Investigation of Effective Moisture Diffusivity and Activation Energy in Thin-Layer Drying of White Yam Slices (Dioscorea rotundata): A Study of Solar Drying and Pretreatment Techniques

Article Preview

Abstract:

This research investigates the effective moisture diffusivity (Deff) and energy activation (Ea) as it affects thin layer drying of white yam (Dioscorea rotundata) slices using hybrid drying system under different parameters. These factors helps researchers and food producers to develop optimized drying processes for yam slices in order to minimize drying time, improve energy efficiency, and maintain high product quality. The experimental analysis highlight the interplay between pretreatments (Blanching, B; Sodium metabisulfite, SNa; Neem bark extract, SNBE and Control, C), drying systems (indirect solar drying: ISD and solar-powered hot-air supplemented drying: SPHSD under 0.8 m/s and 1.2 m/s air velocity, and air temperatures of 50 °C, 60 °C, and 70 °C) and slice thickness (5 and 3 mm) on white yam slices during drying. Important data were obtained using Arduino based data logging system for accuracy. Mass transfer during the entire drying of the yam slices took place entirely in the falling drying rate period and was described using Fourier approach based on Fick’s second equation of diffusion. The result demonstrated that Deff and Ea is significantly affected by petreatment, slice thicknesses, air velocity and drying system. Deff increased with rising drying temperature and air velocity. However, SPHSD, at 5 mm thickness exhibited a decrease in Deff compared to 3 mm with values ranging from 1.647 × 10-10 to 2.790 × 10-10 m²/s within the investigated parameters. In contrast, ISD and sun-dried yam slices displayed relatively lower and fluctuating Deff values (not higher than 1.4 × 10-10), likely due to intermittency in solar radiation. Specific energy consumption varies from 6184.373 J/kg.K to 4620.571 J/kg.K for different thicknesses, temperature and air velocity. Thermal efficiency values which decreases with increased slice thickness ranges from 52.539 % to 39.347 %. Drying efficiency increases with increased temperature and air velocity for SPHSD (87.020 % to 93.169 %) while ISD has the least at 54.196 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-92

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A. Omoniyi, M. Ibrahim, E.K. Oke, P.I. Okolie, Nutritional composition, anti-nutritional properties, and sensory attributes of fried white yam (Dioscorea rotundata) slice as influenced by different pre-treatment methods. Journal of Food Processing and Preservation 46 (2022) 10.1111/jfpp.16868.

DOI: 10.1111/jfpp.16868

Google Scholar

[2] C. Anoma, J.K. Thamilini, Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits. International Journal of Food Science, (2016) 1-15, Article ID 3631647.

DOI: 10.1155/2016/3631647

Google Scholar

[3] A. Wumbei, S.K.N. Gautier, J.K. Kwodaga, D.F. Joseph, Y.J.H. Galani, State of the Art of Yam Production. In (Ed.), Advances in Root Vegetables Research. IntechOpen. (2022) 129-138.

DOI: 10.5772/intechopen.106504

Google Scholar

[4] FAOSTAT FAO. Food Balance—Food Supply—Crops Primary Equivalent. Available from: http://www.fao.org/faostat/en/#compare. [Accessed: September 11, 2022].

Google Scholar

[5] FAO Food and Agriculture Organization. The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. (2019) 1-182.

DOI: 10.18356/32f21f8c-en

Google Scholar

[6] H.H. Mohammed, Y.B. Tola, A.H. Taye, Z.B. Abdisa, Effect of pretreatments and solar tunnel dryer zones on functional properties, proximate composition, and bioactive components of pumpkin (Cucurbita maxima) pulp powder. Heliyon 8(10) e10747 (2022) 1-9.

DOI: 10.1016/j.heliyon.2022.e10747

Google Scholar

[7] B. Yu, N. Li, H. Xie, J. Ji, The performance analysis on a novel purification cleaning trombe wall based on solar thermal sterilization and thermal catalytic principles. Energy 225 (2021) 120275.

