D. Bélanger. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16 (2004) 3184–3190.

DOI: 10.1021/cm049649j

Google Scholar

[67] J. W. Kim, V. Augustyn & B. Dunn. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv. Energy Mater. 2 (2012) 141–148.

DOI: 10.1002/aenm.201100494

Google Scholar

[68] J. Come, V. Augustyn, J. W. Kim, P. Rozier, P. L. Taberna, P. Gogotsi, J. W. Long, B. Dunn and P. Simon. Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 161 (2014) A718–A725.

DOI: 10.1149/2.040405jes

Google Scholar

[69] V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon & B. Dunn. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Mater. 12 (2013) 518–522.

DOI: 10.1038/nmat3601

Google Scholar

[70] T. Brousse, D. Belanger & J.W. Long. To be or not to be pseudocapacitive? J. Electrochem. Soc. 162 (2015) A5185–A5189

DOI: 10.1149/2.0201505jes

Google Scholar

[71] P. Simon, Y. Gogotsi & B. Dunn. Where do batteries end and supercapacitors begin? Science 343 (2014) 1210–1211.

DOI: 10.1126/science.1249625

Google Scholar

[72] C. Augustyn, P. Simon & B. Dunn. Pseudocapacitive oxide materials for highrate electrochemical energy storage. Energy Environ. Sci. 7 (2014) 1597–1614.

DOI: 10.1039/c3ee44164d

Google Scholar

[73] Y. Rangom, X. Tang & L. F. Nazar. Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance. ACS Nano 9 (2015) 7248–7255.

DOI: 10.1021/acsnano.5b02075

Google Scholar

[74] Y. Zhu, X.Ji, C. Pan, Q. Sun, W. Song, L. Fang, Q. Chena and C. E. Banks. A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy Environ. Sci. 6 (2013) 3665–3675.

DOI: 10.1039/c3ee41776j

Google Scholar

[75] V. Aravindan, J. Gnanaraj, Y. S. Lee & S. Madhavi. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 114 (2014) 11619–11635.

DOI: 10.1021/cr5000915

Google Scholar

[76] K. Naoi, S. Ishimoto, Y. Isobe & S. Aoyagi. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources 195 (2010) 6250–6254.

DOI: 10.1016/j.jpowsour.2009.12.104

Google Scholar

[77] K. Naoi, S. Ishimoto, N. Ogihara, Y. Nakagawa & S. Hatta. Encapsulation of nanodot ruthenium oxide into KB for electrochemical capacitors. J. Electrochem. Soc. 156 (2009) A52–A59.

DOI: 10.1149/1.3021026

Google Scholar

[78] K. Naoi, S. Ishimoto, J. Miyamoto & W. Naoi. Second generation 'nanohybrid supercapacitor': evolution of capacitive energy storage devices. Energy Environ. Sci. 5 (2012) 9363–9373.

DOI: 10.1039/c2ee21675b

Google Scholar

[79] K. Naoi, W. Naoi, S. Aoyagi, J. Miyamoto & T. Kamino. New generation 'nanohybrid supercapacitor'. Acc. Chem. Res. 46 (2013) 1075–1083.

DOI: 10.1021/ar200308h

Google Scholar

[80] X. Xu, J. Yang, Y. Hong, and J. Wang. Nitrate Precursor Driven High Performance Ni/Co-MOF Nanosheets for Supercapacitors. ACS Applied Nano Materials 5 (6) (2022) 8382-8392.

DOI: 10.1021/acsanm.2c01488

Google Scholar

[81] J. Zhang, Y. Li, M. Han, Q. Xia, Q. Chen, M. Chen. Constructing ultra-thin Ni-MOF@NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor. Materials Research Bulletin, 137(2021) 111186.

DOI: 10.1016/j.materresbull.2020.111186

Google Scholar

[82] C. Yang, X. Li, L. Yu, X. Liu, J. Yang and M.A. Wei. New Promising Ni-MOF Superstructure for High-Performance Supercapacitors. Chem. Commun. 56 (2020) 1803–1806.

