[1]
S.A. Omoniyi, M. Ibrahim, E.K. Oke, P.I. Okolie, Nutritional composition, anti-nutritional properties, and sensory attributes of fried white yam (Dioscorea rotundata) slice as influenced by different pre-treatment methods. Journal of Food Processing and Preservation 46 (2022) 10.1111/jfpp.16868.
DOI: 10.1111/jfpp.16868
Google Scholar
[2]
C. Anoma, J.K. Thamilini, Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits. International Journal of Food Science, (2016) 1-15, Article ID 3631647.
DOI: 10.1155/2016/3631647
Google Scholar
[3]
A. Wumbei, S.K.N. Gautier, J.K. Kwodaga, D.F. Joseph, Y.J.H. Galani, State of the Art of Yam Production. In (Ed.), Advances in Root Vegetables Research. IntechOpen. (2022) 129-138.
DOI: 10.5772/intechopen.106504
Google Scholar
[4]
FAOSTAT FAO. Food Balance—Food Supply—Crops Primary Equivalent. Available from: http://www.fao.org/faostat/en/#compare. [Accessed: September 11, 2022].
Google Scholar
[5]
FAO Food and Agriculture Organization. The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. (2019) 1-182.
DOI: 10.18356/32f21f8c-en
Google Scholar
[6]
H.H. Mohammed, Y.B. Tola, A.H. Taye, Z.B. Abdisa, Effect of pretreatments and solar tunnel dryer zones on functional properties, proximate composition, and bioactive components of pumpkin (Cucurbita maxima) pulp powder. Heliyon 8(10) e10747 (2022) 1-9.
DOI: 10.1016/j.heliyon.2022.e10747
Google Scholar
[7]
B. Yu, N. Li, H. Xie, J. Ji, The performance analysis on a novel purification cleaning trombe wall based on solar thermal sterilization and thermal catalytic principles. Energy 225 (2021) 120275.
DOI: 10.1016/j.energy.2021.120275
Google Scholar
[8]
M.I. Fadhel, K. Sopian, W. Wan Daud, M. Alghoul, Review on advanced of solar assisted chemical heat pump dryer for agriculture produce. Renewable and Sustainable Energy Reviews. 15 (2011) 1152-1168.
DOI: 10.1016/j.rser.2010.10.007
Google Scholar
[9]
M. Othman, K. Sopian, B. Yatim, W. Wan Daud, Development of advanced solar assisted drying systems. Renewable Energy. 31 (2006)703-709.
DOI: 10.1016/j.renene.2005.09.004
Google Scholar
[10]
B.M.A. Amer, K. Gottschalk, M.A. Hossain, Integrated Hybrid Solar Drying System and its Drying Kinetics of Chamomile, Renewable energy 121 (2018) 539-547.
DOI: 10.1016/j.renene.2018.01.055
Google Scholar
[11]
M.H.R. Bhuiyan, M.M. Alam, M.N. Islam, The Construction and Testing of a Combined Solar and Mechanical Cabinet Dryer. Journal of Environment, Science and Natural Resources, 4(2) (2011) 35-40.
Google Scholar
[12]
J.B. Hussein, M.A. Hassan, S.A. Kareem, K.B. Filli, Design, Construction and Testing of a Hybrid Photovoltaic (PV) Solar Dryer. International Journal of Engineering Research and Science. 3(5) (2017) 1-14.
DOI: 10.25125/engineering-journal-IJOER-MAY-2017-4
Google Scholar
[13]
O.A. Aremu, K.O. Odepidan, S.O. Adejuwon, A.L. Ajala, Design, Fabrication and Performance Evaluation of Hybrid Solar Dryer, International Journal of Research and Innovation in Applied Science. V(III) (2020) 159-164.
Google Scholar
[14]
F.E. Gunawan, A.S. Budiman, B. Pardamean, E. Djuana, S. Romeli, N. Hananda, C. Harito, D.P.B. Aji, D.N. Putri, N. Stevanus, Design and energy assessment of a new hybrid solar drying dome – Enabling Low-Cost, Independent and Smart Solar Dryer for Indonesia Agriculture 4.0. IOP Conference Series: Earth and Environmental Science 998 (2022) 1-12.
DOI: 10.1088/1755-1315/998/1/012052
Google Scholar
[15]
R.F. Mechlouch, W. Elfalleh, M. Ziadi, H. Hannachi, M. Chwikhi, A.B. Aoun, E. Ismail, C. Foued, Effect of Different Drying Methods on the Physico-Chemical Properties of Tomato Variety 'Rio Grande'. International Journal of Food Engineering: 8 2(4) (2012) 3-16.
