Computer Modelling of Influence of Crystal Lattice Friction Stress on the Dislocation Annihilation Process

Article Preview

Abstract:

In this paper the effect of lattice friction stress on the process of dislocations annihilation is considered using dislocation dynamics method. It is shown that if dislocations of the opposite sign are located in the area where their own tension is greater than the friction stress, they annihilate. Consideration of this fact allows to connect the microscopic processes of annihilation with evolution of dislocation density in the sample under small external stresses and unloading. The area in which annihilation occurs is calculated to be proportional to the square of the friction stress/shear modulus ratio.It is also shown that the parameter responsible for the rate of dislocation annihilation depends on the cube of the ratio of the friction stress to the shear modulus, because it is inversely proportional to the number of annihilating dislocations and the time in which a dislocation pair annihilates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-43

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U Messerschmidt 2010 Dislocation Dynamics During Plastic Deformation, Springer, 2010.

Google Scholar

[2] S.S. Quek, Z. Wu, Y.W. Zhang and D.J. Srolovitz Polycrystal deformation in a discrete dislocation dynamics framework, Acta materialia 75 (2014) 92-105

DOI: 10.1016/j.actamat.2014.04.063

Google Scholar

[3] K.M. Davoudi and J.J. Vlassak Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study, Journal of Applied Physics 123 (2018) 085302

DOI: 10.1063/1.5013213

Google Scholar

[4] R.B. Sills, W.P. Kuykendall, A. Aghaei and W. Cai Fundamentals of dislocation dynamics simulations Multiscale materials modeling for nanomechanics (Springer, Cham) (2016) 53-87

DOI: 10.1007/978-3-319-33480-6_2

Google Scholar

[5] R.J. Amodeo and N.M. Ghoniem Dislocation dynamics. I. A proposed methodology for deformation micromechanics, Physical Review B 41 (1990) 6958. https://doi.org/10.1103/PhysRevB. 41.6958

DOI: 10.1103/physrevb.41.6958

Google Scholar

[6] J. Segurado, J. LLorca and I. Romero Computational issues in the simulation of two-dimensional discrete dislocation mechanics, Modelling Simul. Mater. Sci. Eng. 15 (2007) 361

DOI: 10.1088/0965-0393/15/4/S04

Google Scholar

[7] S.M. Keralavarma, T. Cagin, A. Arsenlis and A.A. Benzerga Power-law creep from discrete dislocation dynamics, Physical Review Letters 109 (2012) 265504

DOI: 10.1103/PhysRevLett.109.265504

Google Scholar

[8] J. Bai, Q. Bai, X. He and Q. Zhang Dislocation dynamic simulation of dislocation pattern evolution in the early fatigue stages of aluminium single crystal, International Journal of Nanomanufacturing 13 (2017) 12-22.

DOI: 10.1504/ijnm.2017.10003132

Google Scholar

[9] M. Jiang Investigation of grain size and shape effects on crystal plasticity by dislocation dynamics simulations Doctoral dissertation Université Paris Saclay (COmUE), 2019.

Google Scholar

[10] S. Queyreau, G. Monnet and B. Devincre Slip systems interactions in α-iron determined by dislocation dynamics simulations, International Journal of Plasticity 25 (2009) 361-377

DOI: 10.1016/j.ijplas.2007.12.009

Google Scholar

[11] M. Jiang, G. Monnet and B. Devincre On the origin of the Hall–Petch law: A 3D-dislocation dynamics simulation investigation, Acta Materialia 209 (2021) 116783

DOI: 10.1016/j.actamat.2021.116783

Google Scholar

[12] J. Durinck, B. Devincre, L. Kubin and P. Cordier Modeling the plastic deformation of olivine by dislocation dynamics simulations, American Mineralogist 92 (2007) 1346-1357

DOI: 10.2138/am.2007.2512

Google Scholar

[13] B. Devincre, L. Kubin and T. Hoc Physical analyses of crystal plasticity by DD simulations, Scripta materialia 54 (2006) 741-746

DOI: 10.1016/j.scriptamat.2005.10.066

Google Scholar

[14] W. Blum Role of Dislocation Annihilation during Steady State Deformation, physica status solidi (b) 45 (1971) 561-571

DOI: 10.1002/pssb.2220450219

Google Scholar

[15] G.A. Malygin Dislocation self-organization processes and crystal plasticity, Physics-Uspekhi 42(9) (1999) 887.

