[1]
X. Hu, T. Sun, L. Jia, J. Wei, Z. Sun, Preparation of metal-organic framework-based carbon materials and its application to adsorptive removal of cefepime from aqueous solution. J. Hazard. Mat. 390 (2020) 122190.
DOI: 10.1016/j.jhazmat.2020.122190
Google Scholar
[2]
A.R. Ribeiro, B.Sures, T.C. Schmidt, Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies, Environ. Poll. 241 (2018) 1153-1166.
DOI: 10.1016/j.envpol.2018.06.040
Google Scholar
[3]
E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, S. Pant, S. Gandra, S.A. Levin, H. Goossens, R. Laxminarayan, Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings Nat. Academy Sci. 115(15) (2018) E3463-E3470.
DOI: 10.1073/pnas.1717295115
Google Scholar
[4]
E.I. Iatrou, A.S. Stasinakis, N.S. Thomaidis, Consumption-based approach for predicting environmental risk in Greece due to the presence of antimicrobials in domestic wastewater, Environ. Sci. Poll. Res. 21 (2014) 12941-12950.
DOI: 10.1007/s11356-014-3243-7
Google Scholar
[5]
S. Aydın, A. Ulvi, F. Bedük, M.E. Aydın, Pharmaceutical residues in digested sewage sludge: Occurrence, seasonal variation and risk assessment for soil. Sci. Total Environ. 817 (2022) 152864.
DOI: 10.1016/j.scitotenv.2021.152864
Google Scholar
[6]
M. Pan, L.M. Chu, Transfer of antibiotics from wastewater or animal manure to soil and edible crops, Environ. Poll. 231 (2017) 829-836.
DOI: 10.1016/j.envpol.2017.08.051
Google Scholar
[7]
X.Y. Zeng, Y., Wang, R.X. Li, H.L. Cao, Y.F. Li, J. Lü, Impacts of temperatures and phosphoric-acid modification to the physicochemical properties of biochar for excellent sulfadiazine adsorption, Biochar. 4(1) (2022) 14.
DOI: 10.1007/s42773-022-00143-4
Google Scholar
[8]
S. Rangabhashiyam, P.J.I.C. Balasubramanian, The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism and wastewater application-a review, Ind. Crops Product. 128 (2019) 405-423.
DOI: 10.1016/j.indcrop.2018.11.041
Google Scholar
[9]
M.A. Islam, M. Auta, G. Kabir, B.H. Hameed, A thermogravimetric analysis of the combustion kinetics of karanja (Pongamia pinnata) fruit hulls char, Bior. Technol, 200 (2016) 335-341.
DOI: 10.1016/j.biortech.2015.09.057
Google Scholar
[10]
A.G. Adeniyi, K.O. Iwuozor, E.B. Emenike, M.A. Amoloye, J. A. Adeleke, E.O. Omonayin. J.O. Bamigbola, H.T. Ojo, A.O. Ezzat, Leaf-based biochar: A review of thermochemical conversion techniques and properties. J Analytical Appl. Pyroly. 177 (2024) 106352.
DOI: 10.1016/j.jaap.2024.106352
Google Scholar
[11]
P. Chakraborty, S.D. Singh, I. Gorai, D. Singh, W.U. Rahman, G. Halder, Explication of physically and chemically treated date stone biochar for sorptive remotion of ibuprofen from aqueous solution. J. Water Process Eng, 33 (2020) 101022.
DOI: 10.1016/j.jwpe.2019.101022
Google Scholar
[12]
J.E. Kim, S.K. Bhatia, H.J. Song, E. Yoo, H.J. Jeon, J.Y. Yoon, Y. Yang, R. Gurav, Y.H. Yang, H.J. Kim, Y.K. Choi, Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar, Biores. Technol. 306 (2020) 123092.
DOI: 10.1016/j.biortech.2020.123092
Google Scholar
[13]
R. Cela-Dablanca, C. Nebot, L. Rodríguez López, D. Fernández-Calviño, M. Arias-Estévez, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, Efficacy of different waste and by-products from forest and food industries in the removal/retention of the antibiotic cefuroxime. Process. 9(7) (2021) 1151.
