Flexural Response of Ultra-High Performance Fiber Reinforced Concrete Beams with Varying Reinforcement Ratios Using Recycled Tire Steel Fibers

Article Preview

Abstract:

Ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits outstanding compressive strength but tends to fail in a brittle manner under flexural loading when fibers are absent. This study evaluates the effectiveness of recycled tire steel fibers (RTSF) in improving the flexural strength, ductility, and toughness of UHPFRC beams. Thirty six doubly reinforced beams were cast and tested under three-point bending with reinforcement ratios of 0.009, 0.019, 0.028, and 0.043. The specimens were grouped as non-fiber control, mono RTSF (13 mm, 1.5% by volume), and hybrid RTSF (13 mm at 1.5% + 16 mm at 1.5%). Load deflection and stress strain responses were analyzed to assess structural performance. Beams without fibers failed abruptly, whereas those reinforced with RTSF demonstrated significantly greater ductility and energy absorption. The mono-fiber beams achieved a peak load of 264.46 kN, while the hybrid fiber beams attained a peak stress of 128.66 N/mm², 29% and 23% higher than those of the mono and non-fiber beams, respectively. These results confirm that incorporating RTSF, particularly in hybrid form, effectively mitigates brittle failure in UHPFRC and provides a sustainable, locally sourced solution for achieving superior strength, ductility, and toughness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-154

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.A. Graybeal, Flexural behavior of an ultrahigh-performance concrete I-girder, J. Bridge Eng., 13(6) (2008) 602–610.

DOI: 10.1061/(ASCE)1084-0702(2008)13:6(602)

Google Scholar

[2] S.T. Kang, J.K. Kim, The relation between fiber orientation and tensile behavior in an ultra-high performance fiber reinforced cementitious composite (UHPFRCC), Cem. Concr. Res. 41(10) (2011) 1001–1014.

DOI: 10.1016/j.cemconres.2011.05.009

Google Scholar

[3] S.T. Kang, Y. Lee, Y.D. Park, J.K. Kim, Tensile fracture properties of an ultra-high-performance fiber-reinforced concrete (UHPFRC) with steel fiber, Compos. Struct. 92(1) (2010) 61–71.

DOI: 10.1016/j.compstruct.2009.06.012

Google Scholar

[4] S. Qaidi, Ultra-High-Performance Fiber-Reinforced Concrete: Applications, Preprints, 2022, 2022070271.

DOI: 10.20944/preprints202207.0271.v1

Google Scholar

[5] K. Wille, A.E. Naaman, G.J. Parra-Montesinos, Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way, ACI Mater. J., 108(1) (2011) 46–54.

DOI: 10.14359/51664215

Google Scholar

[6] E. Denarié, E. Brühwiler, A. Znidaric, Y. Houstand, R. Rohleder, Full-scale application of UHPFRC for the rehabilitation of bridges—from the lab to the field, European project 5th FWP/SAMARIS—Sustainable and Advanced Materials for Road Infrastructures—WP14: HPFRCC, 2005, https://infoscience.epfl.ch/record/256517

Google Scholar

[7] L. Moreillon, P. Menétrey, Rehabilitation and strengthening of existing RC structures with UHPFRC: various applications, in: RILEM-fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete, Marseille, France, 1–2 October 2013, RILEM Publications SARL, p.127–136, https://www.rilem.net/publication/publication/422.RILEM

DOI: 10.1007/978-3-030-83719-8_41

Google Scholar

[8] Y.L. Voo, B. Nematollahi, A.B.B.M. Said, B.A. Gopal, T.S. Yee, Application of ultra-high-performance fiber-reinforced concrete: The Malaysia perspective, Int. J. Sustain. Constr. Eng. Technol., 3(1) (2012) 26–44, https://publisher.uthm.edu.my/ojs/index. php/IJSCET/article/view/391.

Google Scholar

[9] Guan Q, Zhang P, Xie X. Flexural behavior of steel fiber reinforced high-strength concrete beams. Res J Appl Sci, Eng Technol, 6(1) (2013) 1–6.

DOI: 10.19026/rjaset.6.4025

Google Scholar

[10] Yang IH, Joh C, Kim BS. Structural behavior of ultra-high-performance concrete beams subjected to bending. Eng Struct, 32(11) (2010) 3478–87.

DOI: 10.1016/j.engstruct.2010.07.017

Google Scholar

[11] I.H. Yang, C. Joh, B.S. Kim, Structural behavior of ultra-high-performance concrete beams subjected to bending, Eng. Struct., 32(11) (2010) 3478–3487

DOI: 10.1016/j.engstruct.2010.07.017

Google Scholar

[12] D.Y. Yoo, Y.S. Yoon, Structural performance of ultra-high-performance concrete beams with different steel fibers, Eng. Struct., 102 (2015) 409–423

DOI: 10.1016/j.engstruct.2015.08.029

Google Scholar

[13] D.Y. Yoo, N. Banthia, Y.S. Yoon, Experimental and numerical study on flexural behavior of ultra-high-performance fiber-reinforced concrete beams with low reinforcement ratios, Can. J. Civ. Eng., 44(1) (2017) 18–28

