Comparative Studies on the Effects of Li+ and Bi3+ Sensitisation in Enhancing the Emission Intensity of Y2O3:Eu3+

Article Preview

Abstract:

With a high melting point (>2400°C), superior thermal conductivity, and a large band gap (5.8 eV), Y₂O₃ exhibits a high dielectric constant (14–18), a refractive index of ~1.9, and excellent chemical resistance. Its low phonon vibration frequency (~380 cm⁻¹) enables efficient energy transitions for rare-earth (RE) ions, enhancing its suitability as a host for luminescent phosphors. In this study, Y₂O₃ nanoparticles doped with Eu³⁺ and sensitized with either Li⁺ or Bi³⁺ were synthesized via polyol method. A comparative investigation was conducted to evaluate the energy transfer efficiency and luminescence enhancement provided by each sensitizer. Structural and morphological characteristics were examined using X-ray diffraction (XRD) and transmission electron microscopy (TEM), while Fourier-transform infrared spectroscopy (FT-IR) was employed to study absorption features. Photoluminescence (PL) analysis revealed the impact of sensitizer ions on emission intensity, identifying the most effective combination for optimized luminescent performance. These findings demonstrate the potential of sensitized Y₂O₃:Eu³⁺ nanoparticles for advanced luminescence-based applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-46

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. L. Phan, P. D. Thang, P. T. Huyen, T. V. Manh, T. A. Ho, T. D. Thanh, N. M. Vuong, and B. W. Lee, Crystal structure and photoluminescence properties of Eu-doped Y2O3 nanoparticles prepared by mechanical milling. Materials Transactions 56.9 (2015) 1412-1415.

DOI: 10.2320/matertrans.ma201556

Google Scholar

[2] P. Zhu, W. Wang, H. Zhu, P. Vargas, & A. Bont, Optical properties of Eu3+- doped Y2O3 nanotubes and nanosheets synthesized by hydrothermal method. IEEE Photonics Journal 10.1 (2018) 1-10.

DOI: 10.1109/jphot.2018.2797950

Google Scholar

[3] G. Chen, W. Qi, , Y. Li, , C. Yang, & X. Zhao, Hydrothermal synthesis of Y2O3: Eu3+ nanorods and its growth mechanism and luminescence properties. Journal of Materials Science: Materials in Electronics 27.6 (2016) 5628-5634.

DOI: 10.1007/s10854-016-4470-0

Google Scholar

[4] D.H. Chávez, O.E. Contreras, & G. A. Hirata, Synthesis and Upconversion Luminescence of Nanoparticles Y2O3 and Gd2O3 Co-doped with Yb3+ and Er3+. Nanomaterials and Nanotechnology 6 (2016) 7.

Google Scholar

[5] D. Avram, B. Cojocaru, M. Florea, & C. Tiseanu, Advances in luminescence of lanthanide doped Y2O3: case of S6 sites. Optical Materials Express 6.5 (2016) 1635-1643.

DOI: 10.1364/ome.6.001635

Google Scholar

[6] M. H. Chung, J. H. Kim, Preparation and Luminescence of Europium-doped Yttrium Oxide Thin Films. Applied Science and Convergence Technology 26.2 (2017) 26-29.

DOI: 10.5757/asct.2017.26.2.26

Google Scholar

[7] H. Shi, X. Y. Zhang,W. L. Dong, X. Y. Mi, N. L. Wang, Y. Li, & H. W. Liu, Effect of co-doped metal caions on the properties of Y2O3: Eu3+ phosphors synthesized by gel-combustion method. Chinese Physics B 25.4 (2016) 047802.

DOI: 10.1088/1674-1056/25/4/047802

Google Scholar

[8] R. S. Yadav, R. V. Yadav, A. Bahadur, T. P. Yadav, & S. B. Rai, Role of Li+ on white light emission from Sm3+ and Tb3+ co-doped Y2O3 nano-phosphor. Materials Research Express 3.3 (2016) 036201.

DOI: 10.1088/2053-1591/3/3/036201

Google Scholar

[9] T. Verma, & S. Agrawal, Photoluminescent and thermoluminescent studies of Dy3+ and Eu3+ doped Y2O3 phosphors. Journal of fluorescence 28.1 (2018) 453-464.

DOI: 10.1007/s10895-018-2208-5

Google Scholar

[10] D. Pyngrope, A. I. Prasad, & R. Pradhan, Enhancement of Intensity of Emission and Photoluminescence Properties of Red Light Emitting YPO4: Eu3+ by Infiltration of Li+ in the Crystal Structure of YPO4: Eu3+. Journal of Metastable and Nanocrystalline Materials, 36 (2023) 49-56.

