Physico-Thermal and Mechanical Characterization of Newbouldia laevis Fibres as Reinforcement for Sustainable Polymer Composites Applications

Article Preview

Abstract:

Recently, there has been a growing interest in replacing synthetic fibres with natural fibres in polymer composites due to environmental concerns. This study examined the fibres from the Newbouldia laevis plant for their potential use in lightweight polymer composites, particularly in applications sensitive to strength and temperature. The fibres were extracted from the plant's stem, and various properties such as density, moisture content, moisture regain, and diameter were measured. Chemical analysis revealed the percentages of cellulose, hemicellulose, lignin, extractives, and ash present in the fibres. Furthermore, Fourier transform infrared analysis confirmed the presence of these essential components. Scanning electron microscopy images showed the rough surfaces of the fibres, which enhance the adhesion between the fibre and matrix during the production of polymer composites. Energy dispersive X-ray analysis identified carbon and oxygen as the main elements in the fibres. Thermal analysis provided insights into the thermal stability and maximum degradation temperatures of the fibres. Lastly, a single fibre tensile test was performed to evaluate the tensile strength, elastic modulus, and elongation at break of the fibres using Weibull distribution statistical analysis. The results of this study indicate that Newbouldia laevis fibres could be a promising reinforcement for lightweight polymer composites in strength and temperature-sensitive applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-105

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Kumar, S. Singh and D. Ray, Natural fiber reinforced composites: Recent advances, challenges, and future perspectives, Composites Part B: Engineering. 258 (2023) 110764

Google Scholar

[2] Z. Zhou, J. Guo, C. Zhang, S. Zhou, J. Gong, Z. Fu, X. Wang, L. Su, L. Feng, W. Li and L. Xia, Natural Juncus effusus fiber-based separator with 3D porous structure for oil/water emulsion separation, Bioresource Technology. 384 (2023) 129245. https://doi.org/10.1016/j. biortech.2023.129245

DOI: 10.1016/j.indcrop.2023.117572

Google Scholar

[3] B. Birlie and T. Mamay, Characterization of natural cellulosic fiber extracted from Grewia ferruginea plant stem, International Journal of Biological Macromolecules. 271 (2024) 132858.

DOI: 10.1016/j.ijbiomac.2024.132858

Google Scholar

[4] O. A. Ushie, B. D. Longbap, D. I. Ugwuja, S. I. Iyen, T. I. Azuaga, M. Uba, Preliminary Phytochemical Screening and Proximate Analyses of Leaf Extracts of Newbouldia laevis (Boundary tree), Dutse Journal of Pure and Applied Sciences (DUJOPAS). 7 (3b) (2021) 191-198

DOI: 10.4314/dujopas.v7i3b.21

Google Scholar

[5] O. Okpara, Performance of West African Dwarf Goats Fed Differently Processed Newbouldia laevis Leaves, Journal of Agriculture and Food Environment. 8 (1) (2021) 34-41.

Google Scholar

[6] T. Martina,W. Wardiningsih, A. Rianti, R. Rudy and S. M. Pradana, An investigation into the potential of water retted fiber from agricultural waste of Curcuma longa plant for textile application, Research Journal of Textile and Apparel. 28 (4) (2024) 569-584. https://doi.org/

DOI: 10.1108/RJTA-08-2022-0101

Google Scholar

[7] G. Gedik, Extraction of new natural cellulosic fiber from Trachelospermum jasminoides (star jasmine) and its characterization for textile and composite uses, Cellulose. 28 (2021): 6899-6915.

DOI: 10.1007/s10570-021-03952-1

Google Scholar

[8] V. Jeyabalaj, G. R. Kannam, P. Ganshan, K. Raja, B. NagarajaGanesh and P. Raju, Extraction and characterization studies of cellulose derived from the roots of Acalypha indica L., Journal of Natural Fibers. 19 (12) (2021) 1-13.

DOI: 10.1080/15440478.2020.1867942

Google Scholar

[9] A.R. Khaldoune, M. Rokbi, S. Amrooune, S. Zergane, A. Benadda and N. Nouari, Determination of the rupture parameters of a plant fiber by using two diameter measurement techniques, Materials Today: Proceedings. 53 (2022) 237-243. https://doi.org/10.1016/j.mat pr. 2022.01.049

DOI: 10.1016/j.matpr.2022.01.049

Google Scholar

[10] M.M. Adila, S.L. Jeng, N.A. Farid, H. Haslenda and S.H. Wai, Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass, Chemical Engineering Transactions. 72 2019) 79-84.