DOI: 10.1515/1556-3758.2678
Google Scholar
[16]
M.D. Purkayastha, A. Nath, B.C. Deka, C.L Mahanta, Erratum to: Thin Layer Drying of Tomato Slices. Journal of Food Science and Technology, 50 (2013) 654-654.
DOI: 10.1007/s13197-011-0532-8
Google Scholar
[17]
A. Harish, M. Rashmi, T.P. Krishna Murthy, B.M. Blessy, S. Ananda, Mathematical modeling of thin layer microwave drying kinetics of elephant foot yam (Amorphophallus paeoniifolius). International Food Research Journal 21(3) (2014) 1081-1087.
Google Scholar
[18]
A.A. Akinola, S.N. Ezeorah, Moisture Diffusivity and Activation Energy Estimation of White Yam (Dioscorea rotundata) Slices Using Drying Data from a Refractance WindowTM Dryer. FUOYE Journal of Engineering and Technology, 4(1) (2019) 102-106.
DOI: 10.46792/fuoyejet.v4i1.319
Google Scholar
[19]
B.O. Oyefeso, A.O. Raji, Effective Moisture Diffusivity and Activation Energy of Tannia Cormels: Influence of Temperature, Pre-Treatment and Slice Thickness. Nigerian Journal of Technology, 40(1) (2021) 140–145. ttp://dx.doi.org/.
DOI: 10.4314/njt.v40i1.18
Google Scholar
[20]
B. Llavata, J.V. Garcia-Perez, J.A. Carcel, Innovation Pre-treatments to enhance food dying: A Current Review, Current Opinion in Food Science, 35 (2020):20-26.
DOI: 10.1016/j.cofs.2019.12.001
Google Scholar
[21]
B. Basumatary, M. Roy, D. Basumatary, S. Narzary, U. Deuri, P.K. Nayak, N. Kumar, Design, Construction and Calibration of Low Cost Solar Cabinet Dryer. International Journal of Environmental Engineering and Management. 4(4) (2013) 351-358.
Google Scholar
[22]
E. Correa-Hernando, F.J. Arranz, B. Diezma, H.T. Jiménez, J.I. Robla, L. Ruiz-García, J. García-Hierro, P. Barreiro, C. Valero, Development of smart sensors for the supervision of a solar dryer: agro-products dehydration application. International Conference on Agricultural Engineering (AgEng 2010), 06/09/2010 - 08/09/2010 Clermont-Ferrand, Francia. (2015) 1-9.
DOI: 10.1016/j.compag.2011.07.004
Google Scholar
[23]
B.A. Kumbhar, P.S. Mote, A.S. Vibhute, Temperature Conditioning for Solar Dryer. International Research Journal of Engineering and Technology. 05(03) (2018) 4133-4136.
Google Scholar
[24]
M.A. Eltawil, M.M. Azam, A.O. Alghannam, Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (Mentha viridis). Journal of Cleaner Production. 181 (2018) 352–364.
DOI: 10.1016/j.jclepro.2018.01.229
Google Scholar
[25]
AOAC (1990). Official methods of Analysis 14th (ed), Association of Official Analytical Chemists, Washington DC .125-576.
Google Scholar
[26]
A. Motevali, S. Minaei, A. Ahmad Banakar, B. Ghobadian, M.H. Khoshtaghaza, Comparison of energy parameters in various dryers. Energy Conversion and Management 87 (2014) 711–725.
DOI: 10.1016/j.enconman.2014.07.012
Google Scholar
[27]
G.M. da Silva, A.G. Ferreira, R.M. Coutinho, C.B. Maia, Thermodynamic analysis of a sustainable hybrid dryer. Solar Energy 208 (2020) 388–398.
DOI: 10.1016/j.solener.2020.08.014
Google Scholar
[28]
M.P. Nguyen, T.T. Ngo, T.D. Le, Experimental and numerical investigation of transport phenomena and kinetics for convective shrimp drying. Case Study in Thermal Energy. 14: 100465 (2019) 2-19.
DOI: 10.1016/j.csite.2019.100465
Google Scholar
[29]
A. Yagcioglu, V. Demi, T. Gunhan, Effective Moisture Diffusivity Estimation from Drying Data. DergiPark, 3 (4) (2007) 249-256.
Google Scholar
[30]
G. Mittal, Mass diffusivity of food products. Food Review International, 15(1) (1999) 19-66.
Google Scholar
[31]
H. Umesh Hebbar, K.H. Vishwanatan, M.N. Ramesh, Development of combined infrared and hot air dryer for vegetables. Journal of Food Engineering, 65 (2004) 557-563.