DOI: 10.1139/cjce-2015-0384

Google Scholar

[14] A.N. Dancygier, E. Berkover, Cracking localization and reduced ductility in fiber-reinforced concrete beams with low reinforcement ratios, Eng. Struct., 111 (2016) 411–424

DOI: 10.1016/j.engstruct.2015.11.046

Google Scholar

[15] J.R. Deluce, F.J. Vecchio, Cracking behavior of steel fiber-reinforced concrete members containing conventional reinforcement, ACI Struct. J., 110(3) (2013) 481–490. https://www.researchgate.net/publication/286757907

DOI: 10.14359/51685605

Google Scholar

[16] Y. Yuguang, J.C. Walraven, J.A. den Uijl, Combined effect of fibers and steel rebars in high performance concrete, Heron, 54(2/3) (2009) 205–224. https://heronjournal.nl/54-23/6.pdf

Google Scholar

[17] A.N. Dancygier, Z. Savir, Flexural behavior of HSFRC with low reinforcement ratios, Eng. Struct., 28 (2006) 1503–1512

DOI: 10.1016/j.engstruct.2006.02.005

Google Scholar

[18] K. Wille, A.E. Naaman, S. El-Tawil, G.J. Parra-Montesinos, Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing, Mater. Struct., 45 (2012) 309–324

DOI: 10.1617/s11527-011-9767-0

Google Scholar

[19] D.J. Kim, S.H. Park, G.S. Ryu, K.T. Koh, Comparative flexural behavior of hybrid ultra-high performance fiber reinforced concrete with different macro fibers, Constr. Build. Mater., 25 (2011) 4144–4155

DOI: 10.1016/j.conbuildmat.2011.04.051

Google Scholar

[20] K. Wille, G.J. Parra-Montesinos, Effect of beam size, casting method, and support conditions on flexural behavior of ultra-high-performance fiber-reinforced concrete, ACI Mater. J., 109(4) (2012) 379–388

DOI: 10.14359/51683829

Google Scholar

[21] D.Y. Yoo, J.H. Lee, Y.S. Yoon, Effect of fiber content on mechanical and fracture properties of ultra-high performance fiber reinforced cementitious composites, Compos. Struct., 106 (2013) 742–753

DOI: 10.1016/j.compstruct.2013.07.011

Google Scholar

[22] D.Y. Yoo, S.T. Kang, Y.S. Yoon, Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC, Constr. Build. Mater., 64 (2014) 67–81

DOI: 10.1016/j.conbuildmat.2014.04.021

Google Scholar

[23] D.Y. Yoo, H.O. Shin, J.M. Yang, Y.S. Yoon, Material and bond properties of ultra-high performance fiber reinforced concrete with micro steel fibers, Compos. B, 58 (2014) 122–133

DOI: 10.1016/j.compositesb.2013.10.071

Google Scholar

[24] D.Y. Yoo, N. Banthia, Y.S. Yoon, Predicting the flexural behavior of ultra-high-performance fiber-reinforced concrete, Cem. Concr. Compos., 74 (2016) 71–87

DOI: 10.1016/j.cemconcomp.2016.08.007

Google Scholar

[25] H. Yazıcı, E. Deniz, B. Baradan, The effect of autoclave pressure, temperature, and duration time on mechanical properties of reactive powder concrete, Constr. Build. Mater., 42 (2013) 53–63

DOI: 10.1016/j.conbuildmat.2012.12.058

Google Scholar

[26] H. Yazıcı, M.Y. Yardımcı, H. Yigiter, S. Aydın, S. Türkel, Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag, Cem. Concr. Compos., 32 (2010) 639–648

DOI: 10.1016/j.cemconcomp.2010.07.005

Google Scholar

[27] Wu, Z., Shi, C., He, W., Wu, L., Effect of steel fiber content and shape on the mechanical properties of ultra-high-performance concrete, Constr. Build. Mater., 103 (2016) 8–14

DOI: 10.1016/j.conbuildmat.2015.11.028

Google Scholar

[28] Kahanji, C., Ali, F., Nadjai, A., Structural performance of ultra-high-performance fiber reinforced concrete beams, Struct. Concr., 18(2) (2017) 249–258.

DOI: 10.1002/suco.201600006

Google Scholar

[29] Chen, L., Graybeal, B.A., Modeling structural performance of second-generation ultrahigh-performance concrete pi-girders, J. Bridge Eng., 17(4) (2012) 634–643.

DOI: 10.1061/(asce)be.1943-5592.0000301

Google Scholar

[30] Yang, I.H., Joh, C., Kim, B.S., Flexural strength of large-scale ultra-high-performance concrete prestressed T-beams, Can. J. Civ. Eng., 38(11) (2011) 1185–1195.

DOI: 10.1139/l11-078

Google Scholar

[31] Qi, J., Wang, J., John, Z., Flexural response of high-strength steel-ultra-high-performance fiber reinforced concrete beams based on a mesoscale constitutive model: experiment and theory, Struct. Concr., 19(3) (2018) 719–734.