DOI: 10.1070/pu1999v042n09abeh000563

Google Scholar

[16] U.F. Kocks and H. Mecking Physics and phenomenology of strain hardening: the FCC case, Progress in materials science 48 (2003) 171-273.

DOI: 10.1016/s0079-6425(02)00003-8

Google Scholar

[17] O. Skibitzki, M.H. Zoellner, F. Rovaris, M.A. Schubert, Y. Yamamoto, L. Persichetti, L. Di Gaspare, M. De Seta, R. Gatti, F. Montalenti and G. Capellini Reduction of threading dislocation density beyond the saturation limit by optimized reverse grading, Physical Review Materials 4 (2020) 103403

DOI: 10.1103/PhysRevMaterials.4.103403

Google Scholar

[18] H. Mecking and U. F. Kocks Kinetics of flow and strain-hardening, Acta metallurgica 29 (1981) 1865-1875

DOI: 10.1016/0001-6160(81)90112-7

Google Scholar

[19] J.P. Hirth and J. Lothe 1982 Theory of Dislocations, 2nd ed. Wiley, New York, 1982.

Google Scholar

[20] G.A. Malygin Kineticheskiy mekhanizm obrazovaniya periodicheskikh dislokatsionnykh struktur, FTT 31.1 (1989) 175/in russian

Google Scholar

[21] G. A. Malygin Kineticheskiy mekhanizm obrazovaniya polos sbrosa pri plasticheskoy deformatsii kristallov, FTT 32.4 (1990) 1102/in russian

Google Scholar

[22] C. Keller and E. Hug Kocks-Mecking analysis of the size effects on the mechanical behavior of nickel polycrystals, International Journal of Plasticity 98 (2017) 106-122

DOI: 10.1016/j.ijplas.2017.07.003

Google Scholar

[23] V. I. Vladimirov and A. E. Romanov Kooperativnyye deformatsionnyye protsessy i lokalizatsiya deformatsii (Kiev: Naukova Dumka) (1989) 101/in russian

Google Scholar

[24] E.I. Galindo-Nava, J. Sietsma and P. E. J. Rivera-Díaz-del-Castillo Dislocation annihilation in plastic deformation: II. Kocks–Mecking Analysis, Acta materialia 60 (2012) 2615-2624

DOI: 10.1016/j.actamat.2012.01.028

Google Scholar

[25] K. Hariharan and F. Barlat Modified Kocks–Mecking–Estrin Model to Account Nonlinear Strain Hardening, Metallurgical and Materials Transactions A 50 (2019) 513-517

DOI: 10.1007/s11661-018-5001-9

Google Scholar

[26] K. Borysovska, V. Slyunyayev, Y. Podrezov, Z. Pakiela and K. Kurzydlowski Influence of the dislocation structure on the crack tip in highly deformed iron, MATERIALS SCIENCE-WROCLAW 23 (2005) 521.

Google Scholar

[27] K. Borysovska and Y. Podrezov Analysis of annihilation conditions of dislocation clusters, Mathematical Models and Computing Experiment in Material Science 7 (2005) 99/in russian

Google Scholar

[28] K. Borysovska, Y. Podrezov and S. Firstov Critical density of dislocations during their rearrangement into polygonization walls, Electron Microscopy and Strength of Materials 25 (2019) 3/in Russian http://www.materials.kiev.ua/article/2896

Google Scholar

[29] K. Borysovska, Y. Podrezov and S. Firstov Dislocation dynamics in the polycrystal in the presence of disclination wall, Electron Microscopy and Strength of Materials 21 (2015) 7/in Russian http://www.materials.kiev.ua/article/1725

Google Scholar

[30] K. Borysovska, Y. Podrezov and S. Firstov , N. Marchenko Modeling of the phenomenon of brittle-plastic transition by the method of dislocation dynamics, Uspihi materializnavstva 4/5 (2022) 25/in Ukrainian

DOI: 10.15407/materials2022.04-05.025

Google Scholar