DOI: 10.1016/j.energy.2021.120275

Google Scholar

[8] M.I. Fadhel, K. Sopian, W. Wan Daud, M. Alghoul, Review on advanced of solar assisted chemical heat pump dryer for agriculture produce. Renewable and Sustainable Energy Reviews. 15 (2011) 1152-1168.

DOI: 10.1016/j.rser.2010.10.007

Google Scholar

[9] M. Othman, K. Sopian, B. Yatim, W. Wan Daud, Development of advanced solar assisted drying systems. Renewable Energy. 31 (2006)703-709.

DOI: 10.1016/j.renene.2005.09.004

Google Scholar

[10] B.M.A. Amer, K. Gottschalk, M.A. Hossain, Integrated Hybrid Solar Drying System and its Drying Kinetics of Chamomile, Renewable energy 121 (2018) 539-547.

DOI: 10.1016/j.renene.2018.01.055

Google Scholar

[11] M.H.R. Bhuiyan, M.M. Alam, M.N. Islam, The Construction and Testing of a Combined Solar and Mechanical Cabinet Dryer. Journal of Environment, Science and Natural Resources, 4(2) (2011) 35-40.

Google Scholar

[12] J.B. Hussein, M.A. Hassan, S.A. Kareem, K.B. Filli, Design, Construction and Testing of a Hybrid Photovoltaic (PV) Solar Dryer. International Journal of Engineering Research and Science. 3(5) (2017) 1-14.

DOI: 10.25125/engineering-journal-IJOER-MAY-2017-4

Google Scholar

[13] O.A. Aremu, K.O. Odepidan, S.O. Adejuwon, A.L. Ajala, Design, Fabrication and Performance Evaluation of Hybrid Solar Dryer, International Journal of Research and Innovation in Applied Science. V(III) (2020) 159-164.

Google Scholar

[14] F.E. Gunawan, A.S. Budiman, B. Pardamean, E. Djuana, S. Romeli, N. Hananda, C. Harito, D.P.B. Aji, D.N. Putri, N. Stevanus, Design and energy assessment of a new hybrid solar drying dome – Enabling Low-Cost, Independent and Smart Solar Dryer for Indonesia Agriculture 4.0. IOP Conference Series: Earth and Environmental Science 998 (2022) 1-12.

DOI: 10.1088/1755-1315/998/1/012052

Google Scholar

[15] R.F. Mechlouch, W. Elfalleh, M. Ziadi, H. Hannachi, M. Chwikhi, A.B. Aoun, E. Ismail, C. Foued, Effect of Different Drying Methods on the Physico-Chemical Properties of Tomato Variety 'Rio Grande'. International Journal of Food Engineering: 8 2(4) (2012) 3-16.

DOI: 10.1515/1556-3758.2678

Google Scholar

[16] M.D. Purkayastha, A. Nath, B.C. Deka, C.L Mahanta, Erratum to: Thin Layer Drying of Tomato Slices. Journal of Food Science and Technology, 50 (2013) 654-654.

DOI: 10.1007/s13197-011-0532-8

Google Scholar

[17] A. Harish, M. Rashmi, T.P. Krishna Murthy, B.M. Blessy, S. Ananda, Mathematical modeling of thin layer microwave drying kinetics of elephant foot yam (Amorphophallus paeoniifolius). International Food Research Journal 21(3) (2014) 1081-1087.

Google Scholar

[18] A.A. Akinola, S.N. Ezeorah, Moisture Diffusivity and Activation Energy Estimation of White Yam (Dioscorea rotundata) Slices Using Drying Data from a Refractance WindowTM Dryer. FUOYE Journal of Engineering and Technology, 4(1) (2019) 102-106.

DOI: 10.46792/fuoyejet.v4i1.319

Google Scholar

[19] B.O. Oyefeso, A.O. Raji, Effective Moisture Diffusivity and Activation Energy of Tannia Cormels: Influence of Temperature, Pre-Treatment and Slice Thickness. Nigerian Journal of Technology, 40(1) (2021) 140–145. ttp://dx.doi.org/.