DOI: 10.1002/suco.201700043

Google Scholar

[32] Chen, S., Zhang, R., Jia, L.J., Wang, J.Y., Flexural behavior of rebar-reinforced ultra-high-performance concrete beams, Mag. Concr. Res., 70(19) (2018) 997–1015.

DOI: 10.1680/jmacr.17.00283

Google Scholar

[33] Yoo, D.Y., Banthia, N., Yoon, Y.S., Flexural behavior of ultra-high-performance fiber reinforced concrete beams reinforced with GFRP and steel rebars, Eng. Struct., 111 (2016) 246–262.

DOI: 10.1016/j.engstruct.2015.12.003

Google Scholar

[34] Singh, M., Sheikh, A.H., Ali, M.S.M., Visintin, P., Griffith, M.C., Experimental and numerical study of the flexural behavior of ultra-high performance fiber-reinforced concrete beams, Constr. Build. Mater., 138 (2017) 12–25.

DOI: 10.1016/j.conbuildmat.2017.02.002

Google Scholar

[35] Kamal, M.M., Safan, M.A., Etman, Z.A., Salama, R.A., Behavior and strength of beams cast with ultra-high-strength concrete containing different types of fibers, HBRC J., 10(1) (2014) 55–63.

DOI: 10.1016/j.hbrcj.2013.09.008

Google Scholar

[36] Shafieifar, M., Farzad, M., Azizinamini, A., A comparison of existing analytical methods to predict the flexural capacity of Ultra High Performance Concrete (UHPC) beams, Constr. Build. Mater., 172 (2018) 10–18.

DOI: 10.1016/j.conbuildmat.2018.03.229

Google Scholar

[37] Tanarslan, H.M., Alver, N., Jahangiri, R., Yalçınkaya, Ç., Yazıcı, H., Flexural strengthening of RC beams using UHPFRC laminates: bonding techniques and rebar addition, Constr. Build. Mater., 155 (2017) 45–55.

DOI: 10.1016/j.conbuildmat.2017.08.056

Google Scholar

[38] Hasgul, U., Turker, K., Birol, T., Yavas, A., Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios, Struct. Concr., 19(6) (2018) 1577–1590.

DOI: 10.1002/suco.201700089

Google Scholar

[39] Rossi, P., Antonio, A., Parant, E., Fakhri, P., Bending and compressive behaviors of a new cement composite, Cem. Concr. Res., 35(1) (2005) 27–33.

DOI: 10.1016/j.cemconres.2004.05.043

Google Scholar

[40] Wille, K., Kim, D.J., Naaman, A.E., Strain-hardening UHP-FRC with low fiber contents, Mater. Struct., 44(3) (2011) 583–598.

DOI: 10.1617/s11527-010-9650-4

Google Scholar

[41] Banthia, N., Sappakittipakorn, M., Toughness enhancement in steel fiber reinforced concrete through fiber hybridization, Cem. Concr. Res., 37(9) (2007) 1366–1372.

DOI: 10.1016/j.cemconres.2007.05.005

Google Scholar

[42] Turker, K., Hasgul, U., Birol, T., Yavas, A., Yazici, H., Hybrid fiber use on flexural behavior of ultra-high-performance fiber-reinforced concrete beams, Compos. Struct., 229 (2019) 111400

DOI: 10.1016/j.compstruct.2019.111400

Google Scholar

[43] Romero, A.J., Moustafa, M.A., Effect of recycled tires steel fibers characteristics on crack behavior and mechanical properties of scalable ultra-economical UHPC, J. Build. Eng., 99 (2025) 111582

DOI: 10.1016/j.jobe.2024.111582

Google Scholar

[44] Quadri, A.I., Kupolati, W.K., Ndambuki, J.M., Assessment of shear capacity of reinforced concrete slender beams using tire steel fiber, Innov. Infrastruct. Solut., 10 (2025) 92

DOI: 10.1007/s41062-025-01879-1

Google Scholar

[45] Li, X., Zhang, W., Zhang, C., Liu, J., Li, L., Wang, S., Flexural behavior of GFRP and steel bars reinforced lightweight ultra-high performance fiber-reinforced concrete beams with various reinforcement ratios, Structures, 70 (2024) 107897. https://doi.org/10.1016/j.istruc. 2024.107897

DOI: 10.1016/j.istruc.2024.107897

Google Scholar

[46] Mészöly, T., Randl, N., Shear behavior of fiber-reinforced ultra-high performance concrete beams, Engineering Structures, 168 (2018) 119–127

DOI: 10.1016/j.engstruct.2018.04.075

Google Scholar

[47] Michalik, A., Chyliński, F., Bobrowicz, J., Pichór, W., Effectiveness of concrete reinforcement with recycled tire steel fibers, Materials, (2022).

DOI: 10.3390/ma15072444

Google Scholar

[48] Isa, M.N., Pilakoutas, K., Guadagnini, M., Angelakopoulos, H., Mechanical performance of affordable and eco-efficient ultra-high performance concrete (UHPC) containing recycled tire steel fibers, Construction and Building Materials, 255 (2020), 119272

DOI: 10.1016/j.conbuildmat.2020.119272

Google Scholar