Novel Blighia sapida Leave-Derived Biochar (BSLB) for Highly Efficient Removal of Cefuroxime from Aqueous Media

Article Preview

Abstract:

The discharge of antibiotics such as cefuroxime (CFX) into the environment poses significant risks to human health and aquatic ecosystems due to the emergence of antibiotic resistance. This study evaluated the efficiency of Blighia sapida leave-derived biochar (BSLB) as an eco-friendly and cost-effective adsorbent for removing CFX from aqueous media. Effect of adsorption operating parameters such as BSLB dosage, contact time, temperature, and initial CFX concentration were investigated. Extent of CFX removal was discovered to differ with contact time, adsorbent dose, temperature and initial concentration of drug. Adsorption isotherm and kinetics parameters of the CFX molecule sequestration process were also evaluated Pseudo-second-order kinetics adequately described the adsorption process, which indicates chemisorption is the most plausible mechanism for CFX removal. The Langmuir isotherm model is found to be the best appropriate to describe the adsorption process. The monolayer saturated adsorption capacity of BSLB was found to be 33.50 mg/g. Regeneration experiments demonstrated over 80% efficiency after four cycles, confirming the reusability of the prepared biochar. Therefore, the as-prepared Blighia sapida leave-derived biochar found to be efficient and sustainable biosorbent for the CFX antibiotic removal from liquid phase media.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-74

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Hu, T. Sun, L. Jia, J. Wei, Z. Sun, Preparation of metal-organic framework-based carbon materials and its application to adsorptive removal of cefepime from aqueous solution. J. Hazard. Mat. 390 (2020) 122190.

DOI: 10.1016/j.jhazmat.2020.122190

Google Scholar

[2] A.R. Ribeiro, B.Sures, T.C. Schmidt, Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies, Environ. Poll. 241 (2018) 1153-1166.

DOI: 10.1016/j.envpol.2018.06.040

Google Scholar

[3] E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, S. Pant, S. Gandra, S.A. Levin, H. Goossens, R. Laxminarayan, Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings Nat. Academy Sci. 115(15) (2018) E3463-E3470.

DOI: 10.1073/pnas.1717295115

Google Scholar

[4] E.I. Iatrou, A.S. Stasinakis, N.S. Thomaidis, Consumption-based approach for predicting environmental risk in Greece due to the presence of antimicrobials in domestic wastewater, Environ. Sci. Poll. Res. 21 (2014) 12941-12950.

DOI: 10.1007/s11356-014-3243-7

Google Scholar

[5] S. Aydın, A. Ulvi, F. Bedük, M.E. Aydın, Pharmaceutical residues in digested sewage sludge: Occurrence, seasonal variation and risk assessment for soil. Sci. Total Environ. 817 (2022) 152864.

DOI: 10.1016/j.scitotenv.2021.152864

Google Scholar

[6] M. Pan, L.M. Chu, Transfer of antibiotics from wastewater or animal manure to soil and edible crops, Environ. Poll. 231 (2017) 829-836.

DOI: 10.1016/j.envpol.2017.08.051

Google Scholar

[7] X.Y. Zeng, Y., Wang, R.X. Li, H.L. Cao, Y.F. Li, J. Lü, Impacts of temperatures and phosphoric-acid modification to the physicochemical properties of biochar for excellent sulfadiazine adsorption, Biochar. 4(1) (2022) 14.

DOI: 10.1007/s42773-022-00143-4

Google Scholar

[8] S. Rangabhashiyam, P.J.I.C. Balasubramanian, The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism and wastewater application-a review, Ind. Crops Product. 128 (2019) 405-423.

DOI: 10.1016/j.indcrop.2018.11.041

Google Scholar

[9] M.A. Islam, M. Auta, G. Kabir, B.H. Hameed, A thermogravimetric analysis of the combustion kinetics of karanja (Pongamia pinnata) fruit hulls char, Bior. Technol, 200 (2016) 335-341.

DOI: 10.1016/j.biortech.2015.09.057

Google Scholar

[10] A.G. Adeniyi, K.O. Iwuozor, E.B. Emenike, M.A. Amoloye, J. A. Adeleke, E.O. Omonayin. J.O. Bamigbola, H.T. Ojo, A.O. Ezzat, Leaf-based biochar: A review of thermochemical conversion techniques and properties. J Analytical Appl. Pyroly. 177 (2024) 106352.