DOI: 10.4314/njt.v40i1.18

Google Scholar

[20] B. Llavata, J.V. Garcia-Perez, J.A. Carcel, Innovation Pre-treatments to enhance food dying: A Current Review, Current Opinion in Food Science, 35 (2020):20-26.

DOI: 10.1016/j.cofs.2019.12.001

Google Scholar

[21] B. Basumatary, M. Roy, D. Basumatary, S. Narzary, U. Deuri, P.K. Nayak, N. Kumar, Design, Construction and Calibration of Low Cost Solar Cabinet Dryer. International Journal of Environmental Engineering and Management. 4(4) (2013) 351-358.

Google Scholar

[22] E. Correa-Hernando, F.J. Arranz, B. Diezma, H.T. Jiménez, J.I. Robla, L. Ruiz-García, J. García-Hierro, P. Barreiro, C. Valero, Development of smart sensors for the supervision of a solar dryer: agro-products dehydration application. International Conference on Agricultural Engineering (AgEng 2010), 06/09/2010 - 08/09/2010 Clermont-Ferrand, Francia. (2015) 1-9.

DOI: 10.1016/j.compag.2011.07.004

Google Scholar

[23] B.A. Kumbhar, P.S. Mote, A.S. Vibhute, Temperature Conditioning for Solar Dryer. International Research Journal of Engineering and Technology. 05(03) (2018) 4133-4136.

Google Scholar

[24] M.A. Eltawil, M.M. Azam, A.O. Alghannam, Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (Mentha viridis). Journal of Cleaner Production. 181 (2018) 352–364.

DOI: 10.1016/j.jclepro.2018.01.229

Google Scholar

[25] AOAC (1990). Official methods of Analysis 14th (ed), Association of Official Analytical Chemists, Washington DC .125-576.

Google Scholar

[26] A. Motevali, S. Minaei, A. Ahmad Banakar, B. Ghobadian, M.H. Khoshtaghaza, Comparison of energy parameters in various dryers. Energy Conversion and Management 87 (2014) 711–725.

DOI: 10.1016/j.enconman.2014.07.012

Google Scholar

[27] G.M. da Silva, A.G. Ferreira, R.M. Coutinho, C.B. Maia, Thermodynamic analysis of a sustainable hybrid dryer. Solar Energy 208 (2020) 388–398.

DOI: 10.1016/j.solener.2020.08.014

Google Scholar

[28] M.P. Nguyen, T.T. Ngo, T.D. Le, Experimental and numerical investigation of transport phenomena and kinetics for convective shrimp drying. Case Study in Thermal Energy. 14: 100465 (2019) 2-19.

DOI: 10.1016/j.csite.2019.100465

Google Scholar

[29] A. Yagcioglu, V. Demi, T. Gunhan, Effective Moisture Diffusivity Estimation from Drying Data. DergiPark, 3 (4) (2007) 249-256.

Google Scholar

[30] G. Mittal, Mass diffusivity of food products. Food Review International, 15(1) (1999) 19-66.

Google Scholar

[31] H. Umesh Hebbar, K.H. Vishwanatan, M.N. Ramesh, Development of combined infrared and hot air dryer for vegetables. Journal of Food Engineering, 65 (2004) 557-563.

DOI: 10.1016/j.jfoodeng.2004.02.020

Google Scholar

[32] A. Motevali, S. Minaei, M.H Khoshtagaza, Evaluation of energy consumption in different drying methods. Energy Conversion and Management 52 (2011). 1192–1199.

DOI: 10.1016/j.enconman.2010.09.014

Google Scholar

[33] A.S. Kassem, A.Z. Shokr, A.R. El-Mahdy, A.M. Aboukarima, E.Y. Hamed, Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. Journal of Saudi Society of Agricultural Science 10 (2011) 33–40.

DOI: 10.1016/j.jssas.2010.05.001

Google Scholar

[34] T. Koyuncu, Y. Pinar, F. Lule, Convective drying characteristics of Azarole red (Crataegus monogyna Jacq.) and yellow (Crataegus aronia Bosc.) fruits. Journal of Food Engineering, 78 (2007) 1471–1475.