Google Scholar

[11] C.N. Igwilo, S.O. Egbuna, M.I. Onoh, O.C. Asadu and C.S. Onyekwulu, Optimization and kinetic studies for enzymatic hydrolysis and fermentation of colocynthis vulgaris shrad seeds shell for bioethanol production, Journal of Bioresources and Bioproducts. 6 (2021) 45-64.

DOI: 10.1016/j.jobab.2021.02.004

Google Scholar

[12] O.P. Chikelu, A.E. Ilechukwu, S.C. Anyaora, A.A. Okafor, C.N. Okoye, Effect of mercerisation soaking time and concentration on tensile properties of Pentaclethra macrophylla fibre reinforced composite for automotive application, International Journal on Advanced Technology, Engineering, and Information System. 4 (2) (2025) 282-294.

DOI: 10.55047/ijateis.v4i2.1735

Google Scholar

[13] A.E. Ilechukwu, O.P. Chikelu, A.A. Okafor, J. E. Dara, C.P. Odeh, Effect of Alkaline Treatment on Tensile Properties of Hybrid Composite of Arachis hypogaea and Pentaclethra macrophylla Agro-Waste Fibres, Jurnal Pesona Indonesia. 2 (1) (2025) 14-22.

Google Scholar

[14] S.S. Mustafa, S.A. Amirah, A. A. Fatimah, M. G. Ahmed, A. M. Mohammed, S.M. Manahil, H. Eslam and M.A. Hassan, Modified generalized Weibull distribution: theory and applications, Scientific Reports. 13 (2023) 12828.

DOI: 10.1038/s41598-023-38942-9

Google Scholar

[15] E. A. Nketiah, L. Chenlong, J.Yingchuan and B. Dwumah, Parameter estimation of the Weibull Distribution; Comparison of the Least-Squares Method and the Maximum Likelihood estimation, International Journal of Advanced Engineering Research and Science. 8 (9) (2021) 210-224.

DOI: 10.22161/ijaers.89.21

Google Scholar

[16] T.P. Sathishkumar, S. Shankar and R. Rajasekara, Characterization of new cellulose Sansevieria ehrenbergii fibres for polymer composites, Compos. Interfaces. 20(8)(2013)575-593.

DOI: 10.1080/15685543.2013.816652

Google Scholar

[17] S. Indran and R. E. Raj, Characterization of new natural cellulosic fibre from Cissus quadrangularis stem. Carbohydrate Polymer. 117 (2013) 392–399.

DOI: 10.1016/j.carbpol.2014.09.072

Google Scholar

[18] M.J. John and R.D. Anandjiwala, Recent developments in chemical Modification and characterization of natural fibre-reinforced composites. Polymer Composites, 29 (2) (2008) 187-207.

DOI: 10.1002/pc.20461

Google Scholar

[19] J. Jayaramudu and A. V. Rajulu, Characterization of new natural cellulosic fabric Grewia tilifolia, Carbohydrate Polymer. 79 (4) (2010) 847–851.

DOI: 10.1016/j.carbpol.2009.10.046

Google Scholar

[20] S. Paru and T. G. Bala, Physical and mechanical properties of flax fibre and its composites: A Review, Journal of Material Sciences and Engineering. 10 (2022) 015.

Google Scholar

[21] T. H. Mokhothu and J. J. Maya, Bio-Based coatings for reducing water sorption in natural fibre reinforced composites, Scientific Reports. 7 (2017) 1- 8.

DOI: 10.1038/s41598-017-13859-2

Google Scholar

[22] H. P. Shawkataly Abdul Khalil, M. S. Alwani and A. K. M. Omar, Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibres, BioResources. 1 (2) (2006) 220–232.

DOI: 10.15376/biores.1.2.220-232

Google Scholar

[23] T.A. Tamanna, S.A. Belal, M.A.H. Shibly and A.N. Khan, Characterization of a new natural fibre extracted from Corypha taliera fruit, Scientific Reports. 11 (2021) 7622. https://doi.org/.

DOI: 10.1038/s41598-021-87128-8

Google Scholar

[24] H. Nascimento, A. Santos, V. Duarte, P. Bittencourt, E. Radovanovic and S. Fávaro, Characterization of natural cellulosic fibers from Yucca aloifolia L. leaf as potential reinforcement of polymer composites, Cellulose. 28 (2021) 5477 -5492.

