[1]
Wawrzyniak, J. (2023). Advancements in improving selectivity of metal oxide semiconductor gas sensors opening new perspectives for their application in food industry. Sensors, 23(23), 9548.
DOI: 10.3390/s23239548
Google Scholar
[2]
Isaac, N. A., Pikaar, I., & Biskos, G. (2022). Metal oxide semiconducting nanomaterials for air quality gas sensors: operating principles, performance, and synthesis techniques. Microchimica Acta, 189(5), 196.
DOI: 10.1007/s00604-022-05254-0
Google Scholar
[3]
Ma, Y., Wei, Y., Kong, M., Li, R., Yan, D., Wang, D. & Liu, R. (2024) Effect of sintering temperature on microstructure and electrical properties of Na0. 5Bi0. 47Sr0. 02TiO3-δ ceramics. Materials Research Express, 11(5), 055502.
DOI: 10.1088/2053-1591/ad425e
Google Scholar
[4]
Praveen, H. and Chandran, V.G. (2023) Effects of doping nickel oxide in dilelectric property and electrical conductivity of poly (O-toluidine). Journal of Materials Science: Materials in Electronics, 34(18), 1446.
DOI: 10.1007/s10854-023-10884-y
Google Scholar
[5]
Abdullah, J. A. A., Jiménez-Rosado, M., Guerrero, A., & Romero, A. (2023). Effect of calcination temperature and time on the synthesis of iron oxide nanoparticles: Green vs. chemical method. Materials, 16(5), 1798.
DOI: 10.3390/ma16051798
Google Scholar
[6]
Eom, N., Messing, M. E., Johansson, J., & Deppert, K. (2021). Sintering mechanism of core@ shell metal@ metal oxide nanoparticles. The Journal of Physical Chemistry C, 125(29), 16220-16227.
DOI: 10.1021/acs.jpcc.1c03598
Google Scholar
[7]
Sharma, S., Chauhan, M. S., Chauhan, S., & Kumar, S. (2025). Effect of sintering temperature on structural and photocatalytic properties of zinc oxide nanoparticles. Next Materials, 7, 100367.
DOI: 10.1016/j.nxmate.2024.100367
Google Scholar
[8]
Sendi, R. K., & Mahmud, S. (2012). Impact of sintering temperature on the structural, electrical, and optical properties of doped ZnO nanoparticle-based discs. Applied surface science, 261, 128-136.
DOI: 10.1016/j.apsusc.2012.07.115
Google Scholar
[9]
Lee, K., Sahu, M., Hajra, S., Mohanta, K., & Kim, H. J. (2021). Effect of sintering temperature on the electrical and gas sensing properties of tin oxide powders. Ceramics International, 47(16), 22794-22800.
DOI: 10.1016/j.ceramint.2021.04.298
Google Scholar
[10]
Lumley, R. N., Sercombe, T. B., & Schaffer, G. M. (1999). Surface oxide and the role of magnesium during the sintering of aluminum. Metallurgical and Materials Transactions A, 30, 457-463.
DOI: 10.1007/s11661-999-0335-y
Google Scholar
[11]
atil, A. S., Patil, A. V., Dighavkar, C. G., Adole, V. A., & Tupe, U. J. (2022). Synthesis techniques and applications of rare earth metal oxides semiconductors: A review. Chemical Physics Letters, 796, 139555.
DOI: 10.1016/j.cplett.2022.139555
Google Scholar
[12]
Pathapati, S. V. S. H., Free, M. L., & Sarswat, P. K. (2023). A comparative study on recent developments for individual rare earth elements separation. Processes, 11(7), 2070.
DOI: 10.3390/pr11072070
Google Scholar
[13]
Ismail, N. A., Aziz, M. A. A., Yunus, M. Y. M., & Hisyam, A. (2019). Selection of extractant in rare earth solvent extraction system: A review. Int. J. Recent Technol. Eng, 8(1), 728-743.
Google Scholar
[14]
Traina, C. A., & Schwartz, J. (2007). Surface modification of Y2O3 nanoparticles. Langmuir, 23(18), 9158-9161.
DOI: 10.1021/la701653v
Google Scholar
[15]
Iqbal, T., Khan, M. A. R., & Tahir, H. M. (2024). Green synthesis of yttrium oxide (Y2O3) nanoparticles by Agathosma Betulina leaf extract: Structural, optical and antimicrobial properties. International Journal of Modern Physics B, 38(21), 2450278.
