[1]
A.Goudie, H. Viles, Salt Weathering Hazards. Wiley, Chichester (1997).
Google Scholar
[2]
G.W. Scherer, Stress from crystallization of salt, Cem. Concr. Res. 34, 1613–1624 (2004).
Google Scholar
[3]
Noiriel, Catherine, et al. "Intense fracturing and fracture sealing induced by mineral growth in porous rocks." Chemical Geology 269.3-4 (2010): 197-209.
DOI: 10.1016/j.chemgeo.2009.09.018
Google Scholar
[4]
Gupta, Sonia, Leo Pel, and Klaas Kopinga. "Crystallization behavior of NaCl droplet during repeated crystallization and dissolution cycles: An NMR study." Journal of Crystal Growth 391 (2014): 64-71.
DOI: 10.1016/j.jcrysgro.2014.01.016
Google Scholar
[5]
Derluyn, Hannelore, and Marc Prat, eds. Salt Crystallization in Porous Media. John Wiley & Sons, 2024.
Google Scholar
[6]
Scherer, George W. "Crystallization in pores." Cement and Concrete research 29.8 (1999): 1347-1358.
DOI: 10.1016/s0008-8846(99)00002-2
Google Scholar
[7]
Q. Liu, X. Shen, B. ˇSavija, Z. Meng, D.C.W. Tsang, S. Sepasgozar, E. Schlangen, Numerical study of interactive ingress of calcium leaching, chloride transport and multi-ions coupling in concrete, Cem. Concr. Res. 165 (2023) 107072.
DOI: 10.1016/j.cemconres.2022.107072
Google Scholar
[8]
Q.X. Xiong, L. Tong, F. Meftah, Y. Zhang, Q. Liu, Improved predictions of permeability properties in cement-based materials: a comparative study of pore size distribution-based models, Constr. Build. Mater. 411 (2024) 133927.
DOI: 10.1016/j.conbuildmat.2023.133927
Google Scholar
[9]
X. Gao, Q. Liu, Y. Cai, L. Tong, Z. Peng, Q. Xiong, A new model for investigating the formation of interfacial transition zone in cement-based materials, Cem. Concr. Res. 167 (2025) 107675.
DOI: 10.1016/j.cemconres.2024.107675
Google Scholar
[10]
X. Gao, Z. Peng, L. Tong, Y. Cai, J. Xiao, X. Geng, Q. Liu, Effect of global aggregate distribution on interfacial transition zones in cement-based materials: an analytical-numerical study, Constr. Build. Mater. 458 (2025) 138278.
DOI: 10.1016/j.conbuildmat.2024.138278
Google Scholar
[11]
Xiong, Qing-xiang, et al. "Salt crystallization in porous materials: a quasi-local transport model for evaluating pore filling process." Construction and Building Materials 462 (2025): 139904.
DOI: 10.1016/j.conbuildmat.2025.139904
Google Scholar
[12]
M. Steiger,Crystal growth in porous materials—I: the crystallization pressure of large crystals, J.Cryst.Growth 282 (3–4), 455–469 (2005).
DOI: 10.1016/j.jcrysgro.2005.05.007
Google Scholar
[13]
R Hird, M.D. Bolton, Migration of sodium chloride in dry porous materials, Proc. R. Soc. A, 472: 20150710 (2016).
DOI: 10.1098/rspa.2015.0710
Google Scholar
[14]
A.Naillon, P.Joseph, M.Prat, Ion transport and precipitation kinetics as key aspects of the stress generation on pore walls induced by salt crystallization, Phys. Rev. Letters 120 (3), 034502 (2018).
DOI: 10.1103/physrevlett.120.034502
Google Scholar
[15]
J Desarnaud, D Bonn, N Shahidzadeh, The Pressure induced by salt crystallization in confinement, Scientific Reports 6, 30856 (2016).
DOI: 10.1038/srep30856
Google Scholar
[16]
Pel, L., et al. "Efflorescence pathway diagram: understanding salt weathering." Construction and Building Materials 18.5 (2004): 309-313.
DOI: 10.1016/j.conbuildmat.2004.02.003
Google Scholar
[17]
Gupta, Sonia, et al. "Paradoxical drying of a fired-clay brick due to salt crystallization." Chemical Engineering Science 109 (2014): 204-211.
DOI: 10.1016/j.ces.2014.01.023
Google Scholar
[18]
HP Huinink, L Pel, MAJ Michels, How ions distribute in a drying porous medium: A simple model, Physics of fluids 14 (4), 1389-1395 (2002).
DOI: 10.1063/1.1451081
Google Scholar
[19]
A. A. Moghaddam, A. Kharaghani, E. Tsotsas, M. Prat, Kinematics in a slowly drying porous medium: Reconciliation of pore network simulations and continuum modeling, Physics of Fluids 29 (2), 022102 (2017).
DOI: 10.1063/1.4975985
Google Scholar
[20]
J. Desarnaud, H. Derluyn, J. Carmeliet, D. Bonn, N. Shahidzadeh, Metastability limit for the nucleation of NaCl crystals in confinement, J.Phys.Chem.Lett.5 (5) 890–895 (2014).
DOI: 10.1021/jz500090x
Google Scholar
[21]
A.Naillon, P.Duru, M.Marcoux, M.Prat, Evaporation with sodium chloride crystallization in a capillary tube, J. of Crystal Growth, 422, 52-61 (2015).
DOI: 10.1016/j.jcrysgro.2015.04.010
Google Scholar
[22]
S.Assouline, K.Narkis, R. Gherabli, P. Lefort, and M.Prat. Analysis of the impact of surface layer properties on evaporation from porous systems using column experiments and modified definition of characteristic length, Water Resources Research, WR014489 (2014).
DOI: 10.1002/2013wr014489
Google Scholar
[23]
W. J. P. van Enckevort, J. H. Los, On the creeping of saturated salt solutions, Cryst. Growth Des., 13 (5), p.1838–1848 (2013).
DOI: 10.1021/cg301429g
Google Scholar
[24]
F. Hidri, N. Sghaier, H. Eloukabi, M. Prat, S. Ben Nasrallah, Porous medium coffee ring effect and other factors affecting the first crystallisation time of sodium chloride at the surface of a drying porous medium, Physics of Fluids 25(12), 127101 (2013).
DOI: 10.1063/1.4834356
Google Scholar
[25]
N. Sghaier, S. Geoffroy, M.Prat, H. Eloukabi, S. Ben Nasrallah, Evaporation driven growth of large crystallized salt structures in a porous medium, Phys. Rev. E 90, 042402 (2014).
DOI: 10.1103/physreve.90.042402
Google Scholar
[26]
H. Derluyn, P. Moonen, J. Carmeliet, Deformation and damage due to drying-induced salt crystallization in porous limestone, Journal of the Mechanics and Physics of Solids, 63, 242-255 (2014).
DOI: 10.1016/j.jmps.2013.09.005
Google Scholar