[1]
S. Lv, Y., Sun., X. Zhang., X. Lu., and Z. Dong.,. Construction of multi-layered Zn-modified TiO2 coating by ultrasound-auxiliary micro-arc oxidation: Microstructure and biological property. Materials Science and Engineering: C, 131, (2021), 112487.
DOI: 10.1016/j.msec.2021.112487
Google Scholar
[2]
M.A. Kumar., B. Abebe., H.P. Nagaswarupa., H.A. Murthy., C.R. Ravikumar., and F.K Sabir,. Enhanced photocatalytic and electrochemical performance of TiO2-Fe2O3 nanocomposite: Its applications in dye decolorization and as supercapacitors. Scientific Reports, 10(1), (2020), p.1249.
DOI: 10.1038/s41598-020-58110-7
Google Scholar
[3]
W. Fang., F. Dappozze., C. Guillard., Y. Zhou., M. Xing., S. Mishra., S. Daniele and J. Zhang.,. Zn-assisted TiO2–x photocatalyst with efficient charge separation for enhanced Photocatalytic activities. The Journal of Physical Chemistry C, 121(32), (2017), pp.17068-17076.
DOI: 10.1021/acs.jpcc.7b03724
Google Scholar
[4]
J.C. Costa., R.J. Taveira., C.F. Lima., A. Mendes and L.M. Santos, Optical band gaps of organic semiconductor materials. Optical Materials, 58, (2016), pp.51-60.
DOI: 10.1016/j.optmat.2016.03.041
Google Scholar
[5]
Y. Yu., Z. Yan., S.Bi., Z. Ma and J. Qian, Investigation of heat treatment and subsequently surface modification by nano-TiO2 on Mg–Zn–Ca–Mn bio-magnesium alloy. Materials Express, 9(8), (2019), pp.931-939.
DOI: 10.1166/mex.2019.1597
Google Scholar
[6]
J. Zhang., D. Fu., S. Wang., R. Hao., and Y. Xie., Photocatalytic removal of chromium (VI) and sulfite using transition metal (Cu, Fe, Zn) doped TiO2 driven by visible light: Feasibility, mechanism and kinetics. Journal of Industrial and Engineering Chemistry, 80, (2019), pp.23-32
DOI: 10.1016/j.jiec.2019.07.027
Google Scholar
[7]
M.C. Wu., S.H. Chan., M.H. Jao and W.F. Su., Enhanced short-circuit current density of perovskite solar cells using Zn-doped TiO2 as the electron transport layer. Solar Energy Materials and Solar Cells, 157, (2016), pp.447-453
DOI: 10.1016/j.solmat.2016.07.003
Google Scholar
[8]
I. Elmehasseb., S. Kandil., and K. Elgendy., Advanced visible-light applications utilizing modified Zn-doped TiO2 nanoparticles via non-metal in situ dual doping for wastewater detoxification. Optik, 213, (2020), p.164654.
DOI: 10.1016/j.ijleo.2020.164654
Google Scholar
[9]
I. Abdelfattah, and A.M. El-Shamy., A comparative study for optimizing photocatalytic activity of TiO2-based composites with ZrO2, ZnO, Ta2O5, SnO, Fe2O3, and CuO additives. Scientific Reports, 14(1), (2024), p.27175.
DOI: 10.1038/s41598-024-77752-5
Google Scholar
[10]
[A.Z. Johannes., R.K. Pingak and M. Bukit, April. Tauc Plot Software: Calculating energy gap values of organic materials based on Ultraviolet-Visible absorbance spectrum. In IOP conference series: materials science and engineering , 823, 1,(2020), p.012030. IOP Publishing
DOI: 10.1088/1757-899x/823/1/012030
Google Scholar
[11]
Ai. Xiaoqian, Yan. Shun, Ma. Ligang, Morphologically controllable hierarchical ZnO microspheres catalyst and its photocatalytic activity, Nanomaterials 12, (2022), 1124.
DOI: 10.3390/nano12071124
Google Scholar
[12]
K. Qi., X. Xing., A. Zada., M. Li., Q. Wang., S.Y. Liu., and G. Wang, Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: experimental and DFT studies. Ceramics International, 46(2), (2020), 1494-1502.
DOI: 10.1016/j.ceramint.2019.09.116
Google Scholar
[13]
M. Mohamed, M. Jayiz., A.S. Alshammari, A. Sedky and Z.R. Khan, Comparative study on structural, morphological, optical and photocatalytic properties of Mn3O4/ZnO, CuO/ZnO and Fe2O3/ZnO nanocomposites. Optical and Quantum Electronics, 55(6), (2023), p.562.
DOI: 10.1007/s11082-023-04858-x
Google Scholar
[14]
P. Kumar., A. Kumar., M.A. Rizvi., S.K. Moosvi., V. Krishnan., M.M. Duvenhage., W.D. Roos, and H.C. Swart., Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Applied Surface Science, 514, (2020), p.145930.