DOI: 10.1142/s0217979224502783
Google Scholar
[16]
Huang, H., Xu, G. Q., Chin, W. S., Gan, L. M., & Chew, C. H. (2002). Synthesis and characterization of Eu: Y2O3 nanoparticles. Nanotechnology, 13(3), 318.
Google Scholar
[17]
Srinivasan, R., Yogamalar, R., Vinu, A., Ariga, K., & Bose, A. C. (2009). Structural and optical characterization of samarium doped yttrium oxide nanoparticles. Journal of Nanoscience and Nanotechnology, 9(11), 6747-6752.
DOI: 10.1166/jnn.2009.1467
Google Scholar
[18]
Mudavakkat, V. H., Atuchin, V. V., Kruchinin, V. N., Kayani, A., & Ramana, C. V. (2012). Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films. Optical Materials, 34(5), 893-900.
DOI: 10.1016/j.optmat.2011.11.027
Google Scholar
[19]
Gkika, D. A., Chalaris, M., & Kyzas, G. Z. (2024). Review of Methods for Obtaining Rare Earth Elements from Recycling and Their Impact on the Environment and Human Health. Processes, 12(6), 1235.
DOI: 10.3390/pr12061235
Google Scholar
[20]
Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285-1303.
DOI: 10.1016/j.gsf.2018.12.005
Google Scholar
[21]
Hajizadeh-Oghaz, M., Razavi, R. S., Barekat, M., Naderi, M., Malekzadeh, S., & Rezazadeh, M. (2016). Synthesis and characterization of Y 2 O 3 nanoparticles by sol–gel process for transparent ceramics applications. Journal of Sol-Gel Science and Technology, 78, 682-691.
DOI: 10.1007/s10971-016-3986-3
Google Scholar
[22]
Chen, Z. S., Gong, W. P., Chen, T. F., & Li, S. L. (2011). Synthesis and characterization of pyrochlore-type yttrium titanate nanoparticles by modified sol–gel method. Bulletin of Materials Science, 34, 429-434.
DOI: 10.1007/s12034-011-0116-2
Google Scholar
[23]
Kamble, V. S., Patil, S. S., Khairnar, S. L., Patil, D. K., Kamble, S. S., CHILATE, S. M., & pawara, J. M. (2023). " Synthesis, Characterization, and Applications of Y 2 O 3 Nanoparticles Synthesized via, Thermal Decomposition of the [Y (Cup) 2 (Gly). 2H 2 O] Complex". Oriental Journal of Chemistry, 39(6).
DOI: 10.13005/ojc/390630
Google Scholar
[24]
Kannan, S. K., & Sundrarajan, M. (2015). Biosynthesis of Yttrium oxide nanoparticles using Acalypha indica leaf extract. Bulletin of Materials Science, 38, 945-950.
DOI: 10.1007/s12034-015-0927-7
Google Scholar
[25]
Rajakumar, G., Mao, L., Bao, T., Wen, W., Wang, S., Gomathi, & Zhang, X. (2021). Yttrium oxide nanoparticle synthesis: an overview of methods of preparation and biomedical applications. Applied Sciences, 11(5), 2172.
DOI: 10.3390/app11052172
Google Scholar
[26]
Rani, N., & Jaggi, N. (2020). Effect of reaction temperature on the structural and electronic properties of stannic oxide nanostructures. Bulletin of Materials Science, 43(1), 146.
DOI: 10.1007/s12034-020-02141-3
Google Scholar
[27]
Shinde, V. S., Kapadnis, K. H., Sawant, C. P., Koli, P. B., & Patil, R. P. (2020). Screen print fabricated In 3+ decorated perovskite lanthanum chromium oxide (LaCrO 3) thick film sensors for selective detection of volatile petrol vapors. Journal of Inorganic and Organometallic Polymers and Materials, 30, 5118-5132.
DOI: 10.1007/s10904-020-01660-0
Google Scholar
[28]
Singh, R. D., Koli, P. B., Jagdale, B. S., & Patil, A. V. (2019). Effect of firing temperature on structural and electrical parameters of synthesized CeO 2 thick films. SN Applied Sciences, 1, 1-9.
DOI: 10.1007/s42452-019-0246-5
Google Scholar
[29]
Tupe, U. J., Zambare, M. S., Patil, A. V., & Koli, P. B. (2020). The binary oxide NiO-CuO nanocomposite based thick film sensor for the acute detection of Hydrogen Sulphide gas vapours. Material Science Research India, 17(3), 260-269.