DOI: 10.1016/j.jaap.2024.106352

Google Scholar

[11] P. Chakraborty, S.D. Singh, I. Gorai, D. Singh, W.U. Rahman, G. Halder, Explication of physically and chemically treated date stone biochar for sorptive remotion of ibuprofen from aqueous solution. J. Water Process Eng, 33 (2020) 101022.

DOI: 10.1016/j.jwpe.2019.101022

Google Scholar

[12] J.E. Kim, S.K. Bhatia, H.J. Song, E. Yoo, H.J. Jeon, J.Y. Yoon, Y. Yang, R. Gurav, Y.H. Yang, H.J. Kim, Y.K. Choi, Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar, Biores. Technol. 306 (2020) 123092.

DOI: 10.1016/j.biortech.2020.123092

Google Scholar

[13] R. Cela-Dablanca, C. Nebot, L. Rodríguez López, D. Fernández-Calviño, M. Arias-Estévez, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, Efficacy of different waste and by-products from forest and food industries in the removal/retention of the antibiotic cefuroxime. Process. 9(7) (2021) 1151.

DOI: 10.3390/pr9071151

Google Scholar

[14] F.R. Abdulrahim, F. Akbal, Evaluation of Activated Carbon from Cordia Myxa used as an Adsorbent for Pharmaceutical Removal from Wastewater. Master's Thesis, Department of Environmental Engineering, Institute of Graduate Studies, Ondokuz Mayis University, (2022) p.1 – 136.

Google Scholar

[15] Y.P. Chen, C.H. Zheng, Y.Y. Huang, Y.R. Chen, Removal of chlortetracycline from water using spent tea leaves-based biochar as adsorption-enhanced persulfate activator. Chemosphere. 286 (2022) 131770.

DOI: 10.1016/j.chemosphere.2021.131770

Google Scholar

[16] A.A. Adeyi, A. Giwa, L.C. Abdullah, L.T. Popoola, S.N.A.M. Jamil, M.A. Lala, Sequestration of diclofenac and amoxycillin pharmaceutical compounds by thiourea modified poly (acrylonitrile-co-acrylic acid): parametric optimisation, kinetic and isotherm studies. Int. J. Environ. Analytical Chem. (2023) 1-17.

DOI: 10.1080/03067319.2023.2239155

Google Scholar

[17] I.W. Almanassra, A. Chatla, Y. Zakaria, V. Kochkodan, A. Shanableh, T. Laoui, M.A. Atieh, Palm leaves based biochar: advanced material characterization and heavy metal adsorption study. Biomass Conver, Biorefinery. 14(13) (2024) 14811-14830.

DOI: 10.1007/s13399-022-03590-y

Google Scholar

[18] J.B. Neris, F.H.M. Luzardo, E.G.P. da Silva, F.G. Velasco, Evaluation of adsorption processes of metal ions in multi-element aqueous systems by lignocellulosic adsorbents applying different isotherms: A critical review, Chem. Eng. J. 357 (2019) 404-420.

DOI: 10.1016/j.cej.2018.09.125

Google Scholar

[19] I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids. J. American Chem. Society. 38(11) (1916) 2221-2295.

DOI: 10.1021/ja02268a002

Google Scholar

[20] H. Freundlich, Colloid & capillary chemistry, Third Germ. Methuen & Company Limited, New York, 1926.

Google Scholar

[21] S.M. Silva, K.A. Sampaio, R. Ceriani, R. Verbe, C. Stevens, W. De Greyt, A.J.A. Meirelles, Adsorption of carotenes and phosphorus from palm oil onto acid activated bleaching earth: equilibrium, kinetics and thermodynamics. J. Food Eng. 118 (2013) 341–349.

DOI: 10.1016/j.jfoodeng.2013.04.026

Google Scholar

[22] V. Bolis, C. Morterra, B. Fubini, P. Ugliengo, E. Garrone, Temkin-type model for the description of induced heterogeneity: CO adsorption on group 4 transition metal dioxides. Langmuir. 9(6) (1993) 1521-1528.

DOI: 10.1021/la00030a017

Google Scholar

[23] K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 74 (2017) 25-48.

DOI: 10.1016/j.jtice.2017.01.024

Google Scholar

[24] S. Lagergren, About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar 24 (1898) 1–39.

Google Scholar

[25] M.F. Li, Y.G. Liu, G.M. Zeng, N. Liu, S.B. Liu, Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review, Chemosphere 226 (2019) 360-380.