DOI: 10.3390/pr9071151
Google Scholar
[14]
F.R. Abdulrahim, F. Akbal, Evaluation of Activated Carbon from Cordia Myxa used as an Adsorbent for Pharmaceutical Removal from Wastewater. Master's Thesis, Department of Environmental Engineering, Institute of Graduate Studies, Ondokuz Mayis University, (2022) p.1 – 136.
Google Scholar
[15]
Y.P. Chen, C.H. Zheng, Y.Y. Huang, Y.R. Chen, Removal of chlortetracycline from water using spent tea leaves-based biochar as adsorption-enhanced persulfate activator. Chemosphere. 286 (2022) 131770.
DOI: 10.1016/j.chemosphere.2021.131770
Google Scholar
[16]
A.A. Adeyi, A. Giwa, L.C. Abdullah, L.T. Popoola, S.N.A.M. Jamil, M.A. Lala, Sequestration of diclofenac and amoxycillin pharmaceutical compounds by thiourea modified poly (acrylonitrile-co-acrylic acid): parametric optimisation, kinetic and isotherm studies. Int. J. Environ. Analytical Chem. (2023) 1-17.
DOI: 10.1080/03067319.2023.2239155
Google Scholar
[17]
I.W. Almanassra, A. Chatla, Y. Zakaria, V. Kochkodan, A. Shanableh, T. Laoui, M.A. Atieh, Palm leaves based biochar: advanced material characterization and heavy metal adsorption study. Biomass Conver, Biorefinery. 14(13) (2024) 14811-14830.
DOI: 10.1007/s13399-022-03590-y
Google Scholar
[18]
J.B. Neris, F.H.M. Luzardo, E.G.P. da Silva, F.G. Velasco, Evaluation of adsorption processes of metal ions in multi-element aqueous systems by lignocellulosic adsorbents applying different isotherms: A critical review, Chem. Eng. J. 357 (2019) 404-420.
DOI: 10.1016/j.cej.2018.09.125
Google Scholar
[19]
I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids. J. American Chem. Society. 38(11) (1916) 2221-2295.
DOI: 10.1021/ja02268a002
Google Scholar
[20]
H. Freundlich, Colloid & capillary chemistry, Third Germ. Methuen & Company Limited, New York, 1926.
Google Scholar
[21]
S.M. Silva, K.A. Sampaio, R. Ceriani, R. Verbe, C. Stevens, W. De Greyt, A.J.A. Meirelles, Adsorption of carotenes and phosphorus from palm oil onto acid activated bleaching earth: equilibrium, kinetics and thermodynamics. J. Food Eng. 118 (2013) 341–349.
DOI: 10.1016/j.jfoodeng.2013.04.026
Google Scholar
[22]
V. Bolis, C. Morterra, B. Fubini, P. Ugliengo, E. Garrone, Temkin-type model for the description of induced heterogeneity: CO adsorption on group 4 transition metal dioxides. Langmuir. 9(6) (1993) 1521-1528.
DOI: 10.1021/la00030a017
Google Scholar
[23]
K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 74 (2017) 25-48.
DOI: 10.1016/j.jtice.2017.01.024
Google Scholar
[24]
S. Lagergren, About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar 24 (1898) 1–39.
Google Scholar
[25]
M.F. Li, Y.G. Liu, G.M. Zeng, N. Liu, S.B. Liu, Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review, Chemosphere 226 (2019) 360-380.
DOI: 10.1016/j.chemosphere.2019.03.117
Google Scholar
[26]
Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Proc. Safety Environ. Protect. 76(4) (1998) 332-340.
DOI: 10.1205/095758298529696
Google Scholar
[27]
R. Martínez-Escutia, A. Méndez-Albores, A. Vázquez-Durán, Outstanding enrofloxacin removal using an unmodified low-cost sorbent prepared from the leaves of Pyracantha koidzumii. Antibiotics, 11(11) (2022) 1563.