DOI: 10.13005/msri/170308
Google Scholar
[30]
Shinde, R. S., Khairnar, S. D., Patil, M. R., Adole, V. A., Koli, P. B., Deshmane, V. V., ... & Patil, A. V. (2022). Synthesis and characterization of ZnO/CuO nanocomposites as an effective photocatalyst and gas sensor for environmental remediation. Journal of Inorganic and Organometallic Polymers and Materials, 1-22.
DOI: 10.1007/s10904-021-02178-9
Google Scholar
[31]
Selvakumar, D., Dharmaraj, N., Kadirvelu, K., Kumar, N. S., & Padaki, V. C. (2014). Effect of sintering temperature on structural and optical properties of indium (III) oxide nanoparticles prepared with Triton X-100 by hydrothermal method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 335-339.
DOI: 10.1016/j.saa.2014.05.074
Google Scholar
[32]
Kannan, Y. B., Saravanan, R., Srinivasan, N., & Ismail, I. (2017). Sintering effect on structural, magnetic and optical properties of Ni0. 5Zn0. 5Fe2O4 ferrite nano particles. Journal of Magnetism and Magnetic Materials, 423, 217-225.
DOI: 10.1016/j.jmmm.2016.09.038
Google Scholar
[33]
Zhao, Y., Xu, L., Guo, M., Li, Z., Xu, Z., Ye, J., Li, W. and Wei, S. (2022) Effects of calcination temperature on grain growth and phase transformation of nano-zirconia with different crystal forms prepared by hydrothermal method. Journal of Materials Research and Technology, 19, 4003-4017.
DOI: 10.1016/j.jmrt.2022.06.137
Google Scholar
[34]
Thakur, P., Sharma, R., Sharma, V., & Sharma, P. (2017). Structural and optical properties of Mn0. 5Zn0. 5Fe2O4 nano ferrites: effect of sintering temperature. Materials Chemistry and Physics, 193, 285-289.
DOI: 10.1016/j.matchemphys.2017.02.043
Google Scholar
[35]
Horti, N. C., Kamatagi, M. D., Nataraj, S. K., Wari, M. N., & Inamdar, S. R. (2020). Structural and optical properties of zirconium oxide (ZrO2) nanoparticles: effect of calcination temperature. Nano Express, 1(1), 010022.
DOI: 10.1088/2632-959x/ab8684
Google Scholar
[36]
Damyanova, S., Shtereva, I., Pawelec, B., Mihaylov, L., & Fierro, J. L. G. (2020). Characterization of none and yttrium-modified Ni-based catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 278, 119335.
DOI: 10.1016/j.apcatb.2020.119335
Google Scholar
[37]
Attou, L., Jaber, B., & Ez-Zahraouy, H. (2018). Effect of annealing temperature on structural, optical and photocatalytic properties of CuO nanoparticles. Mediterranean Journal of Chemistry, 7(5), 308-316.
DOI: 10.13171/mjc751911261230la
Google Scholar
[38]
Bokuniaeva, A. O., & Vorokh, A. S. (2019, December). Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. In journal of physics: Conference series (Vol. 1410, No. 1, p.012057). IOP Publishing.
DOI: 10.1088/1742-6596/1410/1/012057
Google Scholar
[39]
Li, Z., Liu, R., & Xu, Y. (2013). Larger effect of sintering temperature than particle size on the photocatalytic activity of anatase TiO2. The Journal of Physical Chemistry C, 117(46), 24360-24367.
DOI: 10.1021/jp407213p
Google Scholar
[40]
Gubicza, J., Nauyoks, S., Balogh, L., Lábár, J., Zerda, T. W., & Ungár, T. (2007). Influence of sintering temperature and pressure on crystallite size and lattice defect structure in nanocrystalline SiC. Journal of materials research, 22(5), 1314-1321.
DOI: 10.1557/jmr.2007.0162
Google Scholar
[41]
Stawarczyk, B., Özcan, M., Hallmann, L., Ender, A., Mehl, A., & Hämmerlet, C. H. (2013). The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clinical oral investigations, 17, 269-274.
DOI: 10.1007/s00784-012-0692-6
Google Scholar
[42]
Gatea, H. A. (2021, March). Impact of sintering temperature on crystallite size and optical properties of SnO2 nanoparticles. In Journal of Physics: Conference Series (Vol. 1829, No. 1, p.012030). IOP Publishing.
DOI: 10.1088/1742-6596/1829/1/012030
Google Scholar
[43]
Zhang, X., Yang, H., & Tang, A. (2008). Optical, electrochemical and hydrophilic properties of Y2O3 doped TiO2 nanocomposite films. The Journal of Physical Chemistry B, 112(51), 16271-16279.