DOI: 10.4028/p-7k6up3

Google Scholar

[11] D. Pyngrope, P. Syndai, & A. I. Prasad, Impregnation of Ce3+ in YPO4 Lattice for Enhanced Green Emission for Biomedical Applications. Advanced Materials Research, 1180(2024)53-65.

DOI: 10.4028/p-fsrx56

Google Scholar

[12] S. Som, S. K. Sharma, and S. P. Lochab, Swift heavy ion induced structural and luminescence characterization of Y2O3: Eu3+ phosphor: a comparative study. Luminescence 29.5 (2014) 480-491.

DOI: 10.1002/bio.2573

Google Scholar

[13] M. Hajizadeh-Oghaz, R. S. Razavi, M. Barekat, M. Naderi, S. Malekzadeh, & M. Rezazadeh, Synthesis and characterization of Y2O3 nanoparticles by sol–gel process for transparent ceramics applications. Journal of Sol-Gel Science and Technology 78.3 (2016) 682-691.

DOI: 10.1007/s10971-016-3986-3

Google Scholar

[14] R. Balderas-Xicohténcatl, S. Carmona-Tellez, and C. Falcony, Y2O3: Dy3+/Li+ phosphors synthesized by spray. Revista mexicana de física 63.4 (2017) 372-377.

Google Scholar

[15] U. Balderas, S. Carmona, L. Mariscal, I. Martínez, & C. Falcony, Tunable excitation in Eu3+ based hybrid layered nanophosphors through aggregate formation. Chemical Physics 511 (2018) 1-6.

DOI: 10.1016/j.chemphys.2018.05.014

Google Scholar

[16] Debasish Ghosh, and Meitram Niraj Luwang, One-pot synthesis of 2-thenoyltrifluoroacetone surface functionalised SrF2: Eu3+ nanoparticles: trace level detection of water. RSC Advances 5.58 (2015) 47131-47139.

DOI: 10.1039/c5ra08566g

Google Scholar

[17] W.A.I. Tabaza, H. C. Swart, & R. E. Kroon, Optical properties of Bi and energy transfer from Bi to Tb in MgAl2O4 phosphor. Journal of luminescence 148 (2014) 192-197.

DOI: 10.1016/j.jlumin.2013.12.018

Google Scholar

[18] R.S. Yadav, & S. B. Rai, Surface analysis and enhanced photoluminescence via Bi3+ doping in a Tb3+ doped Y2O3 nano-phosphor under UV excitation. Journal of Alloys and Compounds 700 (2017) 228-237.

DOI: 10.1016/j.jallcom.2017.01.074

Google Scholar

[19] D. González Mancebo, A. I.Becerro, A. Corral, M. Moros, M. Balcerzyk, J. M. D. L. Fuente, & M. Ocaña, Enhancing luminescence and X-ray absorption capacity of Eu3+: LaF3 nanoparticles by Bi3+ codoping. Acs Omega, 4(1) (2019) 765-774.

DOI: 10.1021/acsomega.8b03160

Google Scholar

[20] S. K. Gupta, J. P. Zuniga, M. Abdou, P. S. Ghosh, & Y. Mao, Optical properties of undoped, Eu3+ doped and Li+ co-doped Y2Hf2O7 nanoparticles and polymer nanocomposite films. Inorganic Chemistry Frontiers, 7(2) (2020) 505-518.

DOI: 10.1039/c9qi01181a

Google Scholar

[21] D. Chávez-García, P. Sengar, K. Juárez-Moreno, D. L. Flores, I. Calderón, J. Barrera, & G. A. Hirata, Luminescence properties and cell uptake analysis of Y2O3: Eu, Bi nanophosphors for bio-imaging applications. Journal of Materials Research and Technology, 10 (2021) 797-807.

DOI: 10.1016/j.jmrt.2020.11.071

Google Scholar

[22] L. Ruan, Z. Zhou, Y. Hu, R. Peng, X. Chen, M. Cheng, Z. Zhi, & M. Xia, A narrow-band blue emitting phosphor by co-doping Bi3+ and alkali metal ions (Li+, Na+ and K+) with dual luminescence center. Journal of Rare Earths, 43(3) (2025) 543-551.

DOI: 10.1016/j.jre.2024.03.016

Google Scholar