DOI: 10.1016/j.jfoodeng.2004.02.020
Google Scholar
[32]
A. Motevali, S. Minaei, M.H Khoshtagaza, Evaluation of energy consumption in different drying methods. Energy Conversion and Management 52 (2011). 1192–1199.
DOI: 10.1016/j.enconman.2010.09.014
Google Scholar
[33]
A.S. Kassem, A.Z. Shokr, A.R. El-Mahdy, A.M. Aboukarima, E.Y. Hamed, Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. Journal of Saudi Society of Agricultural Science 10 (2011) 33–40.
DOI: 10.1016/j.jssas.2010.05.001
Google Scholar
[34]
T. Koyuncu, Y. Pinar, F. Lule, Convective drying characteristics of Azarole red (Crataegus monogyna Jacq.) and yellow (Crataegus aronia Bosc.) fruits. Journal of Food Engineering, 78 (2007) 1471–1475.
DOI: 10.1016/j.jfoodeng.2005.09.036
Google Scholar
[35]
M.G. Vieira, L. Estrella, S.C. Rocha, Energy efficiency and drying kinetics of recycled paper pulp. Drying Technology. 25 (2007) 1639–48.
DOI: 10.1080/07373930701590806
Google Scholar
[36]
G.C. Wakchaure, K. Manikandan, M. Indra, M. Shirur, Kinetics of Thin Layer Drying of Button Mushroom. Journal of Agricultural Engineering. 47(4) (2010) 41-46.
DOI: 10.52151/jae2010474.1425
Google Scholar
[37]
O.A. Aregbesola, B.S. Ogunsina, A.E. Sofolahan, N.N. Chime, Mathematical modeling of thin layer drying characteristics of dika (Irvingia gabonensis) nuts and kernels. Nigerian Food Journal. 33 (2015) 83–89.
DOI: 10.1016/j.nifoj.2015.04.012
Google Scholar
[38]
E. Mirzaee, S. Rafiee, A. Keyhani, Evaluation and Selection of Thin-layer Models for Drying Kinetics of Apricot (cv.NASIRY). Agric Eng Int: CIGR Journal, 12(2) (2010) 111-116.
Google Scholar
[39]
M. Sahin, I. Doymaz, Estimation of cauliflower mass transfer parameters during convective drying. Heat and Mass Transfer. 53(2017) 507–517.
DOI: 10.1007/s00231-016-1835-0
Google Scholar
[40]
M. Kaveh, A. Jahanbakhshi, Y. Abbaspour-Gilandeh, E. Taghinezhad, M.B.F. Moghimi, The effect of ultrasound pre-treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network. Journal of Food Process Engineering, 41(7) (2018) 1-7.
DOI: 10.1111/jfpe.12868
Google Scholar
[41]
R. Sehrawat, P.K. Nema, B.P. Kaur, Quality evaluation and drying characteristics of mango cubes dried using low pressure superheated steam, vacuum and hot air drying methods. LWT-Food Science and Technology, 92 (2018) 548–555.
DOI: 10.1016/j.lwt.2018.03.012
Google Scholar
[42]
I. Boutelba, S. Zid, P. Glouannec, S. Youcef-ali, A. Magueresse, N. Kimouche, Thermo-hydrous behavior of dried un-blanched potato samples. Journal of Food Engineering, 240 (2019). 160–170.
DOI: 10.1016/j.jfoodeng.2018.07.027
Google Scholar
[43]
Chinenye, N.M., D.I. Onyenwigwe, F. Abam, B. Lamrani, M. Simo-Tagne, N. Bekkioui, L. Bennamoun, Z. Said, Influence of hot water blanching and saline immersion period on the thermal effusivity and the drying kinetics of hybrid solar drying of sweet potato chips. Solar Energy 240 (2022) 176-192.
DOI: 10.1016/j.solener.2022.05.026
Google Scholar
[44]
Celma, A. R., Cuadros, F. and Lopez-Rodriguez, F. (2012) Convective drying characteristics of sludge from treatment plants in tomato processing industries. Food Bioproduction Process 90: 224-234.
DOI: 10.1016/j.fbp.2011.04.003
Google Scholar
[45]
N.M. Ortiz-Rodríguez, J.F. Marín-Camacho, A.L. Gonz´alez, O. García-Valladares, Drying kinetics of natural rubber sheets under two solar thermal drying systems. Renewable Energy 165 (2021) 438–454.
