[1]
R. Kumar, S. Singh and D. Ray, Natural fiber reinforced composites: Recent advances, challenges, and future perspectives, Composites Part B: Engineering. 258 (2023) 110764
Google Scholar
[2]
Z. Zhou, J. Guo, C. Zhang, S. Zhou, J. Gong, Z. Fu, X. Wang, L. Su, L. Feng, W. Li and L. Xia, Natural Juncus effusus fiber-based separator with 3D porous structure for oil/water emulsion separation, Bioresource Technology. 384 (2023) 129245. https://doi.org/10.1016/j. biortech.2023.129245
DOI: 10.1016/j.indcrop.2023.117572
Google Scholar
[3]
B. Birlie and T. Mamay, Characterization of natural cellulosic fiber extracted from Grewia ferruginea plant stem, International Journal of Biological Macromolecules. 271 (2024) 132858.
DOI: 10.1016/j.ijbiomac.2024.132858
Google Scholar
[4]
O. A. Ushie, B. D. Longbap, D. I. Ugwuja, S. I. Iyen, T. I. Azuaga, M. Uba, Preliminary Phytochemical Screening and Proximate Analyses of Leaf Extracts of Newbouldia laevis (Boundary tree), Dutse Journal of Pure and Applied Sciences (DUJOPAS). 7 (3b) (2021) 191-198
DOI: 10.4314/dujopas.v7i3b.21
Google Scholar
[5]
O. Okpara, Performance of West African Dwarf Goats Fed Differently Processed Newbouldia laevis Leaves, Journal of Agriculture and Food Environment. 8 (1) (2021) 34-41.
Google Scholar
[6]
T. Martina,W. Wardiningsih, A. Rianti, R. Rudy and S. M. Pradana, An investigation into the potential of water retted fiber from agricultural waste of Curcuma longa plant for textile application, Research Journal of Textile and Apparel. 28 (4) (2024) 569-584. https://doi.org/
DOI: 10.1108/RJTA-08-2022-0101
Google Scholar
[7]
G. Gedik, Extraction of new natural cellulosic fiber from Trachelospermum jasminoides (star jasmine) and its characterization for textile and composite uses, Cellulose. 28 (2021): 6899-6915.
DOI: 10.1007/s10570-021-03952-1
Google Scholar
[8]
V. Jeyabalaj, G. R. Kannam, P. Ganshan, K. Raja, B. NagarajaGanesh and P. Raju, Extraction and characterization studies of cellulose derived from the roots of Acalypha indica L., Journal of Natural Fibers. 19 (12) (2021) 1-13.
DOI: 10.1080/15440478.2020.1867942
Google Scholar
[9]
A.R. Khaldoune, M. Rokbi, S. Amrooune, S. Zergane, A. Benadda and N. Nouari, Determination of the rupture parameters of a plant fiber by using two diameter measurement techniques, Materials Today: Proceedings. 53 (2022) 237-243. https://doi.org/10.1016/j.mat pr. 2022.01.049
DOI: 10.1016/j.matpr.2022.01.049
Google Scholar
[10]
M.M. Adila, S.L. Jeng, N.A. Farid, H. Haslenda and S.H. Wai, Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass, Chemical Engineering Transactions. 72 2019) 79-84.
Google Scholar
[11]
C.N. Igwilo, S.O. Egbuna, M.I. Onoh, O.C. Asadu and C.S. Onyekwulu, Optimization and kinetic studies for enzymatic hydrolysis and fermentation of colocynthis vulgaris shrad seeds shell for bioethanol production, Journal of Bioresources and Bioproducts. 6 (2021) 45-64.
DOI: 10.1016/j.jobab.2021.02.004
Google Scholar
[12]
O.P. Chikelu, A.E. Ilechukwu, S.C. Anyaora, A.A. Okafor, C.N. Okoye, Effect of mercerisation soaking time and concentration on tensile properties of Pentaclethra macrophylla fibre reinforced composite for automotive application, International Journal on Advanced Technology, Engineering, and Information System. 4 (2) (2025) 282-294.
