Study the Effect of Sintering Temperature on the Structural and Optical Properties of Y2O3 Nanoparticles Synthesized by Sol Gel Method

Article Preview

Abstract:

The different characteristics of nanoparticles (NPs) are mostly determined by the sintering process. The goal of the current study is to examine how the sintering temperature affects the optical and structural characteristics of Y2O3 NPs made using the sol-gel method. For a competitive study, the synthesized Y2O3 NPs were sintered for three hours at 300, 600, and 900°C. The generated Y2O3 NPs were sintered for three hours at 300, 600, and 900°C in this work. Samples of Y2O3 NPs are designated Y1, Y2, Y3, and Y4, in that order. The cubic structure of Y2O3 NPs is confirmed by XRD examination, which also corresponds to JCPDS card No. 083-0927. For Y1, Y2, Y3, and Y4, the crystallite sizes were determined to be 12.58, 12.24, 12.05, and 09.16 nm, respectively. The optical characteristics, such as energy bandgap fluctuations and light absorption, were investigated using UV-Vis spectroscopy. Usually, the absorbance peak shows up between 230 and 250 nm. For Y1, Y2, Y3, and Y4, the energy band gap was determined to be 4.51, 4.40, 4.31, and 4.19 eV, respectively. The vibrational modes of the Y2O3 NPs are examined, which provides further evidence of phase purity and structural stability. Increased band gap, better crystallinity, and a lower percentage of oxygen atoms all help the material's mechanical and chemical durability as well as its shine, which makes it more suitable for dental ceramic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-18

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wawrzyniak, J. (2023). Advancements in improving selectivity of metal oxide semiconductor gas sensors opening new perspectives for their application in food industry. Sensors, 23(23), 9548.

DOI: 10.3390/s23239548

Google Scholar

[2] Isaac, N. A., Pikaar, I., & Biskos, G. (2022). Metal oxide semiconducting nanomaterials for air quality gas sensors: operating principles, performance, and synthesis techniques. Microchimica Acta, 189(5), 196.

DOI: 10.1007/s00604-022-05254-0

Google Scholar

[3] Ma, Y., Wei, Y., Kong, M., Li, R., Yan, D., Wang, D. & Liu, R. (2024) Effect of sintering temperature on microstructure and electrical properties of Na0. 5Bi0. 47Sr0. 02TiO3-δ ceramics. Materials Research Express, 11(5), 055502.

DOI: 10.1088/2053-1591/ad425e

Google Scholar

[4] Praveen, H. and Chandran, V.G. (2023) Effects of doping nickel oxide in dilelectric property and electrical conductivity of poly (O-toluidine). Journal of Materials Science: Materials in Electronics, 34(18), 1446.

DOI: 10.1007/s10854-023-10884-y

Google Scholar

[5] Abdullah, J. A. A., Jiménez-Rosado, M., Guerrero, A., & Romero, A. (2023). Effect of calcination temperature and time on the synthesis of iron oxide nanoparticles: Green vs. chemical method. Materials, 16(5), 1798.

DOI: 10.3390/ma16051798

Google Scholar

[6] Eom, N., Messing, M. E., Johansson, J., & Deppert, K. (2021). Sintering mechanism of core@ shell metal@ metal oxide nanoparticles. The Journal of Physical Chemistry C, 125(29), 16220-16227.

DOI: 10.1021/acs.jpcc.1c03598

Google Scholar

[7] Sharma, S., Chauhan, M. S., Chauhan, S., & Kumar, S. (2025). Effect of sintering temperature on structural and photocatalytic properties of zinc oxide nanoparticles. Next Materials, 7, 100367.

DOI: 10.1016/j.nxmate.2024.100367

Google Scholar

[8] Sendi, R. K., & Mahmud, S. (2012). Impact of sintering temperature on the structural, electrical, and optical properties of doped ZnO nanoparticle-based discs. Applied surface science, 261, 128-136.