DOI: 10.1016/j.renene.2020.11.035
Google Scholar
[46]
J.P. Ekka, M. Palanisamy, Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. Thermal Science and Engineering Progress, 19 (2020) 100607.
DOI: 10.1016/j.tsep.2020.100607
Google Scholar
[47]
L.V. Erick C´esar, C.M. Ana Lilia, G.V. Octavio, P.F. Isaac, B.O. Rogelio, Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy 147 (2020) 845–855.
DOI: 10.1016/j.renene.2019.09.018
Google Scholar
[48]
S.T. Sileshi, A.A. Hassen, K.D. Adem, Drying kinetics of dried injera (dirkosh) using a mixed-mode solar dryer, Cogent Engineering, 8(1) Article ID 1956870, (2021) 1-19.
DOI: 10.1080/23311916.2021.1956870
Google Scholar
[49]
W. Wang, M. Li, R.H.E. Hassanien, Y. Wang, L. Yang, Thermal performance of indirect forced convection solar dryer and kinetics analysis of mango. Applied Thermal Engineering, 134 (2018) 310–321.
DOI: 10.1016/j.applthermaleng.2018.01.115
Google Scholar
[50]
K.O. Falade, T.O. Olurin, E.A. Ike, O.C. Aworh, Effect of pretreatment and temperature on air-drying of Dioscorea alata and Dioscorea rotundata slices. Journal of Food Engineering. 80 (2007) 1002–1010.
DOI: 10.1016/j.jfoodeng.2006.06.034
Google Scholar
[51]
R. Torres, R.D. Montes, R.D. Andrade, O.A. Perez, H. Toscano, Drying Kinetics of Two Yam (Dioscorea Alata) Varieties. Dyna, 79 (171) (2012) 175-182.
Google Scholar
[52]
E. Abedini, H. Hajebzadeh, M.A. Mirza, A.A. Alahdadi, H.M. Ahmadi, M.A. Salehi, M. Zakeri, Evaluation of operational parameters for drying shrimps in a cabinet hybrid dryer. Solar Energy 233 (2022) 221–229.
DOI: 10.1016/j.solener.2022.01.045
Google Scholar
[53]
B. Lamrani, F. Kuznik, A. Ajbar, M. Boumaza, Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates. Energy 228: (2021) 120598.
DOI: 10.1016/j.energy.2021.120598
Google Scholar
[54]
V.R. Mugi, and V.P. Chandramohan, Energy and exergy analysis of forced and natural convection indirect solar dryers: Estimation of exergy in flow, out flow, losses, exergy efficiencies and sustainability indicators from drying experiments. Journal of Cleaner Production (2021) 282. 124421.
DOI: 10.1016/j.jclepro.2020.124421
Google Scholar
[55]
S. Minaei, H.A. Chenarbon, A. Motevali, A. Arabhosseini, Energy consumption, thermal utilization efficiency and hypericin content in drying leaves of St John's Wort (Hypericum perforatum). Journal of Energy in Southern Africa. 25(3): (2014a) 27–35.
DOI: 10.17159/2413-3051/2014/v25i3a2655
Google Scholar
[56]
S. Minaei, A. Motevali, B. Ghobadian, A. Banakar, S.H. Samadi, An Investigation of Energy Consumption, Solar Fraction and Hybrid Photovoltaic–Thermal Solar Dryer Parameters in Drying of Chamomile Flower. International Journal of Food Engineering. 10(4) (2014b) 697–711.
DOI: 10.1515/ijfe-2014-0135
Google Scholar
[57]
E.C. López-Vidaña, L.L. Méndez-Lagunas, J.Rodríguez-Ramírez, Efficiency of a hybrid solar–gas dryer. Solar Energy, 93 (2013) 23-31.
DOI: 10.1016/j.solener.2013.01.027
Google Scholar
[58]
M.K. Mishra, K.R. Shrestha, V. Sagar, R.K. Amatya, Performance of hybrid solar-biomass dryer. Nepal Journal of Environmental Science 5 (2017) 61-69.
DOI: 10.3126/njes.v5i0.22717
Google Scholar
[59]
A. Afzal, T. Iqbal, K. Ikram, M.N. Anjum, M. Umair, M. Azam, S. Akram, F. Hussain, M.A. ul Zaman, A. Ali, F. Majeed, Development of a hybrid mixed-mode solar dryer for product drying. Heliyon 9(e14144) (2023) 1-14.
DOI: 10.1016/j.heliyon.2023.e14144
Google Scholar