DOI: 10.55047/ijateis.v4i2.1735
Google Scholar
[13]
A.E. Ilechukwu, O.P. Chikelu, A.A. Okafor, J. E. Dara, C.P. Odeh, Effect of Alkaline Treatment on Tensile Properties of Hybrid Composite of Arachis hypogaea and Pentaclethra macrophylla Agro-Waste Fibres, Jurnal Pesona Indonesia. 2 (1) (2025) 14-22.
Google Scholar
[14]
S.S. Mustafa, S.A. Amirah, A. A. Fatimah, M. G. Ahmed, A. M. Mohammed, S.M. Manahil, H. Eslam and M.A. Hassan, Modified generalized Weibull distribution: theory and applications, Scientific Reports. 13 (2023) 12828.
DOI: 10.1038/s41598-023-38942-9
Google Scholar
[15]
E. A. Nketiah, L. Chenlong, J.Yingchuan and B. Dwumah, Parameter estimation of the Weibull Distribution; Comparison of the Least-Squares Method and the Maximum Likelihood estimation, International Journal of Advanced Engineering Research and Science. 8 (9) (2021) 210-224.
DOI: 10.22161/ijaers.89.21
Google Scholar
[16]
T.P. Sathishkumar, S. Shankar and R. Rajasekara, Characterization of new cellulose Sansevieria ehrenbergii fibres for polymer composites, Compos. Interfaces. 20(8)(2013)575-593.
DOI: 10.1080/15685543.2013.816652
Google Scholar
[17]
S. Indran and R. E. Raj, Characterization of new natural cellulosic fibre from Cissus quadrangularis stem. Carbohydrate Polymer. 117 (2013) 392–399.
DOI: 10.1016/j.carbpol.2014.09.072
Google Scholar
[18]
M.J. John and R.D. Anandjiwala, Recent developments in chemical Modification and characterization of natural fibre-reinforced composites. Polymer Composites, 29 (2) (2008) 187-207.
DOI: 10.1002/pc.20461
Google Scholar
[19]
J. Jayaramudu and A. V. Rajulu, Characterization of new natural cellulosic fabric Grewia tilifolia, Carbohydrate Polymer. 79 (4) (2010) 847–851.
DOI: 10.1016/j.carbpol.2009.10.046
Google Scholar
[20]
S. Paru and T. G. Bala, Physical and mechanical properties of flax fibre and its composites: A Review, Journal of Material Sciences and Engineering. 10 (2022) 015.
Google Scholar
[21]
T. H. Mokhothu and J. J. Maya, Bio-Based coatings for reducing water sorption in natural fibre reinforced composites, Scientific Reports. 7 (2017) 1- 8.
DOI: 10.1038/s41598-017-13859-2
Google Scholar
[22]
H. P. Shawkataly Abdul Khalil, M. S. Alwani and A. K. M. Omar, Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibres, BioResources. 1 (2) (2006) 220–232.
DOI: 10.15376/biores.1.2.220-232
Google Scholar
[23]
T.A. Tamanna, S.A. Belal, M.A.H. Shibly and A.N. Khan, Characterization of a new natural fibre extracted from Corypha taliera fruit, Scientific Reports. 11 (2021) 7622. https://doi.org/.
DOI: 10.1038/s41598-021-87128-8
Google Scholar
[24]
H. Nascimento, A. Santos, V. Duarte, P. Bittencourt, E. Radovanovic and S. Fávaro, Characterization of natural cellulosic fibers from Yucca aloifolia L. leaf as potential reinforcement of polymer composites, Cellulose. 28 (2021) 5477 -5492.
DOI: 10.1007/s10570-021-03866-y
Google Scholar
[25]
P. Sobhanipour, B. Noroozi and P. Panahi, Supramolecular structure assessment of alkali modified eucalyptus kraft pulp for gentle hygienic fluff pulp applications, Cellulose.31 (18) (2024) 11115-11130.
DOI: 10.1007/s10570-024-06243-7
Google Scholar
[26]
Q. Riseh,F. Fathi, A. Lagzian, M. Vatankhah and J.Kennedy, Modifying lignin: A promising strategy for plant disease control, International journal of biological macromolecules.271 (2024) 132696.