DOI: 10.1016/j.apsusc.2012.07.115

Google Scholar

[9] Lee, K., Sahu, M., Hajra, S., Mohanta, K., & Kim, H. J. (2021). Effect of sintering temperature on the electrical and gas sensing properties of tin oxide powders. Ceramics International, 47(16), 22794-22800.

DOI: 10.1016/j.ceramint.2021.04.298

Google Scholar

[10] Lumley, R. N., Sercombe, T. B., & Schaffer, G. M. (1999). Surface oxide and the role of magnesium during the sintering of aluminum. Metallurgical and Materials Transactions A, 30, 457-463.

DOI: 10.1007/s11661-999-0335-y

Google Scholar

[11] atil, A. S., Patil, A. V., Dighavkar, C. G., Adole, V. A., & Tupe, U. J. (2022). Synthesis techniques and applications of rare earth metal oxides semiconductors: A review. Chemical Physics Letters, 796, 139555.

DOI: 10.1016/j.cplett.2022.139555

Google Scholar

[12] Pathapati, S. V. S. H., Free, M. L., & Sarswat, P. K. (2023). A comparative study on recent developments for individual rare earth elements separation. Processes, 11(7), 2070.

DOI: 10.3390/pr11072070

Google Scholar

[13] Ismail, N. A., Aziz, M. A. A., Yunus, M. Y. M., & Hisyam, A. (2019). Selection of extractant in rare earth solvent extraction system: A review. Int. J. Recent Technol. Eng, 8(1), 728-743.

Google Scholar

[14] Traina, C. A., & Schwartz, J. (2007). Surface modification of Y2O3 nanoparticles. Langmuir, 23(18), 9158-9161.

DOI: 10.1021/la701653v

Google Scholar

[15] Iqbal, T., Khan, M. A. R., & Tahir, H. M. (2024). Green synthesis of yttrium oxide (Y2O3) nanoparticles by Agathosma Betulina leaf extract: Structural, optical and antimicrobial properties. International Journal of Modern Physics B, 38(21), 2450278.

DOI: 10.1142/s0217979224502783

Google Scholar

[16] Huang, H., Xu, G. Q., Chin, W. S., Gan, L. M., & Chew, C. H. (2002). Synthesis and characterization of Eu: Y2O3 nanoparticles. Nanotechnology, 13(3), 318.

Google Scholar

[17] Srinivasan, R., Yogamalar, R., Vinu, A., Ariga, K., & Bose, A. C. (2009). Structural and optical characterization of samarium doped yttrium oxide nanoparticles. Journal of Nanoscience and Nanotechnology, 9(11), 6747-6752.

DOI: 10.1166/jnn.2009.1467

Google Scholar

[18] Mudavakkat, V. H., Atuchin, V. V., Kruchinin, V. N., Kayani, A., & Ramana, C. V. (2012). Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films. Optical Materials, 34(5), 893-900.

DOI: 10.1016/j.optmat.2011.11.027

Google Scholar

[19] Gkika, D. A., Chalaris, M., & Kyzas, G. Z. (2024). Review of Methods for Obtaining Rare Earth Elements from Recycling and Their Impact on the Environment and Human Health. Processes, 12(6), 1235.

DOI: 10.3390/pr12061235

Google Scholar

[20] Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285-1303.

DOI: 10.1016/j.gsf.2018.12.005

Google Scholar

[21] Hajizadeh-Oghaz, M., Razavi, R. S., Barekat, M., Naderi, M., Malekzadeh, S., & Rezazadeh, M. (2016). Synthesis and characterization of Y 2 O 3 nanoparticles by sol–gel process for transparent ceramics applications. Journal of Sol-Gel Science and Technology, 78, 682-691.

DOI: 10.1007/s10971-016-3986-3

Google Scholar

[22] Chen, Z. S., Gong, W. P., Chen, T. F., & Li, S. L. (2011). Synthesis and characterization of pyrochlore-type yttrium titanate nanoparticles by modified sol–gel method. Bulletin of Materials Science, 34, 429-434.