DOI: 10.1039/c9cc09302h

Google Scholar

[83] X. Hang, Y. Xue, Y. Cheng, M. Du, L. Du, and H. Pang. From Co-MOF to CoNi-MOF to Ni-MOF: A Facile Synthesis of 1D Micro-/Nanomaterials. Inorganic Chemistry 60 (17) (2021) 13168-13176.

DOI: 10.1021/acs.inorgchem.1c01561

Google Scholar

[84] W. Zhang, H. Yin, Z. Yu, X. Jia, J. Liang, G. Li, Y. Li, K. Wang. Facile Synthesis of 4,4'-biphenyl Dicarboxylic Acid-Based Nickel Metal Organic Frameworks with a Tunable Pore Size towards High-Performance Supercapacitors. Nanomaterials (Basel). 12(12) (2022) 2062.

DOI: 10.3390/nano12122062

Google Scholar

[85] M. Z. Iqbal, M. W. Khan, M. Shaheen, S. Siddique, S. Aftab, Evaluation of Redox Active Cu-Mof and Co-Mof as Electrode Materials for Battery-Supercapacitor Type Hybrid Energy Storage Devices (2022)

DOI: 10.2139/ssrn.4148245

Google Scholar

[86] H. Chen, Y. Huo, K Cai, Y. Teng, Controllable preparation and capacitance performance of bimetal Co/Ni-MOF, Synthetic Metals, Volume 276 (2021) 116761.

DOI: 10.1016/j.synthmet.2021.116761

Google Scholar

[87] M. K. Singh, A. K. Gupta, S. Krishnan, N. Guha, S. Marimuthu, D. K. Rai, A new hierarchically porous Cu-MOF composited with rGO as an efficient hybrid supercapacitor electrode material, Journal of Energy Storage, 43 (2021) 103301.

DOI: 10.1016/j.est.2021.103301

Google Scholar

[88] Q. V. Thi, S. A. Patil, P. K. Katkar, I. Rabani, A. S. Patil, J. Ryu, G. Kolekar, N. T. Tung, D. Sohn, Electrochemical performance of zinc-based metal-organic framework with reduced graphene oxide nanocomposite electrodes for supercapacitors, Synthetic Metals, 290 (2022)117155.

DOI: 10.1016/j.synthmet.2022.117155

Google Scholar

[89] B. Ramasubramanian, C. Chinglenthoiba, X. Huiqing, N. Xiping, H. K. Hui, S.Valiyaveettil, S. Ramakrishna, V. Chellappan, Sustainable Fe-MOF carbon nanocomposite electrode for supercapacitor, Surfaces and Interfaces, 34 (2022) 102397.

DOI: 10.1016/j.surfin.2022.102397

Google Scholar

[90] T. Chen, A. Yang, W. Zhang, J. Nie, T. Wang, J. Gong, Y. Wang, Y. Ji, Architecting Nanostructured Co-BTC@GO Composites for Supercapacitor Electrode Application. Nanomaterials (Basel), 12(18) (2022) 3234.

DOI: 10.3390/nano12183234

Google Scholar

[91] R. Sahoo, S. Ghosh, S. Chand, S. C. Pal, T. Kuila, M. C. Das, Highly scalable and pH stable 2D Ni-MOF-based composites for high performance supercapacitor. Composites Part B: Engineering, 245(2022)110174.

DOI: 10.1016/j.compositesb.2022.110174

Google Scholar

[92] R. Srinivasan, E. Elaiyappillai, E.J. Nixon, I. SharmilaLydia, P. M. Johnson. Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors. Inorganica Chimica Acta 502 (2020) 119393.