DOI: 10.1016/j.ijbiomac.2024.132696
Google Scholar
[27]
R. Gopinath, P. Billigraham, T. P. Sathishkumar, Characterization studies on new natural cellulose fiber extracted from the bark of Erythrina variegate, Journal of Natural Fibers. 19 (4) (2021) 1-20.
DOI: 10.1080/15440478.2021.1961344
Google Scholar
[28]
O.P. Gbenebor, E.F. Ochulor, G.U. Nwite, K.D. Alonge and S.O. Adeosun, Structural and Thermal Evaluations of Cellulose and Lignin from Bambusa vulgaris, Nigerian Journal of Engineering Science Research (NIJESR). 4 (4) (2021) 22-31.
Google Scholar
[29]
R. Vârban, I. Crișan, D.Vârban,A. Ona, L. Olar, A. Stoie and R. Ștefan, Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute, Applied Sciences. 11 (18) (2021) 8570
DOI: 10.3390/app11188570
Google Scholar
[30]
S. Javier-Astete, J. Jimenez-Davalos and G. Zolla, Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam, PLoS ONE. 16 (10) (2021) e0256559.https://doi.org/ 10.1371/journal. pone.0256559
DOI: 10.1371/journal.pone.0256559
Google Scholar
[31]
S. Hossain, M. A. Jalil, T. Islam, M. M. Rahman, A low-density cellulose rich new natural fiber extracted from the bark of jack tree branches and its characterizations, Heliyon. 8 (11) (2022) e11667.
DOI: 10.1016/j.heliyon.2022.e11667
Google Scholar
[32]
C.H. Lee, A. Khalina, S.H. Lee, Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: A review, Polymers. 13 (3) (2021) 438. https://doi.org/
DOI: 10.3390/polym13030438
Google Scholar
[33]
L. Huisi, C. Bin, K. Artem, J. Vilhelmine, P. M. Aji, and S. Olena, A comparative study of lignin-containing microfibrillated cellulose fibers produced from softwood and hardwood pulps, Cellulose. 31(2024) 907-926.
DOI: 10.1007/s10570-023-05674-y
Google Scholar
[34]
L. J. Jucelio, R. B. David, L. S. A. Everton, W. C. R. Andre, B. A. Cristine and G.B.T. Carmen, Characterization of the natural fibers extracted from the aninga's stem and development of a unidirectional polymeric sheet, Scientific Reports. 14 (1) (2024) 24780
DOI: 10.1038/s41598-024-72781-6
Google Scholar
[35]
X. Zhao, J. Guan, Z. Yang, and Y. Liu, Orientation of carbon fiber in magnesium-doped hydroxyapatite and its effect on mechanical and tribological properties of carbon fiber reinforced composites, Materials Chemistry and Physics. 306 (2023) 128078.
DOI: 10.1016/j.matchemphys.2023.128078
Google Scholar
[36]
E. Oğuz and O. Sabih, Investigation and analysis of new fiber from Allium fistulosum l. (scallion) plant's tassel and its suitability for fiber-reinforced composites, Uludağ University Journal of the Faculty of Engineering. 29 (1) (2024) 51-66.
DOI: 10.17482/uumfd.1410520
Google Scholar
[37]
B. Dengyu, C. Kehui, Z. Xiaozhuang, G. Ziyu, Z. Jianbin, Z. Yimeng and Z. Hong, Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil, Combustion and Flame. 242 (2022) 112142.https://doi.org/10.1016/j.combustfla me.2022.112142
DOI: 10.1016/j.combustflame.2022.112142
Google Scholar
[38]
H. Fan, J. Gu, Y. Wang, H. Yuan and Y. Chen, Kinetics modeling of co-pyrolytic decomposition of binary system of cellulose, xylan and lignin, J. Energy Inst. 102 (2022) 278–288, https://doi.org/10.1016/ j.joei.2022.03.012.
DOI: 10.1016/j.joei.2022.03.012
Google Scholar
[39]
Elmitch. How to interpret a TGA-DTA curve. Https://youtube.be/kJwHp76c4WK?Si= K6g8iVZMdBdRjLBJ. Assessed 15th November, 2024.