DOI: 10.1016/j.jfoodeng.2005.09.036

Google Scholar

[35] M.G. Vieira, L. Estrella, S.C. Rocha, Energy efficiency and drying kinetics of recycled paper pulp. Drying Technology. 25 (2007) 1639–48.

DOI: 10.1080/07373930701590806

Google Scholar

[36] G.C. Wakchaure, K. Manikandan, M. Indra, M. Shirur, Kinetics of Thin Layer Drying of Button Mushroom. Journal of Agricultural Engineering. 47(4) (2010) 41-46.

DOI: 10.52151/jae2010474.1425

Google Scholar

[37] O.A. Aregbesola, B.S. Ogunsina, A.E. Sofolahan, N.N. Chime, Mathematical modeling of thin layer drying characteristics of dika (Irvingia gabonensis) nuts and kernels. Nigerian Food Journal. 33 (2015) 83–89.

DOI: 10.1016/j.nifoj.2015.04.012

Google Scholar

[38] E. Mirzaee, S. Rafiee, A. Keyhani, Evaluation and Selection of Thin-layer Models for Drying Kinetics of Apricot (cv.NASIRY). Agric Eng Int: CIGR Journal, 12(2) (2010) 111-116.

Google Scholar

[39] M. Sahin, I. Doymaz, Estimation of cauliflower mass transfer parameters during convective drying. Heat and Mass Transfer. 53(2017) 507–517.

DOI: 10.1007/s00231-016-1835-0

Google Scholar

[40] M. Kaveh, A. Jahanbakhshi, Y. Abbaspour-Gilandeh, E. Taghinezhad, M.B.F. Moghimi, The effect of ultrasound pre-treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network. Journal of Food Process Engineering, 41(7) (2018) 1-7.

DOI: 10.1111/jfpe.12868

Google Scholar

[41] R. Sehrawat, P.K. Nema, B.P. Kaur, Quality evaluation and drying characteristics of mango cubes dried using low pressure superheated steam, vacuum and hot air drying methods. LWT-Food Science and Technology, 92 (2018) 548–555.

DOI: 10.1016/j.lwt.2018.03.012

Google Scholar

[42] I. Boutelba, S. Zid, P. Glouannec, S. Youcef-ali, A. Magueresse, N. Kimouche, Thermo-hydrous behavior of dried un-blanched potato samples. Journal of Food Engineering, 240 (2019). 160–170.

DOI: 10.1016/j.jfoodeng.2018.07.027

Google Scholar

[43] Chinenye, N.M., D.I. Onyenwigwe, F. Abam, B. Lamrani, M. Simo-Tagne, N. Bekkioui, L. Bennamoun, Z. Said, Influence of hot water blanching and saline immersion period on the thermal effusivity and the drying kinetics of hybrid solar drying of sweet potato chips. Solar Energy 240 (2022) 176-192.

DOI: 10.1016/j.solener.2022.05.026

Google Scholar

[44] Celma, A. R., Cuadros, F. and Lopez-Rodriguez, F. (2012) Convective drying characteristics of sludge from treatment plants in tomato processing industries. Food Bioproduction Process 90: 224-234.

DOI: 10.1016/j.fbp.2011.04.003

Google Scholar

[45] N.M. Ortiz-Rodríguez, J.F. Marín-Camacho, A.L. Gonz´alez, O. García-Valladares, Drying kinetics of natural rubber sheets under two solar thermal drying systems. Renewable Energy 165 (2021) 438–454.

DOI: 10.1016/j.renene.2020.11.035

Google Scholar

[46] J.P. Ekka, M. Palanisamy, Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. Thermal Science and Engineering Progress, 19 (2020) 100607.

DOI: 10.1016/j.tsep.2020.100607

Google Scholar

[47] L.V. Erick C´esar, C.M. Ana Lilia, G.V. Octavio, P.F. Isaac, B.O. Rogelio, Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy 147 (2020) 845–855.