DOI: 10.1016/j.ica.2019.119393

Google Scholar

[93] K. A. Milakin, N. Gavrilov, I. A. Pašti, Z. Morávková, U. Acharya, C. Unterweger, S. Breitenbach, A. Zhigunov, P. Bober, Polyaniline-metal organic framework (Fe-BTC) composite for electrochemical applications,Polymer, 208(2020) 122945.

DOI: 10.1016/j.polymer.2020.122945

Google Scholar

[94] D. Jiang, C. Wei, Z. Zhu, X. Xu, M. Lu and G. Wang, Preparation of Flower-like Nickel-Based Bimetallic Organic Framework Electrodes for High-Efficiency Hybrid Supercapacitors, Crystals, 11 (2021) 1425.

DOI: 10.3390/cryst11111425

Google Scholar

[95] Q. Wang, C. Han, G. Tang, L. Liu, T Li, Y. Han. Preparation of ZnCo-MOF/PPy/Ag2O ternary composites for high-performance flexible supercapacitors. Journal of Alloys and Compounds, 931(2023)167510.

DOI: 10.1016/j.jallcom.2022.167510

Google Scholar

[96] M. Wang, Y. Ma, J. Ye. Controllable layer-by-layer assembly of metal-organic frameworks/polyaniline membranes for flexible solid-state microsupercapacitors. Journal of Power Sources,474 (2020) 228681

DOI: 10.1016/j.jpowsour.2020.228681

Google Scholar

[97] P. Y. Liu, J. J. Zhao, Z. P. Dong, Z. L. Liu, Y. Q. Wang. Interwoving polyaniline and a metal-organic framework grown in situ for enhanced supercapacitor behaviour. Journal of Alloys and Compounds, 854 (2021) 157181

DOI: 10.1016/j.jallcom.2020.157181

Google Scholar

[98] M. Xu, H. Guo, T. Zhang, J. Zhang, X. Wang, W. Yang. High-performance zeolitic imidazolate frameworks derived three-dimensional Co3S4/polyaniline nanocomposite for supercapacitors. J. Energy Storage.35 (2021) 102303.

DOI: 10.1016/j.est.2021.102303

Google Scholar

[99] S. Xiong, S. Jiang, J. Wang, H. Lin, M. Lin, S. Weng, S. Liu, Y. Jiao, Y. Xu, J. Chen, A high-performance hybrid supercapacitor with NiO derived NiO@Ni-MOF composite electrodes. Electrochimica Acta 340 (2020) 135956.

DOI: 10.1016/j.electacta.2020.135956

Google Scholar

[100] S. Zheng, Q. Li, H. Xue, H. Pang, Q. Xu, A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage, National Science Review, 7 (2) (2020) 305–314.

DOI: 10.1093/nsr/nwz137

Google Scholar

[101] H. Duan, Z. Zhao, J. Lu, W. Hu, Y. Zhang, S. Li, M. Zhang, R. Zhu and H. Pang. When Conductive MOFs Meet MnO2: High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. ACS Appl. Mater. Interfaces 13 (2021) 33083-33090.

DOI: 10.1021/acsami.1c08161

Google Scholar

[102] N. Liu, X. Liu, J. Pan, A new rapid synthesis of hexagonal prism Zn-MOF as a precursor at room temperature for energy storage through pre-ionization strategy, Journal of Colloid and Interface Science, 606 Part 2 (2022) 1364-1373.

DOI: 10.1016/j.jcis.2021.08.105

Google Scholar

[103] T. Deng, X. Shi, W. Zhang, Z. Wang and W. Zheng, In-plane Assembly of Distinctive 2D MOFs with Optimum Supercapacitive Performance, iScience 23 (2020) 101220

DOI: 10.1016/j.isci.2020.101220

Google Scholar

[104] H. M. Yadav, J. D. Park, H. C. Kang, J. Kim and J. J. Lee. Cellulose Nanofiber Composite with Bimetallic Zeolite Imidazole Framework for Electrochemical Supercapacitors, Nanomaterials 11(2) (2021) 395.