DOI: 10.1007/s12034-011-0116-2

Google Scholar

[23] Kamble, V. S., Patil, S. S., Khairnar, S. L., Patil, D. K., Kamble, S. S., CHILATE, S. M., & pawara, J. M. (2023). " Synthesis, Characterization, and Applications of Y 2 O 3 Nanoparticles Synthesized via, Thermal Decomposition of the [Y (Cup) 2 (Gly). 2H 2 O] Complex". Oriental Journal of Chemistry, 39(6).

DOI: 10.13005/ojc/390630

Google Scholar

[24] Kannan, S. K., & Sundrarajan, M. (2015). Biosynthesis of Yttrium oxide nanoparticles using Acalypha indica leaf extract. Bulletin of Materials Science, 38, 945-950.

DOI: 10.1007/s12034-015-0927-7

Google Scholar

[25] Rajakumar, G., Mao, L., Bao, T., Wen, W., Wang, S., Gomathi, & Zhang, X. (2021). Yttrium oxide nanoparticle synthesis: an overview of methods of preparation and biomedical applications. Applied Sciences, 11(5), 2172.

DOI: 10.3390/app11052172

Google Scholar

[26] Rani, N., & Jaggi, N. (2020). Effect of reaction temperature on the structural and electronic properties of stannic oxide nanostructures. Bulletin of Materials Science, 43(1), 146.

DOI: 10.1007/s12034-020-02141-3

Google Scholar

[27] Shinde, V. S., Kapadnis, K. H., Sawant, C. P., Koli, P. B., & Patil, R. P. (2020). Screen print fabricated In 3+ decorated perovskite lanthanum chromium oxide (LaCrO 3) thick film sensors for selective detection of volatile petrol vapors. Journal of Inorganic and Organometallic Polymers and Materials, 30, 5118-5132.

DOI: 10.1007/s10904-020-01660-0

Google Scholar

[28] Singh, R. D., Koli, P. B., Jagdale, B. S., & Patil, A. V. (2019). Effect of firing temperature on structural and electrical parameters of synthesized CeO 2 thick films. SN Applied Sciences, 1, 1-9.

DOI: 10.1007/s42452-019-0246-5

Google Scholar

[29] Tupe, U. J., Zambare, M. S., Patil, A. V., & Koli, P. B. (2020). The binary oxide NiO-CuO nanocomposite based thick film sensor for the acute detection of Hydrogen Sulphide gas vapours. Material Science Research India, 17(3), 260-269.

DOI: 10.13005/msri/170308

Google Scholar

[30] Shinde, R. S., Khairnar, S. D., Patil, M. R., Adole, V. A., Koli, P. B., Deshmane, V. V., ... & Patil, A. V. (2022). Synthesis and characterization of ZnO/CuO nanocomposites as an effective photocatalyst and gas sensor for environmental remediation. Journal of Inorganic and Organometallic Polymers and Materials, 1-22.

DOI: 10.1007/s10904-021-02178-9

Google Scholar

[31] Selvakumar, D., Dharmaraj, N., Kadirvelu, K., Kumar, N. S., & Padaki, V. C. (2014). Effect of sintering temperature on structural and optical properties of indium (III) oxide nanoparticles prepared with Triton X-100 by hydrothermal method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 335-339.

DOI: 10.1016/j.saa.2014.05.074

Google Scholar

[32] Kannan, Y. B., Saravanan, R., Srinivasan, N., & Ismail, I. (2017). Sintering effect on structural, magnetic and optical properties of Ni0. 5Zn0. 5Fe2O4 ferrite nano particles. Journal of Magnetism and Magnetic Materials, 423, 217-225.

DOI: 10.1016/j.jmmm.2016.09.038

Google Scholar

[33] Zhao, Y., Xu, L., Guo, M., Li, Z., Xu, Z., Ye, J., Li, W. and Wei, S. (2022) Effects of calcination temperature on grain growth and phase transformation of nano-zirconia with different crystal forms prepared by hydrothermal method. Journal of Materials Research and Technology, 19, 4003-4017.