DOI: 10.1007/s10570-021-03866-y

Google Scholar

[25] P. Sobhanipour, B. Noroozi and P. Panahi, Supramolecular structure assessment of alkali modified eucalyptus kraft pulp for gentle hygienic fluff pulp applications, Cellulose.31 (18) (2024) 11115-11130.

DOI: 10.1007/s10570-024-06243-7

Google Scholar

[26] Q. Riseh,F. Fathi, A. Lagzian, M. Vatankhah and J.Kennedy, Modifying lignin: A promising strategy for plant disease control, International journal of biological macromolecules.271 (2024) 132696.

DOI: 10.1016/j.ijbiomac.2024.132696

Google Scholar

[27] R. Gopinath, P. Billigraham, T. P. Sathishkumar, Characterization studies on new natural cellulose fiber extracted from the bark of Erythrina variegate, Journal of Natural Fibers. 19 (4) (2021) 1-20.

DOI: 10.1080/15440478.2021.1961344

Google Scholar

[28] O.P. Gbenebor, E.F. Ochulor, G.U. Nwite, K.D. Alonge and S.O. Adeosun, Structural and Thermal Evaluations of Cellulose and Lignin from Bambusa vulgaris, Nigerian Journal of Engineering Science Research (NIJESR). 4 (4) (2021) 22-31.

Google Scholar

[29] R. Vârban, I. Crișan, D.Vârban,A. Ona, L. Olar, A. Stoie and R. Ștefan, Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute, Applied Sciences. 11 (18) (2021) 8570

DOI: 10.3390/app11188570

Google Scholar

[30] S. Javier-Astete, J. Jimenez-Davalos and G. Zolla, Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam, PLoS ONE. 16 (10) (2021) e0256559.https://doi.org/ 10.1371/journal. pone.0256559

DOI: 10.1371/journal.pone.0256559

Google Scholar

[31] S. Hossain, M. A. Jalil, T. Islam, M. M. Rahman, A low-density cellulose rich new natural fiber extracted from the bark of jack tree branches and its characterizations, Heliyon. 8 (11) (2022) e11667.

DOI: 10.1016/j.heliyon.2022.e11667

Google Scholar

[32] C.H. Lee, A. Khalina, S.H. Lee, Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: A review, Polymers. 13 (3) (2021) 438. https://doi.org/

DOI: 10.3390/polym13030438

Google Scholar

[33] L. Huisi, C. Bin, K. Artem, J. Vilhelmine, P. M. Aji, and S. Olena, A comparative study of lignin-containing microfibrillated cellulose fibers produced from softwood and hardwood pulps, Cellulose. 31(2024) 907-926.

DOI: 10.1007/s10570-023-05674-y

Google Scholar

[34] L. J. Jucelio, R. B. David, L. S. A. Everton, W. C. R. Andre, B. A. Cristine and G.B.T. Carmen, Characterization of the natural fibers extracted from the aninga's stem and development of a unidirectional polymeric sheet, Scientific Reports. 14 (1) (2024) 24780

DOI: 10.1038/s41598-024-72781-6

Google Scholar

[35] X. Zhao, J. Guan, Z. Yang, and Y. Liu, Orientation of carbon fiber in magnesium-doped hydroxyapatite and its effect on mechanical and tribological properties of carbon fiber reinforced composites, Materials Chemistry and Physics. 306 (2023) 128078.

DOI: 10.1016/j.matchemphys.2023.128078

Google Scholar

[36] E. Oğuz and O. Sabih, Investigation and analysis of new fiber from Allium fistulosum l. (scallion) plant's tassel and its suitability for fiber-reinforced composites, Uludağ University Journal of the Faculty of Engineering. 29 (1) (2024) 51-66.

DOI: 10.17482/uumfd.1410520

Google Scholar

[37] B. Dengyu, C. Kehui, Z. Xiaozhuang, G. Ziyu, Z. Jianbin, Z. Yimeng and Z. Hong, Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil, Combustion and Flame. 242 (2022) 112142.https://doi.org/10.1016/j.combustfla me.2022.112142

DOI: 10.1016/j.combustflame.2022.112142

Google Scholar

[38] H. Fan, J. Gu, Y. Wang, H. Yuan and Y. Chen, Kinetics modeling of co-pyrolytic decomposition of binary system of cellulose, xylan and lignin, J. Energy Inst. 102 (2022) 278–288, https://doi.org/10.1016/ j.joei.2022.03.012.