DOI: 10.1016/j.apsusc.2020.145930
Google Scholar
[15]
S.V. Alagarsamy., M. Ravichandran and H. Saravanan., Development of a mathematical model for predicting the electric erosion behavior of TiO2-filled Al-Zn-Mg-Cu (AA7075) alloy composite using the RSM-DFA method. Journal of Advanced Manufacturing Systems, 20(01), (2021), pp.1-26.
DOI: 10.1142/s0219686721500013
Google Scholar
[16]
Z. Liu., H. Yan., K. Tu and J. Xiong., Microstructure and tribological properties of Al 7075-TiO2@ CNTs composites under T6 treatment. Vacuum, 199,( 2022), p.110949.
DOI: 10.1016/j.vacuum.2022.110949
Google Scholar
[17]
M. Galedari., M.M. Ghazi and S.R. Mirmasoomi., Novel visible-driven Ag2O/Fe2O3/TiO2 nano sized hetero-structured photocatalyst: Synthesis, characterization and photo-degradation of tetracycline. Chemical Engineering Research and Design, 170, (2021), pp.248-255.
DOI: 10.1016/j.cherd.2021.04.008
Google Scholar
[18]
P. Makuła., M. Pacia and W. Macyk., How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. The journal of physical chemistry letters, 9(23), (2018), pp.6814-6817.
DOI: 10.1021/acs.jpclett.8b02892
Google Scholar
[19]
N. Sangiorgi., L.Aversa., R.Tatti., R.Verucch and A. Sanson., Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Optical Materials, 64, (2017), pp.18-25..
DOI: 10.1016/j.optmat.2016.11.014
Google Scholar
[20]
D. Pallotti, L. Passoni, P. Maddalena, F. Fonzo, S. Lettieri, Photoluminescence Mechanisms in Anatase and Rutile TiO2, J. Physical Chemistry C. 121, (2017), 9011–9021.
DOI: 10.1021/acs.jpcc.7b00321
Google Scholar
[21]
L.Y. Qiao., F.Y. Xie., M.H. Xie., C.H. Gong., W.L. Wang and J.C. Gao., Characterization and photoelectrochemical performance of Zn-doped TiO2 films by sol–gel method. Transactions of Nonferrous Metals Society of China, 26(8),(2016) pp.2109-2116.
DOI: 10.1016/s1003-6326(16)64325-x
Google Scholar
[22]
P. Jansanthea., N. Inyai., W. Chomkitichai., J. Ketwaraporn., P. Ubolsook., C. Wansao., A. Wanaek., A. Wannawek., S. Kuimalee and P. Pookmanee, Green synthesis of CuO/Fe2O3/ZnO ternary composite photocatalyst using grape extract for enhanced photodegradation of environmental organic pollutant. Chemosphere, 351, (2024), p.141212.
DOI: 10.1016/j.chemosphere.2024.141212
Google Scholar
[23]
H. Tedla., M. Goddati., E.B. Wondemagegnehu., L.T. Tufa., A. Mekonnen and J. Lee, Phytoextract-assisted synthesis of Fe2O3/MgO nanocomposites for efficient photocatalytic degradation of gentian violet. Frontiers in Environmental Chemistry, 5, (2024), p.1323752.
DOI: 10.3389/fenvc.2024.1323752
Google Scholar
[24]
[D. Li., Z. Liang., W. Zhang., S. Dai and C. Zhang, Preparation and photocatalytic performance of TiO2-RGO-CuO/Fe2O3 ternary composite photocatalyst by solvothermal method. Materials Research Express, 8(1),( 2021), p.015025.
DOI: 10.1088/2053-1591/abdc3b
Google Scholar
[25]
E.M. Bayan., T.G. Lupeiko., L.E. Pustovaya., M.G. Volkova., V.V. Butova and A.A. Guda, Zn–F co-doped TiO2 nanomaterials: Synthesis, structure and photocatalytic activity. Journal of Alloys and Compounds, 822,( 2020), p.153662.
DOI: 10.1016/j.jallcom.2020.153662
Google Scholar
[26]
L. Usgodaarachchi., C. Thambiliyagodage., R. Wijesekera., S.Vigneswaran and M. Kandanapitiye, Fabrication of TiO2 spheres and a visible light active α-Fe2O3/TiO2-rutile/TiO2-anatase heterogeneous photocatalyst from natural ilmenite. ACS omega, 7(31), (2022), pp.27617-27637.
DOI: 10.1021/acsomega.2c03262
Google Scholar
[27]
R.B. Ayed., M. Ajili., Y. Piñeiro., B. Alhalaili., J. Rivas., R. Vidu., S. Kouass and N.K. Turki, Effect of Mg doping on the physical properties of Fe2O3 thin films for photocatalytic devices. Nanomaterials, 12(7), (2022), 1179.
DOI: 10.3390/nano12071179
Google Scholar