DOI: 10.3390/nano11020395

Google Scholar

[105] J. Pokharel, A. Gurung, A.Baniya, W. He, K. Chen, R. Pathak, B. S. Lamsal, N. Ghimire, Y. Zhou, MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode, Electrochimica Acta 394 (2021) 139058.

DOI: 10.1016/j.electacta.2021.139058

Google Scholar

[106] J. Zhang, Y. Li, M. Han, Q. Xia, Q. Chen, M. Chen, Constructing ultra-thin Ni-MOF@NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor, Materials Research Bulletin 137 (2021) 111186.

DOI: 10.1016/j.materresbull.2020.111186

Google Scholar

[107] R. K. Tripathy, A. K. Samantara, P. Mane, B. Chakraborty, J. N. Behera. Cobalt metal organic framework (Co-MOF) derived CoSe2/C hybrid nanostructures for the electrochemical hydrogen evolution reaction supported by DFT studies, New J. Chem., 46 (2022) 2730-2738.

DOI: 10.1039/d1nj05528c

Google Scholar

[108] D. He, Y. Gao, Y. Yao, L. Wu, J. Zhang, Z. H. Huang and M. X. Wang. Asymmetric Supercapacitors Based on Hierarchically Nanoporous Carbon and ZnCo2O4 From a Single Bio-metallic Metal-Organic Frameworks (Zn/Co-MOF), Front. Chem., (2020) Sec. Electrochemistry.

DOI: 10.3389/fchem.2020.00719

Google Scholar

[109] N. Xin, Y. Liu, H. Niu, H. Bai, W. Shi, In-situ construction of metal organic frameworks derived Co/Zn–S sandwiched graphene film as free-standing electrodes for ultra-high energy density supercapacitors. Journal of Power Sources, 451 (2020) 227772.

DOI: 10.1016/j.jpowsour.2020.227772

Google Scholar

[110] L.T. Gong, M. Xu, R.P. Ma, Y. P. Han, H. B. Xu & G. Shi, High-performance supercapacitor based on MOF derived porous NiCo2O4 nanoparticle, Science China Technological Sciences, 63 (2020) 1470–1477.

DOI: 10.1007/s11431-020-1658-7

Google Scholar

[111] V. Shrivastav, S. Sundriyal, U. K. Tiwari, K. H. Kim, A. Deep, Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode, Energy, 235 (2021) 121351.

DOI: 10.1016/j.energy.2021.121351

Google Scholar

[112] Y. Li, H. Xie, J. Li, Y. Yamauchi and J. Henzie, Metal–Organic Framework-Derived CoOx/Carbon Composite Array for High-Performance Supercapacitors, ACS Applied Materials & Interfaces, 13 (35) (2021) 41649-41656.

DOI: 10.1021/acsami.1c10998

Google Scholar

[113] X. X. Liu, Q. He, Y. Wang, J. Wang, Y. Xiang, D J Blackwood, R.Wu, J. S. Chen, MOF-reinforced Co9S8 self-supported nanowire arrays for highly durable and flexible supercapacitor, Electrochimica Acta, 346 (2020) 136201.

DOI: 10.1016/j.electacta.2020.136201

Google Scholar

[114] P. Sun, J. Zhang, J. Huang, L. Wang, P. Wang, C. Cai, M. Lu, Z. Yao, Y. Yang. Bimetallic MOF-derived (CuCo)Se nanoparticles embedded in nitrogen-doped carbon framework with boosted electrochemical performance for hybrid supercapacitor. Materials Research Bulletin 137 (2021) 111196.

DOI: 10.1016/j.materresbull.2020.111196

Google Scholar

[115] X. Yin, H. Li, R. Yuan, J. Lu. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor. Journal of Materials Science & Technology 62 (2021) 60–69.

DOI: 10.1016/j.jmst.2020.05.066

Google Scholar