DOI: 10.1016/j.jmrt.2022.06.137

Google Scholar

[34] Thakur, P., Sharma, R., Sharma, V., & Sharma, P. (2017). Structural and optical properties of Mn0. 5Zn0. 5Fe2O4 nano ferrites: effect of sintering temperature. Materials Chemistry and Physics, 193, 285-289.

DOI: 10.1016/j.matchemphys.2017.02.043

Google Scholar

[35] Horti, N. C., Kamatagi, M. D., Nataraj, S. K., Wari, M. N., & Inamdar, S. R. (2020). Structural and optical properties of zirconium oxide (ZrO2) nanoparticles: effect of calcination temperature. Nano Express, 1(1), 010022.

DOI: 10.1088/2632-959x/ab8684

Google Scholar

[36] Damyanova, S., Shtereva, I., Pawelec, B., Mihaylov, L., & Fierro, J. L. G. (2020). Characterization of none and yttrium-modified Ni-based catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 278, 119335.

DOI: 10.1016/j.apcatb.2020.119335

Google Scholar

[37] Attou, L., Jaber, B., & Ez-Zahraouy, H. (2018). Effect of annealing temperature on structural, optical and photocatalytic properties of CuO nanoparticles. Mediterranean Journal of Chemistry, 7(5), 308-316.

DOI: 10.13171/mjc751911261230la

Google Scholar

[38] Bokuniaeva, A. O., & Vorokh, A. S. (2019, December). Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. In journal of physics: Conference series (Vol. 1410, No. 1, p.012057). IOP Publishing.

DOI: 10.1088/1742-6596/1410/1/012057

Google Scholar

[39] Li, Z., Liu, R., & Xu, Y. (2013). Larger effect of sintering temperature than particle size on the photocatalytic activity of anatase TiO2. The Journal of Physical Chemistry C, 117(46), 24360-24367.

DOI: 10.1021/jp407213p

Google Scholar

[40] Gubicza, J., Nauyoks, S., Balogh, L., Lábár, J., Zerda, T. W., & Ungár, T. (2007). Influence of sintering temperature and pressure on crystallite size and lattice defect structure in nanocrystalline SiC. Journal of materials research, 22(5), 1314-1321.

DOI: 10.1557/jmr.2007.0162

Google Scholar

[41] Stawarczyk, B., Özcan, M., Hallmann, L., Ender, A., Mehl, A., & Hämmerlet, C. H. (2013). The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clinical oral investigations, 17, 269-274.

DOI: 10.1007/s00784-012-0692-6

Google Scholar

[42] Gatea, H. A. (2021, March). Impact of sintering temperature on crystallite size and optical properties of SnO2 nanoparticles. In Journal of Physics: Conference Series (Vol. 1829, No. 1, p.012030). IOP Publishing.

DOI: 10.1088/1742-6596/1829/1/012030

Google Scholar

[43] Zhang, X., Yang, H., & Tang, A. (2008). Optical, electrochemical and hydrophilic properties of Y2O3 doped TiO2 nanocomposite films. The Journal of Physical Chemistry B, 112(51), 16271-16279.

DOI: 10.1021/jp806820p

Google Scholar

[44] Karthikeyan, S., Dhanakodi, K., Surendhiran, S., Thirunavukkarasu, P., Arunraja, L., & Manojkumar, P. (2022, January). Structural, morphological and optical properties of pure and Yttrium (Y) doped lanthanum oxide (La2O3) nanoparticles by sonochemical method. In AIP Conference Proceedings (Vol. 2385, No. 1). AIP Publishing.

DOI: 10.1063/5.0070786

Google Scholar

[45] Jung, H. Y., Kim, H. J., Yang, S., Kang, Y. G., Oh, B. Y., Park, H. G., & Seo, D. S. (2012). Enhanced electro-optical properties of Y2O3 (yttrium trioxide) nanoparticle-doped twisted nematic liquid crystal devices. Liquid Crystals, 39(7), 789-793.

DOI: 10.1080/02678292.2012.681073

Google Scholar

[46] AlAbdulaal, T. H., AlShadidi, M., Hussien, M., Vanga, G., Bouzidi, A. F., Rafique, & Yahia, I. (2021). Structural, Morphological and Optical Bandgap Analysis of Multifunction Applications of Y2O3-ZnO Nanocomposites: Varistors and Visible Photocatalytic Degradations of Wastewater. Research square, April 16th 1-18.

