Optical Studies of TiO2 Nanocomposites with Mg, Zn and Co

Article Preview

Abstract:

TiO2-based photocatalysis has attracted a lot of interest due to its potential to capture solar energy and drive important processes including the breakdown of pollutants and the development of sustainable energy sources. A series of magnesium, zinc, and cobalt nitrate nanocomposite samples with TiO2 semiconductor nanocomposite samples have been successfully produced by employing a simple and very effective combustion technique with the oxidizing gas urea. Prepared pure TiO2 nanoparticle was found to have a bandgap of 3.3 eV and a crystalline size of 57.8 nm. For Co, Mg, and Zn doped TiO2, X-ray diffraction (XRD) studies show cubic, orthorhombic, and tetragonal crystalline structures with crystalline diameters ranging between 37 nm, 46 nm, and 87 nm. Optical study has demonstrated the absorbance, transmittance, and bandgap measurements of Co, Mg, and Zn doped TiO2. The higher provider density brought on by the Brustein-Moss impact is responsible for the bandgap values' shift to higher energies, which vary from 4.43 eV to 5.35 eV. Visiblei light irradiation was used to measure the degradation of Rhodamine-B (RhB) dye; Co, Mg, and Zn doped TiO2 explained high photocatalytic activity, which was thoroughly described. The addition of additional energy levels to the TiO2 bandgap by the dopants results in a wider spectrum of light absorption and more effective use of solar radiation. Here reported the parameters affect how well TiO2 nanoparticles infused with Mg, Zn, and Co perform photocatalysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-34

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Lv, Y., Sun., X. Zhang., X. Lu., and Z. Dong.,. Construction of multi-layered Zn-modified TiO2 coating by ultrasound-auxiliary micro-arc oxidation: Microstructure and biological property. Materials Science and Engineering: C, 131, (2021), 112487.

DOI: 10.1016/j.msec.2021.112487

Google Scholar

[2] M.A. Kumar., B. Abebe., H.P. Nagaswarupa., H.A. Murthy., C.R. Ravikumar., and F.K Sabir,. Enhanced photocatalytic and electrochemical performance of TiO2-Fe2O3 nanocomposite: Its applications in dye decolorization and as supercapacitors. Scientific Reports, 10(1), (2020), p.1249.

DOI: 10.1038/s41598-020-58110-7

Google Scholar

[3] W. Fang., F. Dappozze., C. Guillard., Y. Zhou., M. Xing., S. Mishra., S. Daniele and J. Zhang.,. Zn-assisted TiO2–x photocatalyst with efficient charge separation for enhanced Photocatalytic activities. The Journal of Physical Chemistry C, 121(32), (2017), pp.17068-17076.

DOI: 10.1021/acs.jpcc.7b03724

Google Scholar

[4] J.C. Costa., R.J. Taveira., C.F. Lima., A. Mendes and L.M. Santos, Optical band gaps of organic semiconductor materials. Optical Materials, 58, (2016), pp.51-60.

DOI: 10.1016/j.optmat.2016.03.041

Google Scholar

[5] Y. Yu., Z. Yan., S.Bi., Z. Ma and J. Qian, Investigation of heat treatment and subsequently surface modification by nano-TiO2 on Mg–Zn–Ca–Mn bio-magnesium alloy. Materials Express, 9(8), (2019), pp.931-939.

DOI: 10.1166/mex.2019.1597

Google Scholar

[6] J. Zhang., D. Fu., S. Wang., R. Hao., and Y. Xie., Photocatalytic removal of chromium (VI) and sulfite using transition metal (Cu, Fe, Zn) doped TiO2 driven by visible light: Feasibility, mechanism and kinetics. Journal of Industrial and Engineering Chemistry, 80, (2019), pp.23-32

DOI: 10.1016/j.jiec.2019.07.027

Google Scholar

[7] M.C. Wu., S.H. Chan., M.H. Jao and W.F. Su., Enhanced short-circuit current density of perovskite solar cells using Zn-doped TiO2 as the electron transport layer. Solar Energy Materials and Solar Cells, 157, (2016), pp.447-453

DOI: 10.1016/j.solmat.2016.07.003

Google Scholar

[8] I. Elmehasseb., S. Kandil., and K. Elgendy., Advanced visible-light applications utilizing modified Zn-doped TiO2 nanoparticles via non-metal in situ dual doping for wastewater detoxification. Optik, 213, (2020), p.164654.

DOI: 10.1016/j.ijleo.2020.164654

Google Scholar

[9] I. Abdelfattah, and A.M. El-Shamy., A comparative study for optimizing photocatalytic activity of TiO2-based composites with ZrO2, ZnO, Ta2O5, SnO, Fe2O3, and CuO additives. Scientific Reports, 14(1), (2024), p.27175.

DOI: 10.1038/s41598-024-77752-5

Google Scholar

[10] [A.Z. Johannes., R.K. Pingak and M. Bukit, April. Tauc Plot Software: Calculating energy gap values of organic materials based on Ultraviolet-Visible absorbance spectrum. In IOP conference series: materials science and engineering , 823, 1,(2020), p.012030. IOP Publishing

DOI: 10.1088/1757-899x/823/1/012030

Google Scholar

[11] Ai. Xiaoqian, Yan. Shun, Ma. Ligang, Morphologically controllable hierarchical ZnO microspheres catalyst and its photocatalytic activity, Nanomaterials 12, (2022), 1124.

DOI: 10.3390/nano12071124

Google Scholar

[12] K. Qi., X. Xing., A. Zada., M. Li., Q. Wang., S.Y. Liu., and G. Wang, Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: experimental and DFT studies. Ceramics International, 46(2), (2020), 1494-1502.

