[1]
T. L. Phan, P. D. Thang, P. T. Huyen, T. V. Manh, T. A. Ho, T. D. Thanh, N. M. Vuong, and B. W. Lee, Crystal structure and photoluminescence properties of Eu-doped Y2O3 nanoparticles prepared by mechanical milling. Materials Transactions 56.9 (2015) 1412-1415.
DOI: 10.2320/matertrans.ma201556
Google Scholar
[2]
P. Zhu, W. Wang, H. Zhu, P. Vargas, & A. Bont, Optical properties of Eu3+- doped Y2O3 nanotubes and nanosheets synthesized by hydrothermal method. IEEE Photonics Journal 10.1 (2018) 1-10.
DOI: 10.1109/jphot.2018.2797950
Google Scholar
[3]
G. Chen, W. Qi, , Y. Li, , C. Yang, & X. Zhao, Hydrothermal synthesis of Y2O3: Eu3+ nanorods and its growth mechanism and luminescence properties. Journal of Materials Science: Materials in Electronics 27.6 (2016) 5628-5634.
DOI: 10.1007/s10854-016-4470-0
Google Scholar
[4]
D.H. Chávez, O.E. Contreras, & G. A. Hirata, Synthesis and Upconversion Luminescence of Nanoparticles Y2O3 and Gd2O3 Co-doped with Yb3+ and Er3+. Nanomaterials and Nanotechnology 6 (2016) 7.
Google Scholar
[5]
D. Avram, B. Cojocaru, M. Florea, & C. Tiseanu, Advances in luminescence of lanthanide doped Y2O3: case of S6 sites. Optical Materials Express 6.5 (2016) 1635-1643.
DOI: 10.1364/ome.6.001635
Google Scholar
[6]
M. H. Chung, J. H. Kim, Preparation and Luminescence of Europium-doped Yttrium Oxide Thin Films. Applied Science and Convergence Technology 26.2 (2017) 26-29.
DOI: 10.5757/asct.2017.26.2.26
Google Scholar
[7]
H. Shi, X. Y. Zhang,W. L. Dong, X. Y. Mi, N. L. Wang, Y. Li, & H. W. Liu, Effect of co-doped metal caions on the properties of Y2O3: Eu3+ phosphors synthesized by gel-combustion method. Chinese Physics B 25.4 (2016) 047802.
DOI: 10.1088/1674-1056/25/4/047802
Google Scholar
[8]
R. S. Yadav, R. V. Yadav, A. Bahadur, T. P. Yadav, & S. B. Rai, Role of Li+ on white light emission from Sm3+ and Tb3+ co-doped Y2O3 nano-phosphor. Materials Research Express 3.3 (2016) 036201.
DOI: 10.1088/2053-1591/3/3/036201
Google Scholar
[9]
T. Verma, & S. Agrawal, Photoluminescent and thermoluminescent studies of Dy3+ and Eu3+ doped Y2O3 phosphors. Journal of fluorescence 28.1 (2018) 453-464.
DOI: 10.1007/s10895-018-2208-5
Google Scholar
[10]
D. Pyngrope, A. I. Prasad, & R. Pradhan, Enhancement of Intensity of Emission and Photoluminescence Properties of Red Light Emitting YPO4: Eu3+ by Infiltration of Li+ in the Crystal Structure of YPO4: Eu3+. Journal of Metastable and Nanocrystalline Materials, 36 (2023) 49-56.
DOI: 10.4028/p-7k6up3
Google Scholar
[11]
D. Pyngrope, P. Syndai, & A. I. Prasad, Impregnation of Ce3+ in YPO4 Lattice for Enhanced Green Emission for Biomedical Applications. Advanced Materials Research, 1180(2024)53-65.
DOI: 10.4028/p-fsrx56
Google Scholar
[12]
S. Som, S. K. Sharma, and S. P. Lochab, Swift heavy ion induced structural and luminescence characterization of Y2O3: Eu3+ phosphor: a comparative study. Luminescence 29.5 (2014) 480-491.
DOI: 10.1002/bio.2573
Google Scholar
[13]
M. Hajizadeh-Oghaz, R. S. Razavi, M. Barekat, M. Naderi, S. Malekzadeh, & M. Rezazadeh, Synthesis and characterization of Y2O3 nanoparticles by sol–gel process for transparent ceramics applications. Journal of Sol-Gel Science and Technology 78.3 (2016) 682-691.
DOI: 10.1007/s10971-016-3986-3
Google Scholar
[14]
R. Balderas-Xicohténcatl, S. Carmona-Tellez, and C. Falcony, Y2O3: Dy3+/Li+ phosphors synthesized by spray. Revista mexicana de física 63.4 (2017) 372-377.
Google Scholar
[15]
U. Balderas, S. Carmona, L. Mariscal, I. Martínez, & C. Falcony, Tunable excitation in Eu3+ based hybrid layered nanophosphors through aggregate formation. Chemical Physics 511 (2018) 1-6.
DOI: 10.1016/j.chemphys.2018.05.014
Google Scholar
[16]
Debasish Ghosh, and Meitram Niraj Luwang, One-pot synthesis of 2-thenoyltrifluoroacetone surface functionalised SrF2: Eu3+ nanoparticles: trace level detection of water. RSC Advances 5.58 (2015) 47131-47139.
DOI: 10.1039/c5ra08566g
Google Scholar
[17]
W.A.I. Tabaza, H. C. Swart, & R. E. Kroon, Optical properties of Bi and energy transfer from Bi to Tb in MgAl2O4 phosphor. Journal of luminescence 148 (2014) 192-197.
DOI: 10.1016/j.jlumin.2013.12.018
Google Scholar
[18]
R.S. Yadav, & S. B. Rai, Surface analysis and enhanced photoluminescence via Bi3+ doping in a Tb3+ doped Y2O3 nano-phosphor under UV excitation. Journal of Alloys and Compounds 700 (2017) 228-237.
DOI: 10.1016/j.jallcom.2017.01.074
Google Scholar
[19]
D. González Mancebo, A. I.Becerro, A. Corral, M. Moros, M. Balcerzyk, J. M. D. L. Fuente, & M. Ocaña, Enhancing luminescence and X-ray absorption capacity of Eu3+: LaF3 nanoparticles by Bi3+ codoping. Acs Omega, 4(1) (2019) 765-774.
DOI: 10.1021/acsomega.8b03160
Google Scholar
[20]
S. K. Gupta, J. P. Zuniga, M. Abdou, P. S. Ghosh, & Y. Mao, Optical properties of undoped, Eu3+ doped and Li+ co-doped Y2Hf2O7 nanoparticles and polymer nanocomposite films. Inorganic Chemistry Frontiers, 7(2) (2020) 505-518.
DOI: 10.1039/c9qi01181a
Google Scholar
[21]
D. Chávez-García, P. Sengar, K. Juárez-Moreno, D. L. Flores, I. Calderón, J. Barrera, & G. A. Hirata, Luminescence properties and cell uptake analysis of Y2O3: Eu, Bi nanophosphors for bio-imaging applications. Journal of Materials Research and Technology, 10 (2021) 797-807.
DOI: 10.1016/j.jmrt.2020.11.071
Google Scholar
[22]
L. Ruan, Z. Zhou, Y. Hu, R. Peng, X. Chen, M. Cheng, Z. Zhi, & M. Xia, A narrow-band blue emitting phosphor by co-doping Bi3+ and alkali metal ions (Li+, Na+ and K+) with dual luminescence center. Journal of Rare Earths, 43(3) (2025) 543-551.
DOI: 10.1016/j.jre.2024.03.016
Google Scholar