DOI: 10.21203/rs.3.rs-391412/v1

Google Scholar

[47] Boukerika, A., & Guerbous, L. (2014). Annealing effects on structural and luminescence properties of red Eu3+-doped Y2O3 nanophosphors prepared by sol–gel method. Journal of luminescence, 145, 148-153.

DOI: 10.1016/j.jlumin.2013.07.037

Google Scholar

[48] Deotale, A. J., & Nandedkar, R. V. (2016). Correlation between particle size, strain and band gap of iron oxide nanoparticles. Materials Today: Proceedings, 3(6), 2069-2076.

DOI: 10.1016/j.matpr.2016.04.110

Google Scholar

[49] Karthikeyan, C., Arunachalam, P., Ramachandran, K., Al-Mayouf, A.M., & Karuppuchamy, S.J.J.O.A. (2020). Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of alloys and compounds, 828, 154281.

DOI: 10.1016/j.jallcom.2020.154281

Google Scholar

[50] Fernandez-Garcia, M., Martinez-Arias, A., Hanson, J. C., & Rodriguez, J. A. (2004). Nanostructured oxides in chemistry: characterization and properties. Chemical reviews, 104(9), 4063-4104.

DOI: 10.1021/cr030032f

Google Scholar

[51] Alibe, I. M., Matori, K. A., Sidek, H. A. A., Yaakob, Y., Rashid, U., Alibe, A. M., ... & Ahmad Khiri, M. Z. (2018). Effects of calcination holding time on properties of wide band gap willemite semiconductor nanoparticles by the polymer thermal treatment method. Molecules, 23(4), 873.

DOI: 10.3390/molecules23040873

Google Scholar

[52] Kayani, Z. N., Saleemi, F., & Batool, I. (2015). Effect of calcination temperature on the properties of ZnO nanoparticles. Applied Physics A, 119, 713-720.

DOI: 10.1007/s00339-015-9019-1

Google Scholar

[53] Priyanka, M., Vidya, Y. S., Manjunatha, H. C., Reddy, G. S., Reddy, T. R. K., Munirathnam, R., ... & Kumar, S. (2023). Synthesis of yttrium doped zinc oxide nanorods for display, forensic and supercapacitor applications. Inorganic Chemistry Communications, 158, 111555.

DOI: 10.1016/j.inoche.2023.111555

Google Scholar

[54] Faggio, G., Grillo, R., & Messina, G. (2021). Raman and Micro‐Raman Spectroscopy. Spectroscopy for Materials Characterization, 169-200.

DOI: 10.1002/9781119698029.ch6

Google Scholar

[55] Beck, C., Ehses, K. H., Hempelmann, R., & Bruch, C. (2001). Gradients in structure and dynamics of Y2O3 nanoparticles as revealed by X-ray and Raman scattering. Scripta materialia, 44(8-9), 2127-2131.

DOI: 10.1016/s1359-6462(01)00893-4

Google Scholar

[56] Osipov, V.V., Solomonov, V.I., Spirina, A.V., Vovkotrub, E.G., & Strekalovskii, V.N. (2014). Raman scattering and luminescence of yttria nanopowders and ceramics. Optics and Spectroscopy, 116, 946-955.

DOI: 10.1134/s0030400x14040225

Google Scholar

[57] Li, X., Liu, X., Qian, J., Zhang, T., Sun, B., & Han, Y. (2024). One-step synthesis and characterization of Y2O3 nanoparticles via emulsion detonation method. Ceramics International.

DOI: 10.1016/j.ceramint.2024.05.096

Google Scholar

[58] Saravanan, T., Anandan, P., Azhagurajan, M., Arivanandhan, M., Pazhanivel, K., Hayakawa, Y., & Jayavel, R. (2016). Synthesis and characterization of Y2O3-reduced graphene oxide nanocomposites for photocatalytic applications. Materials Research Express, 3(7), 075502.