DOI: 10.1016/j.ceramint.2019.09.116

Google Scholar

[13] M. Mohamed, M. Jayiz., A.S. Alshammari, A. Sedky and Z.R. Khan, Comparative study on structural, morphological, optical and photocatalytic properties of Mn3O4/ZnO, CuO/ZnO and Fe2O3/ZnO nanocomposites. Optical and Quantum Electronics, 55(6), (2023), p.562.

DOI: 10.1007/s11082-023-04858-x

Google Scholar

[14] P. Kumar., A. Kumar., M.A. Rizvi., S.K. Moosvi., V. Krishnan., M.M. Duvenhage., W.D. Roos, and H.C. Swart., Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Applied Surface Science, 514, (2020), p.145930.

DOI: 10.1016/j.apsusc.2020.145930

Google Scholar

[15] S.V. Alagarsamy., M. Ravichandran and H. Saravanan., Development of a mathematical model for predicting the electric erosion behavior of TiO2-filled Al-Zn-Mg-Cu (AA7075) alloy composite using the RSM-DFA method. Journal of Advanced Manufacturing Systems, 20(01), (2021), pp.1-26.

DOI: 10.1142/s0219686721500013

Google Scholar

[16] Z. Liu., H. Yan., K. Tu and J. Xiong., Microstructure and tribological properties of Al 7075-TiO2@ CNTs composites under T6 treatment. Vacuum, 199,( 2022), p.110949.

DOI: 10.1016/j.vacuum.2022.110949

Google Scholar

[17] M. Galedari., M.M. Ghazi and S.R. Mirmasoomi., Novel visible-driven Ag2O/Fe2O3/TiO2 nano sized hetero-structured photocatalyst: Synthesis, characterization and photo-degradation of tetracycline. Chemical Engineering Research and Design, 170, (2021), pp.248-255.

DOI: 10.1016/j.cherd.2021.04.008

Google Scholar

[18] P. Makuła., M. Pacia and W. Macyk., How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. The journal of physical chemistry letters, 9(23), (2018), pp.6814-6817.

DOI: 10.1021/acs.jpclett.8b02892

Google Scholar

[19] N. Sangiorgi., L.Aversa., R.Tatti., R.Verucch and A. Sanson., Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Optical Materials, 64, (2017), pp.18-25..

DOI: 10.1016/j.optmat.2016.11.014

Google Scholar

[20] D. Pallotti, L. Passoni, P. Maddalena, F. Fonzo, S. Lettieri, Photoluminescence Mechanisms in Anatase and Rutile TiO2, J. Physical Chemistry C. 121, (2017), 9011–9021.

DOI: 10.1021/acs.jpcc.7b00321

Google Scholar

[21] L.Y. Qiao., F.Y. Xie., M.H. Xie., C.H. Gong., W.L. Wang and J.C. Gao., Characterization and photoelectrochemical performance of Zn-doped TiO2 films by sol–gel method. Transactions of Nonferrous Metals Society of China, 26(8),(2016) pp.2109-2116.

DOI: 10.1016/s1003-6326(16)64325-x

Google Scholar

[22] P. Jansanthea., N. Inyai., W. Chomkitichai., J. Ketwaraporn., P. Ubolsook., C. Wansao., A. Wanaek., A. Wannawek., S. Kuimalee and P. Pookmanee, Green synthesis of CuO/Fe2O3/ZnO ternary composite photocatalyst using grape extract for enhanced photodegradation of environmental organic pollutant. Chemosphere, 351, (2024), p.141212.

DOI: 10.1016/j.chemosphere.2024.141212

Google Scholar

[23] H. Tedla., M. Goddati., E.B. Wondemagegnehu., L.T. Tufa., A. Mekonnen and J. Lee, Phytoextract-assisted synthesis of Fe2O3/MgO nanocomposites for efficient photocatalytic degradation of gentian violet. Frontiers in Environmental Chemistry, 5, (2024), p.1323752.

DOI: 10.3389/fenvc.2024.1323752

Google Scholar

[24] [D. Li., Z. Liang., W. Zhang., S. Dai and C. Zhang, Preparation and photocatalytic performance of TiO2-RGO-CuO/Fe2O3 ternary composite photocatalyst by solvothermal method. Materials Research Express, 8(1),( 2021), p.015025.

DOI: 10.1088/2053-1591/abdc3b

Google Scholar

[25] E.M. Bayan., T.G. Lupeiko., L.E. Pustovaya., M.G. Volkova., V.V. Butova and A.A. Guda, Zn–F co-doped TiO2 nanomaterials: Synthesis, structure and photocatalytic activity. Journal of Alloys and Compounds, 822,( 2020), p.153662.

DOI: 10.1016/j.jallcom.2020.153662

Google Scholar

[26] L. Usgodaarachchi., C. Thambiliyagodage., R. Wijesekera., S.Vigneswaran and M. Kandanapitiye, Fabrication of TiO2 spheres and a visible light active α-Fe2O3/TiO2-rutile/TiO2-anatase heterogeneous photocatalyst from natural ilmenite. ACS omega, 7(31), (2022), pp.27617-27637.

DOI: 10.1021/acsomega.2c03262

Google Scholar

[27] R.B. Ayed., M. Ajili., Y. Piñeiro., B. Alhalaili., J. Rivas., R. Vidu., S. Kouass and N.K. Turki, Effect of Mg doping on the physical properties of Fe2O3 thin films for photocatalytic devices. Nanomaterials, 12(7), (2022), 1179.

DOI: 10.3390/nano12071179

Google Scholar