DOI: 10.1016/j.chemosphere.2019.03.117

Google Scholar

[26] Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Proc. Safety Environ. Protect. 76(4) (1998) 332-340.

DOI: 10.1205/095758298529696

Google Scholar

[27] R. Martínez-Escutia, A. Méndez-Albores, A. Vázquez-Durán, Outstanding enrofloxacin removal using an unmodified low-cost sorbent prepared from the leaves of Pyracantha koidzumii. Antibiotics, 11(11) (2022) 1563.

DOI: 10.3390/antibiotics11111563

Google Scholar

[28] Y. Hamid, L. Liu, M. Usman, R. Naidu, M. Haris, Q. Lin, Z. Ulhassan, M.I. Hussain, X. Yang, Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water, J. Hazard. Mat. 437 (2022) 129337.

DOI: 10.1016/j.jhazmat.2022.129337

Google Scholar

[29] A. Srivastava, H. Dave, S.K. Azad, M. Kumari, S. Karwal, P. Karma, P. Tiwari, K.S. Prasad, Iron modification of biochar developed from Tectona grandis Linn. F. for adsorptive removal of tetracycline from aqueous solution, Analyt. Chem. Letter. 11(3) (2021) 360-375.

DOI: 10.1080/22297928.2021.1934113

Google Scholar

[30] M. Zhang, L.Y. He, Y.S. Liu, J.L. Zhao, W.R. Liu, J.N. Zhang, J. Chen, L.K. He, Q.Q. Zhang, G.G. Ying, Fate of veterinary antibiotics during animal manure composting. Sci. Total Environ. 650 (2019) 1363-1370.

DOI: 10.1016/j.scitotenv.2018.09.147

Google Scholar

[31] N. Khoshnamvand, S. Ahmadi, F.K. Mostafapour, Kinetic and isotherm studies on ciprofloxacin an adsorption using magnesium oxide nanoparticles, J. Appl. Pharm. Sci. 7(11) (2017) 079-083.

Google Scholar

[32] N.H. Thang, D.S. Khang, T.D. Hai, D.T. Nga, P.D. Tuan, Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells, RSC Advances, 11(43) (2021) 26563-26570.

DOI: 10.1039/d1ra04672a

Google Scholar

[33] A.A. Adeyi, D.O. Ogundola, L.T. Popoola, E. Bernard, S.G. Udeagbara, A.T. Ogunyemi, I.I. Olateju, R. Zainul, Potassium permanganate–modified eggshell biosorbent for the removal of diclofenac from liquid environment: adsorption performance, isotherm, kinetic, and thermodynamic analyses. Environ. Monitoring Assess. 196(9) (2024) 1-17.

DOI: 10.1007/s10661-024-12964-w

Google Scholar

[34] A. Negi, S. Joshi, S.K. Joshi, N.S. Bhandari, Biosorption of zinc on functionally activated Lantana camara leaves: equilibrium, kinetic, and thermodynamic studies, Biomass Conver. Bioref. (2024) 1-18.

DOI: 10.1007/s13399-024-05955-x

Google Scholar

[35] M. Cheng, X. Zhang, Y. Shi, D. Shi, G. Zhu, J. Fan, Highly efficient removal of ceftiofur sodium using a superior hydroxyl group functionalized ionic liquid-modified polymer. Sci. Total Environ. 662 (2019) 324-331.

DOI: 10.1016/j.scitotenv.2019.01.223

Google Scholar

[36] Q. Meng, Y. Zhang, D. Meng, X. Liu, Z. Zhang, P. Gao, A. Lin, L. Hou, Removal of sulfadiazine from aqueous solution by in-situ activated biochar derived from cotton shell, Environ. Res., 191 (2020) 110104.

DOI: 10.1016/j.envres.2020.110104

Google Scholar

[37] M. Awwad, F. Al-Rimawi, K.J.K. Dajani, M. Khamis, S. Nir, R. Karaman, Removal of amoxicillin and cefuroxime axetil by advanced membranes technology, activated carbon and micelle–clay complex, Environ Technol. 36(16) (2015) 2069-2078.

DOI: 10.1080/09593330.2015.1019935

Google Scholar

[38] X. Ma, D. Duan, J. Chen, B. Xie, Structure and Adsorption Performance of Cationic Entermorpha prolifera Polysaccharide-Based Hydrogel for Typical Pollutants: Methylene Blue, Cefuroxime, and Cr (VI), Gels. 8(9) (2022) 546.

DOI: 10.3390/gels8090546

Google Scholar