Influence of Grain Size on the Surface Heave due to Sodium Chloride Internal Crystallization

Article Preview

Abstract:

Crystallization of a salt in a porous medium can lead to the generation of stresses on the pore wall. This stress generation mechanism causes the phenomenon of surface heave, i.e. the upward displacement of the porous material surface.This surface heave phenomenon is studied from experiments with random packings of particles (glass beads) confined in a quasi-2D cell when the crystallization of sodium chloride is induced by evaporation. It is shown that the grain size has a significant impact on the surface heave. In addition, it show the existence of an optimal grain size maximizing the heave. This suggest that the bead size dependence is not related to the mechanical aspect of the problem but is rather linked to the impact of the bead size on the morphology and internal properties of the growing subflorescence.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-131

Citation:

Online since:

December 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.Goudie, H. Viles, Salt Weathering Hazards. Wiley, Chichester (1997).

Google Scholar

[2] G.W. Scherer, Stress from crystallization of salt, Cem. Concr. Res. 34, 1613–1624 (2004).

Google Scholar

[3] Noiriel, Catherine, et al. "Intense fracturing and fracture sealing induced by mineral growth in porous rocks." Chemical Geology 269.3-4 (2010): 197-209.

DOI: 10.1016/j.chemgeo.2009.09.018

Google Scholar

[4] Gupta, Sonia, Leo Pel, and Klaas Kopinga. "Crystallization behavior of NaCl droplet during repeated crystallization and dissolution cycles: An NMR study." Journal of Crystal Growth 391 (2014): 64-71.

DOI: 10.1016/j.jcrysgro.2014.01.016

Google Scholar

[5] Derluyn, Hannelore, and Marc Prat, eds. Salt Crystallization in Porous Media. John Wiley & Sons, 2024.

Google Scholar

[6] Scherer, George W. "Crystallization in pores." Cement and Concrete research 29.8 (1999): 1347-1358.

DOI: 10.1016/s0008-8846(99)00002-2

Google Scholar

[7] Q. Liu, X. Shen, B. ˇSavija, Z. Meng, D.C.W. Tsang, S. Sepasgozar, E. Schlangen, Numerical study of interactive ingress of calcium leaching, chloride transport and multi-ions coupling in concrete, Cem. Concr. Res. 165 (2023) 107072.

DOI: 10.1016/j.cemconres.2022.107072

Google Scholar

[8] Q.X. Xiong, L. Tong, F. Meftah, Y. Zhang, Q. Liu, Improved predictions of permeability properties in cement-based materials: a comparative study of pore size distribution-based models, Constr. Build. Mater. 411 (2024) 133927.

DOI: 10.1016/j.conbuildmat.2023.133927

Google Scholar

[9] X. Gao, Q. Liu, Y. Cai, L. Tong, Z. Peng, Q. Xiong, A new model for investigating the formation of interfacial transition zone in cement-based materials, Cem. Concr. Res. 167 (2025) 107675.

DOI: 10.1016/j.cemconres.2024.107675

Google Scholar

[10] X. Gao, Z. Peng, L. Tong, Y. Cai, J. Xiao, X. Geng, Q. Liu, Effect of global aggregate distribution on interfacial transition zones in cement-based materials: an analytical-numerical study, Constr. Build. Mater. 458 (2025) 138278.

DOI: 10.1016/j.conbuildmat.2024.138278

Google Scholar

[11] Xiong, Qing-xiang, et al. "Salt crystallization in porous materials: a quasi-local transport model for evaluating pore filling process." Construction and Building Materials 462 (2025): 139904.

DOI: 10.1016/j.conbuildmat.2025.139904

Google Scholar

[12] M. Steiger,Crystal growth in porous materials—I: the crystallization pressure of large crystals, J.Cryst.Growth 282 (3–4), 455–469 (2005).

DOI: 10.1016/j.jcrysgro.2005.05.007

Google Scholar

[13] R Hird, M.D. Bolton, Migration of sodium chloride in dry porous materials, Proc. R. Soc. A, 472: 20150710 (2016).

DOI: 10.1098/rspa.2015.0710

Google Scholar

[14] A.Naillon, P.Joseph, M.Prat, Ion transport and precipitation kinetics as key aspects of the stress generation on pore walls induced by salt crystallization, Phys. Rev. Letters 120 (3), 034502 (2018).

DOI: 10.1103/physrevlett.120.034502

Google Scholar

[15] J Desarnaud, D Bonn, N Shahidzadeh, The Pressure induced by salt crystallization in confinement, Scientific Reports 6, 30856 (2016).

DOI: 10.1038/srep30856

Google Scholar

[16] Pel, L., et al. "Efflorescence pathway diagram: understanding salt weathering." Construction and Building Materials 18.5 (2004): 309-313.

DOI: 10.1016/j.conbuildmat.2004.02.003

Google Scholar

[17] Gupta, Sonia, et al. "Paradoxical drying of a fired-clay brick due to salt crystallization." Chemical Engineering Science 109 (2014): 204-211.

DOI: 10.1016/j.ces.2014.01.023

Google Scholar

[18] HP Huinink, L Pel, MAJ Michels, How ions distribute in a drying porous medium: A simple model, Physics of fluids 14 (4), 1389-1395 (2002).

DOI: 10.1063/1.1451081

Google Scholar

[19] A. A. Moghaddam, A. Kharaghani, E. Tsotsas, M. Prat, Kinematics in a slowly drying porous medium: Reconciliation of pore network simulations and continuum modeling, Physics of Fluids 29 (2), 022102 (2017).

DOI: 10.1063/1.4975985

Google Scholar

[20] J. Desarnaud, H. Derluyn, J. Carmeliet, D. Bonn, N. Shahidzadeh, Metastability limit for the nucleation of NaCl crystals in confinement, J.Phys.Chem.Lett.5 (5) 890–895 (2014).

DOI: 10.1021/jz500090x

Google Scholar

[21] A.Naillon, P.Duru, M.Marcoux, M.Prat, Evaporation with sodium chloride crystallization in a capillary tube, J. of Crystal Growth, 422, 52-61 (2015).

DOI: 10.1016/j.jcrysgro.2015.04.010

Google Scholar

[22] S.Assouline, K.Narkis, R. Gherabli, P. Lefort, and M.Prat. Analysis of the impact of surface layer properties on evaporation from porous systems using column experiments and modified definition of characteristic length, Water Resources Research, WR014489 (2014).

DOI: 10.1002/2013wr014489

Google Scholar

[23] W. J. P. van Enckevort, J. H. Los, On the creeping of saturated salt solutions, Cryst. Growth Des., 13 (5), p.1838–1848 (2013).

DOI: 10.1021/cg301429g

Google Scholar

[24] F. Hidri, N. Sghaier, H. Eloukabi, M. Prat, S. Ben Nasrallah, Porous medium coffee ring effect and other factors affecting the first crystallisation time of sodium chloride at the surface of a drying porous medium, Physics of Fluids 25(12), 127101 (2013).

DOI: 10.1063/1.4834356

Google Scholar

[25] N. Sghaier, S. Geoffroy, M.Prat, H. Eloukabi, S. Ben Nasrallah, Evaporation driven growth of large crystallized salt structures in a porous medium, Phys. Rev. E 90, 042402 (2014).

DOI: 10.1103/physreve.90.042402

Google Scholar

[26] H. Derluyn, P. Moonen, J. Carmeliet, Deformation and damage due to drying-induced salt crystallization in porous limestone, Journal of the Mechanics and Physics of Solids, 63, 242-255 (2014).

DOI: 10.1016/j.jmps.2013.09.005

Google Scholar