Google Scholar
[40]
M. U. Monir, S. M. Shavon, F. A. Akash, M. A. Habib, K. Techato, A. A. Aziz, S. Chowdhury, and T. A. E. Prasetya, Comprehensive characterization and kinetic analysis of coconut shell thermal degradation: Energy potential evaluated via the Coats-Redfern method, Case Studies in Thermal Engineering. 55 (2024) 104186.
DOI: 10.1016/j.csite.2024.104186
Google Scholar
[41]
E. Borchani, C. Carrot and M. Jazin, Untreated and alkali-treated fibers from Alfa stem: Effect of alkali treatment on structural, morphological and thermal features, Cellulose. 22 (2015) 1577-1589.
DOI: 10.1007/s10570-015-0583-5
Google Scholar
[42]
A. Oushabi, S. Sair, F. O. Hassani, O. T. Abboud and A. E. Bouari, The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFS): Study of the interface of DPF-polyurethane composite, South African Journal of Chemical Engineering. 23 (2017) 116-123.
DOI: 10.1016/j.sajce.2017.04.005
Google Scholar
[43]
R. Vijay, D. Singaravelu, A. Vinod, M. Sanjay, S. Siengchin, M. Jawaid, A. Khan, J. Parameswaranpillai, Characterization of raw and alkaline treated new natural cellulose fiber from Tridax Procumbens, International Journal of Biological Macromolecules. 125 (2019) 99-108. https://doi.org/.
DOI: 10.1016/j.ijbiomac.2018.12.056
Google Scholar
[44]
K. Van De Velde and E. Baetens, Thermal and mechanical properties of flax fibers as potential composite reinforcement, Macromolecular Materials and Engineering. 286(6) (2001) 342-349.
DOI: 10.1002/1439-2054(20010601)286:6<342::aid-mame342>3.3.co;2-g
Google Scholar
[45]
I. M. De Rosa, J. M. Kenny, D. Puglia, C. Snatulli and F. Sarasini, Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites, Composites Science and Technology. 70 (1) (2010) 116-122.
DOI: 10.1016/j.compscitech.2009.09.013
Google Scholar
[46]
F. Wang and J. Shao, Modified Weibull Distribution for Analysing the Tensile Strength of Bamboo Fibers, Polymers. 6 (12) (2014) 3005-3018. https://doi.org/10.3390/polym612 3005
DOI: 10.3390/polym6123005
Google Scholar
[47]
M. J. M. Ridzuan, M. S. Abdul Majid, M. Afendi, S. N. Aqmariah Kanafiah, J.M. Zahri and A.G. Gibson, Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites, Mater. Des. 89 (2016) 839–847.
DOI: 10.1016/j.matdes.2015.10.052
Google Scholar
[48]
A. K. Rout, J. Kar, D. K. Jesthi and A.K. Sutar, Effect of surface treatment on the physical, chemical, and mechanical properties of palm tree leaf stalk fibers, Bioresources. 11 (2016) 4432–4445.
DOI: 10.15376/biores.11.2.4432-4445
Google Scholar
[49]
X. Han, L. Ding, Z. Tian, W. Wu and S. Jiang, Extraction and characterization of novel ultrastrong and tough natural cellulosic fiber bundles from Manau rattan (Calamus manan), Ind. Crop. Prod. 173 (2021). https://doi.org/10.1016/j.indcrop.2021. 114103.
DOI: 10.1016/j.indcrop.2021.114103
Google Scholar
[50]
L. Hamdi, B. Asma and B. Ali, Tensile mechanical performance of natural/natural fiber reinforced hybrid bio-composite materials – A statistical approach, Journal of Industrial Textiles, 54 (2024) 1-31
DOI: 10.1177/15280837241264014
Google Scholar
[51]
A. Kar and D. Saika, Characterization of new natural cellulose fiber from Calamus tenuis (Jati Bet) cane as a potential reinforcement for polymer composite, Heliyon. 9 (2023) e16491. https://doi.org/10.1016/ j.heliyon.2023.e16491.
DOI: 10.1016/j.heliyon.2023.e16491
Google Scholar