DOI: 10.1021/jp806820p
Google Scholar
[44]
Karthikeyan, S., Dhanakodi, K., Surendhiran, S., Thirunavukkarasu, P., Arunraja, L., & Manojkumar, P. (2022, January). Structural, morphological and optical properties of pure and Yttrium (Y) doped lanthanum oxide (La2O3) nanoparticles by sonochemical method. In AIP Conference Proceedings (Vol. 2385, No. 1). AIP Publishing.
DOI: 10.1063/5.0070786
Google Scholar
[45]
Jung, H. Y., Kim, H. J., Yang, S., Kang, Y. G., Oh, B. Y., Park, H. G., & Seo, D. S. (2012). Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices. Liquid Crystals, 39(7), 789-793.
DOI: 10.1080/02678292.2012.681073
Google Scholar
[46]
AlAbdulaal, T. H., AlShadidi, M., Hussien, M., Vanga, G., Bouzidi, A. F., Rafique, & Yahia, I. (2021). Structural, Morphological and Optical Bandgap Analysis of Multifunction Applications of Y2O3-ZnO Nanocomposites: Varistors and Visible Photocatalytic Degradations of Wastewater. Research square, April 16th 1-18.
DOI: 10.21203/rs.3.rs-391412/v1
Google Scholar
[47]
Boukerika, A., & Guerbous, L. (2014). Annealing effects on structural and luminescence properties of red Eu3+-doped Y2O3 nanophosphors prepared by sol–gel method. Journal of luminescence, 145, 148-153.
DOI: 10.1016/j.jlumin.2013.07.037
Google Scholar
[48]
Deotale, A. J., & Nandedkar, R. V. (2016). Correlation between particle size, strain and band gap of iron oxide nanoparticles. Materials Today: Proceedings, 3(6), 2069-2076.
DOI: 10.1016/j.matpr.2016.04.110
Google Scholar
[49]
Karthikeyan, C., Arunachalam, P., Ramachandran, K., Al-Mayouf, A.M., & Karuppuchamy, S.J.J.O.A. (2020). Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of alloys and compounds, 828, 154281.
DOI: 10.1016/j.jallcom.2020.154281
Google Scholar
[50]
Fernandez-Garcia, M., Martinez-Arias, A., Hanson, J. C., & Rodriguez, J. A. (2004). Nanostructured oxides in chemistry: characterization and properties. Chemical reviews, 104(9), 4063-4104.
DOI: 10.1021/cr030032f
Google Scholar
[51]
Alibe, I. M., Matori, K. A., Sidek, H. A. A., Yaakob, Y., Rashid, U., Alibe, A. M., ... & Ahmad Khiri, M. Z. (2018). Effects of calcination holding time on properties of wide band gap willemite semiconductor nanoparticles by the polymer thermal treatment method. Molecules, 23(4), 873.
DOI: 10.3390/molecules23040873
Google Scholar
[52]
Kayani, Z. N., Saleemi, F., & Batool, I. (2015). Effect of calcination temperature on the properties of ZnO nanoparticles. Applied Physics A, 119, 713-720.
DOI: 10.1007/s00339-015-9019-1
Google Scholar
[53]
Priyanka, M., Vidya, Y. S., Manjunatha, H. C., Reddy, G. S., Reddy, T. R. K., Munirathnam, R., ... & Kumar, S. (2023). Synthesis of yttrium doped zinc oxide nanorods for display, forensic and supercapacitor applications. Inorganic Chemistry Communications, 158, 111555.
DOI: 10.1016/j.inoche.2023.111555
Google Scholar
[54]
Faggio, G., Grillo, R., & Messina, G. (2021). Raman and Micro‐Raman Spectroscopy. Spectroscopy for Materials Characterization, 169-200.
DOI: 10.1002/9781119698029.ch6
Google Scholar
[55]
Beck, C., Ehses, K. H., Hempelmann, R., & Bruch, C. (2001). Gradients in structure and dynamics of Y2O3 nanoparticles as revealed by X-ray and Raman scattering. Scripta materialia, 44(8-9), 2127-2131.
DOI: 10.1016/s1359-6462(01)00893-4
Google Scholar
[56]
Osipov, V.V., Solomonov, V.I., Spirina, A.V., Vovkotrub, E.G., & Strekalovskii, V.N. (2014). Raman scattering and luminescence of yttria nanopowders and ceramics. Optics and Spectroscopy, 116, 946-955.
DOI: 10.1134/s0030400x14040225
Google Scholar
[57]
Li, X., Liu, X., Qian, J., Zhang, T., Sun, B., & Han, Y. (2024). One-step synthesis and characterization of Y2O3 nanoparticles via emulsion detonation method. Ceramics International.