DOI: 10.1016/j.joei.2022.03.012

Google Scholar

[39] Elmitch. How to interpret a TGA-DTA curve. Https://youtube.be/kJwHp76c4WK?Si= K6g8iVZMdBdRjLBJ. Assessed 15th November, 2024.

Google Scholar

[40] M. U. Monir, S. M. Shavon, F. A. Akash, M. A. Habib, K. Techato, A. A. Aziz, S. Chowdhury, and T. A. E. Prasetya, Comprehensive characterization and kinetic analysis of coconut shell thermal degradation: Energy potential evaluated via the Coats-Redfern method, Case Studies in Thermal Engineering. 55 (2024) 104186.

DOI: 10.1016/j.csite.2024.104186

Google Scholar

[41] E. Borchani, C. Carrot and M. Jazin, Untreated and alkali-treated fibers from Alfa stem: Effect of alkali treatment on structural, morphological and thermal features, Cellulose. 22 (2015) 1577-1589.

DOI: 10.1007/s10570-015-0583-5

Google Scholar

[42] A. Oushabi, S. Sair, F. O. Hassani, O. T. Abboud and A. E. Bouari, The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFS): Study of the interface of DPF-polyurethane composite, South African Journal of Chemical Engineering. 23 (2017) 116-123.

DOI: 10.1016/j.sajce.2017.04.005

Google Scholar

[43] R. Vijay, D. Singaravelu, A. Vinod, M. Sanjay, S. Siengchin, M. Jawaid, A. Khan, J. Parameswaranpillai, Characterization of raw and alkaline treated new natural cellulose fiber from Tridax Procumbens, International Journal of Biological Macromolecules. 125 (2019) 99-108. https://doi.org/.

DOI: 10.1016/j.ijbiomac.2018.12.056

Google Scholar

[44] K. Van De Velde and E. Baetens, Thermal and mechanical properties of flax fibers as potential composite reinforcement, Macromolecular Materials and Engineering. 286(6) (2001) 342-349.

DOI: 10.1002/1439-2054(20010601)286:6<342::aid-mame342>3.3.co;2-g

Google Scholar

[45] I. M. De Rosa, J. M. Kenny, D. Puglia, C. Snatulli and F. Sarasini, Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites, Composites Science and Technology. 70 (1) (2010) 116-122.

DOI: 10.1016/j.compscitech.2009.09.013

Google Scholar

[46] F. Wang and J. Shao, Modified Weibull Distribution for Analysing the Tensile Strength of Bamboo Fibers, Polymers. 6 (12) (2014) 3005-3018. https://doi.org/10.3390/polym612 3005

DOI: 10.3390/polym6123005

Google Scholar

[47] M. J. M. Ridzuan, M. S. Abdul Majid, M. Afendi, S. N. Aqmariah Kanafiah, J.M. Zahri and A.G. Gibson, Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites, Mater. Des. 89 (2016) 839–847.

DOI: 10.1016/j.matdes.2015.10.052

Google Scholar

[48] A. K. Rout, J. Kar, D. K. Jesthi and A.K. Sutar, Effect of surface treatment on the physical, chemical, and mechanical properties of palm tree leaf stalk fibers, Bioresources. 11 (2016) 4432–4445.

DOI: 10.15376/biores.11.2.4432-4445

Google Scholar

[49] X. Han, L. Ding, Z. Tian, W. Wu and S. Jiang, Extraction and characterization of novel ultrastrong and tough natural cellulosic fiber bundles from Manau rattan (Calamus manan), Ind. Crop. Prod. 173 (2021). https://doi.org/10.1016/j.indcrop.2021. 114103.

DOI: 10.1016/j.indcrop.2021.114103

Google Scholar

[50] L. Hamdi, B. Asma and B. Ali, Tensile mechanical performance of natural/natural fiber reinforced hybrid bio-composite materials – A statistical approach, Journal of Industrial Textiles, 54 (2024) 1-31

DOI: 10.1177/15280837241264014

Google Scholar

[51] A. Kar and D. Saika, Characterization of new natural cellulose fiber from Calamus tenuis (Jati Bet) cane as a potential reinforcement for polymer composite, Heliyon. 9 (2023) e16491. https://doi.org/10.1016/ j.heliyon.2023.e16491.

DOI: 10.1016/j.heliyon.2023.e16491

Google Scholar