DOI: 10.3390/antibiotics11111563
Google Scholar
[28]
Y. Hamid, L. Liu, M. Usman, R. Naidu, M. Haris, Q. Lin, Z. Ulhassan, M.I. Hussain, X. Yang, Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water, J. Hazard. Mat. 437 (2022) 129337.
DOI: 10.1016/j.jhazmat.2022.129337
Google Scholar
[29]
A. Srivastava, H. Dave, S.K. Azad, M. Kumari, S. Karwal, P. Karma, P. Tiwari, K.S. Prasad, Iron modification of biochar developed from Tectona grandis Linn. F. for adsorptive removal of tetracycline from aqueous solution, Analyt. Chem. Letter. 11(3) (2021) 360-375.
DOI: 10.1080/22297928.2021.1934113
Google Scholar
[30]
M. Zhang, L.Y. He, Y.S. Liu, J.L. Zhao, W.R. Liu, J.N. Zhang, J. Chen, L.K. He, Q.Q. Zhang, G.G. Ying, Fate of veterinary antibiotics during animal manure composting. Sci. Total Environ. 650 (2019) 1363-1370.
DOI: 10.1016/j.scitotenv.2018.09.147
Google Scholar
[31]
N. Khoshnamvand, S. Ahmadi, F.K. Mostafapour, Kinetic and isotherm studies on ciprofloxacin an adsorption using magnesium oxide nanoparticles, J. Appl. Pharm. Sci. 7(11) (2017) 079-083.
Google Scholar
[32]
N.H. Thang, D.S. Khang, T.D. Hai, D.T. Nga, P.D. Tuan, Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells, RSC Advances, 11(43) (2021) 26563-26570.
DOI: 10.1039/d1ra04672a
Google Scholar
[33]
A.A. Adeyi, D.O. Ogundola, L.T. Popoola, E. Bernard, S.G. Udeagbara, A.T. Ogunyemi, I.I. Olateju, R. Zainul, Potassium permanganate–modified eggshell biosorbent for the removal of diclofenac from liquid environment: adsorption performance, isotherm, kinetic, and thermodynamic analyses. Environ. Monitoring Assess. 196(9) (2024) 1-17.
DOI: 10.1007/s10661-024-12964-w
Google Scholar
[34]
A. Negi, S. Joshi, S.K. Joshi, N.S. Bhandari, Biosorption of zinc on functionally activated Lantana camara leaves: equilibrium, kinetic, and thermodynamic studies, Biomass Conver. Bioref. (2024) 1-18.
DOI: 10.1007/s13399-024-05955-x
Google Scholar
[35]
M. Cheng, X. Zhang, Y. Shi, D. Shi, G. Zhu, J. Fan, Highly efficient removal of ceftiofur sodium using a superior hydroxyl group functionalized ionic liquid-modified polymer. Sci. Total Environ. 662 (2019) 324-331.
DOI: 10.1016/j.scitotenv.2019.01.223
Google Scholar
[36]
Q. Meng, Y. Zhang, D. Meng, X. Liu, Z. Zhang, P. Gao, A. Lin, L. Hou, Removal of sulfadiazine from aqueous solution by in-situ activated biochar derived from cotton shell, Environ. Res., 191 (2020) 110104.
DOI: 10.1016/j.envres.2020.110104
Google Scholar
[37]
M. Awwad, F. Al-Rimawi, K.J.K. Dajani, M. Khamis, S. Nir, R. Karaman, Removal of amoxicillin and cefuroxime axetil by advanced membranes technology, activated carbon and micelle–clay complex, Environ Technol. 36(16) (2015) 2069-2078.
DOI: 10.1080/09593330.2015.1019935
Google Scholar
[38]
X. Ma, D. Duan, J. Chen, B. Xie, Structure and Adsorption Performance of Cationic Entermorpha prolifera Polysaccharide-Based Hydrogel for Typical Pollutants: Methylene Blue, Cefuroxime, and Cr (VI), Gels. 8(9) (2022) 546.
DOI: 10.3390/gels8090546
Google Scholar