DOI: 10.1016/j.ceramint.2024.05.096
Google Scholar
[58]
Saravanan, T., Anandan, P., Azhagurajan, M., Arivanandhan, M., Pazhanivel, K., Hayakawa, Y., & Jayavel, R. (2016). Synthesis and characterization of Y2O3-reduced graphene oxide nanocomposites for photocatalytic applications. Materials Research Express, 3(7), 075502.
DOI: 10.1088/2053-1591/3/7/075502
Google Scholar
[59]
Marjuka, A. S., Balamurugan, S., Ashika, S. A., & Fathima, T. S. (2022). Evaluation of structural and optical properties of nanocrystalline cubic Y2O3 phase materials via combustion method using different fuels. ECS Journal of Solid State Science and Technology, 11(6), 063001.
DOI: 10.1149/2162-8777/ac71ca
Google Scholar
[60]
Mishra, R. K., & Verma, K. (2024). Defect engineering in nanomaterials: Impact, challenges, and applications. Smart Materials in Manufacturing, 2, 100052.
DOI: 10.1016/j.smmf.2024.100052
Google Scholar
[61]
Parashar, M., Shukla, V. K., & Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 31(5), 3729-3749.
DOI: 10.1007/s10854-020-02994-8
Google Scholar
[62]
Toghan, A., Modwi, A., Mostafa, A. M., Alakhras, A. I., Khairy, M., & Taha, K. K. (2022). Insight of yttrium doping on the structural and dielectric characteristics of ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 33(23), 18167-18179.
DOI: 10.1007/s10854-022-08673-0
Google Scholar
[63]
Fernández-Garcia, M., & Rodgriguez, J. A. (2007). Metal oxide nanoparticles (No. BNL-79479-2007-BC). Brookhaven National Lab.(BNL), Upton, NY (United States).
DOI: 10.2172/12059666
Google Scholar
[64]
Nehru, R., Dong, C.D., Chen, C.W., Nguyen, T.B. & Li, M.F. (2022) Green and low-cost synthesis of yttrium oxide/graphene oxide binary sheets as a highly efficient electrocatalyst for voltammetric determination of 3-nitro-L-tyrosine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 635, 128089.
DOI: 10.1016/j.colsurfa.2021.128089
Google Scholar
[65]
Petry, J., Komban, R., Gimmler, C. and Weller, H. (2022) Simple one pot synthesis of luminescent europium doped yttrium oxide Y 2 O 3: Eu nanodiscs for phosphor converted warm white LEDs. Nanoscale Advances, 4(3), 858-864.
DOI: 10.1039/d1na00831e
Google Scholar
[66]
Bhoi, N.K., Singh, H., Pratap, S. and Jain, P.K. (2022) Aluminum yttrium oxide metal matrix composite synthesized by microwave hybrid sintering: processing, microstructure and mechanical response. Journal of Inorganic and Organometallic Polymers and Materials, 1-15.
DOI: 10.1007/s10904-021-02195-8
Google Scholar
[67]
Almakayeel, N., Kaliyannan, G.V. and Gunasekaran, R. (2024) Enhancing power conversion efficiency of polycrystalline silicon photovoltaic cells using yttrium oxide anti-reflective coating via electro-spraying method. Ceramics International, 50 (21) 42392-42403.
DOI: 10.1016/j.ceramint.2024.08.084
Google Scholar
[68]
Zhang, R.B., Tu, Z.A., Meng, S., Feng, G., Lu, Z.H., Yu, Y.Z., Reina, T.R., Hu, F.Y., Chen, X.H. and Ye, R.P. (2023) Engineering morphologies of yttrium oxide supported nickel catalysts for hydrogen production. Rare Metals, 42 (1) 176-188.
DOI: 10.1007/s12598-022-02136-5
Google Scholar
[69]
Rao, M., Lai, A., Zan, M., Gao, M. and Xiao, Y. (2022) Synthesis of yttrium oxide nanoneedles with carbon dioxide carbonization. Nanomaterials, 12 (19) 3440.
DOI: 10.3390/nano12193440
Google Scholar
[70]
Tripathi, H., Kumar, S., Kumari, S., Bhardwaj, S., Gupta, A., & Sharma, J. D. (2023). Effect of sintering additives on Y2O3 ceramic: Synthesis, structural, morphological, and optical properties investigations. Materials Today: Proceedings.
DOI: 10.1016/j.matpr.2023.02.352
Google Scholar