DOI: 10.1088/2053-1591/3/7/075502

Google Scholar

[59] Marjuka, A. S., Balamurugan, S., Ashika, S. A., & Fathima, T. S. (2022). Evaluation of structural and optical properties of nanocrystalline cubic Y2O3 phase materials via combustion method using different fuels. ECS Journal of Solid State Science and Technology, 11(6), 063001.

DOI: 10.1149/2162-8777/ac71ca

Google Scholar

[60] Mishra, R. K., & Verma, K. (2024). Defect engineering in nanomaterials: Impact, challenges, and applications. Smart Materials in Manufacturing, 2, 100052.

DOI: 10.1016/j.smmf.2024.100052

Google Scholar

[61] Parashar, M., Shukla, V. K., & Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 31(5), 3729-3749.

DOI: 10.1007/s10854-020-02994-8

Google Scholar

[62] Toghan, A., Modwi, A., Mostafa, A. M., Alakhras, A. I., Khairy, M., & Taha, K. K. (2022). Insight of yttrium doping on the structural and dielectric characteristics of ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 33(23), 18167-18179.

DOI: 10.1007/s10854-022-08673-0

Google Scholar

[63] Fernández-Garcia, M., & Rodgriguez, J. A. (2007). Metal oxide nanoparticles (No. BNL-79479-2007-BC). Brookhaven National Lab.(BNL), Upton, NY (United States).

DOI: 10.2172/12059666

Google Scholar

[64] Nehru, R., Dong, C.D., Chen, C.W., Nguyen, T.B. & Li, M.F. (2022) Green and low-cost synthesis of yttrium oxide/graphene oxide binary sheets as a highly efficient electrocatalyst for voltammetric determination of 3-nitro-L-tyrosine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 635, 128089.

DOI: 10.1016/j.colsurfa.2021.128089

Google Scholar

[65] Petry, J., Komban, R., Gimmler, C. and Weller, H. (2022) Simple one pot synthesis of luminescent europium doped yttrium oxide Y 2 O 3: Eu nanodiscs for phosphor converted warm white LEDs. Nanoscale Advances, 4(3), 858-864.

DOI: 10.1039/d1na00831e

Google Scholar

[66] Bhoi, N.K., Singh, H., Pratap, S. and Jain, P.K. (2022) Aluminum yttrium oxide metal matrix composite synthesized by microwave hybrid sintering: processing, microstructure and mechanical response. Journal of Inorganic and Organometallic Polymers and Materials, 1-15.

DOI: 10.1007/s10904-021-02195-8

Google Scholar

[67] Almakayeel, N., Kaliyannan, G.V. and Gunasekaran, R. (2024) Enhancing power conversion efficiency of polycrystalline silicon photovoltaic cells using yttrium oxide anti-reflective coating via electro-spraying method. Ceramics International, 50 (21) 42392-42403.

DOI: 10.1016/j.ceramint.2024.08.084

Google Scholar

[68] Zhang, R.B., Tu, Z.A., Meng, S., Feng, G., Lu, Z.H., Yu, Y.Z., Reina, T.R., Hu, F.Y., Chen, X.H. and Ye, R.P. (2023) Engineering morphologies of yttrium oxide supported nickel catalysts for hydrogen production. Rare Metals, 42 (1) 176-188.

DOI: 10.1007/s12598-022-02136-5

Google Scholar

[69] Rao, M., Lai, A., Zan, M., Gao, M. and Xiao, Y. (2022) Synthesis of yttrium oxide nanoneedles with carbon dioxide carbonization. Nanomaterials, 12 (19) 3440.

DOI: 10.3390/nano12193440

Google Scholar

[70] Tripathi, H., Kumar, S., Kumari, S., Bhardwaj, S., Gupta, A., & Sharma, J. D. (2023). Effect of sintering additives on Y2O3 ceramic: Synthesis, structural, morphological, and optical properties investigations. Materials Today: Proceedings.

DOI: 10.1016/j.matpr.2023.02.352

Google Scholar