DOI: 10.1016/j.renene.2019.09.018

Google Scholar

[48] S.T. Sileshi, A.A. Hassen, K.D. Adem, Drying kinetics of dried injera (dirkosh) using a mixed-mode solar dryer, Cogent Engineering, 8(1) Article ID 1956870, (2021) 1-19.

DOI: 10.1080/23311916.2021.1956870

Google Scholar

[49] W. Wang, M. Li, R.H.E. Hassanien, Y. Wang, L. Yang, Thermal performance of indirect forced convection solar dryer and kinetics analysis of mango. Applied Thermal Engineering, 134 (2018) 310–321.

DOI: 10.1016/j.applthermaleng.2018.01.115

Google Scholar

[50] K.O. Falade, T.O. Olurin, E.A. Ike, O.C. Aworh, Effect of pretreatment and temperature on air-drying of Dioscorea alata and Dioscorea rotundata slices. Journal of Food Engineering. 80 (2007) 1002–1010.

DOI: 10.1016/j.jfoodeng.2006.06.034

Google Scholar

[51] R. Torres, R.D. Montes, R.D. Andrade, O.A. Perez, H. Toscano, Drying Kinetics of Two Yam (Dioscorea Alata) Varieties. Dyna, 79 (171) (2012) 175-182.

Google Scholar

[52] E. Abedini, H. Hajebzadeh, M.A. Mirza, A.A. Alahdadi, H.M. Ahmadi, M.A. Salehi, M. Zakeri, Evaluation of operational parameters for drying shrimps in a cabinet hybrid dryer. Solar Energy 233 (2022) 221–229.

DOI: 10.1016/j.solener.2022.01.045

Google Scholar

[53] B. Lamrani, F. Kuznik, A. Ajbar, M. Boumaza, Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates. Energy 228: (2021) 120598.

DOI: 10.1016/j.energy.2021.120598

Google Scholar

[54] V.R. Mugi, and V.P. Chandramohan, Energy and exergy analysis of forced and natural convection indirect solar dryers: Estimation of exergy in flow, out flow, losses, exergy efficiencies and sustainability indicators from drying experiments. Journal of Cleaner Production (2021) 282. 124421.

DOI: 10.1016/j.jclepro.2020.124421

Google Scholar

[55] S. Minaei, H.A. Chenarbon, A. Motevali, A. Arabhosseini, Energy consumption, thermal utilization efficiency and hypericin content in drying leaves of St John's Wort (Hypericum perforatum). Journal of Energy in Southern Africa. 25(3): (2014a) 27–35.

DOI: 10.17159/2413-3051/2014/v25i3a2655

Google Scholar

[56] S. Minaei, A. Motevali, B. Ghobadian, A. Banakar, S.H. Samadi, An Investigation of Energy Consumption, Solar Fraction and Hybrid Photovoltaic–Thermal Solar Dryer Parameters in Drying of Chamomile Flower. International Journal of Food Engineering. 10(4) (2014b) 697–711.

DOI: 10.1515/ijfe-2014-0135

Google Scholar

[57] E.C. López-Vidaña, L.L. Méndez-Lagunas, J.Rodríguez-Ramírez, Efficiency of a hybrid solar–gas dryer. Solar Energy, 93 (2013) 23-31.

DOI: 10.1016/j.solener.2013.01.027

Google Scholar

[58] M.K. Mishra, K.R. Shrestha, V. Sagar, R.K. Amatya, Performance of hybrid solar-biomass dryer. Nepal Journal of Environmental Science 5 (2017) 61-69.

DOI: 10.3126/njes.v5i0.22717

Google Scholar

[59] A. Afzal, T. Iqbal, K. Ikram, M.N. Anjum, M. Umair, M. Azam, S. Akram, F. Hussain, M.A. ul Zaman, A. Ali, F. Majeed, Development of a hybrid mixed-mode solar dryer for product drying. Heliyon 9(e14144) (2023) 1-14.

DOI: 10.1016/j.heliyon.2023.e14144

Google Scholar