[1]
B.A. Graybeal, Flexural behavior of an ultrahigh-performance concrete I-girder, J. Bridge Eng., 13(6) (2008) 602–610.
DOI: 10.1061/(ASCE)1084-0702(2008)13:6(602)
Google Scholar
[2]
S.T. Kang, J.K. Kim, The relation between fiber orientation and tensile behavior in an ultra-high performance fiber reinforced cementitious composite (UHPFRCC), Cem. Concr. Res. 41(10) (2011) 1001–1014.
DOI: 10.1016/j.cemconres.2011.05.009
Google Scholar
[3]
S.T. Kang, Y. Lee, Y.D. Park, J.K. Kim, Tensile fracture properties of an ultra-high-performance fiber-reinforced concrete (UHPFRC) with steel fiber, Compos. Struct. 92(1) (2010) 61–71.
DOI: 10.1016/j.compstruct.2009.06.012
Google Scholar
[4]
S. Qaidi, Ultra-High-Performance Fiber-Reinforced Concrete: Applications, Preprints, 2022, 2022070271.
DOI: 10.20944/preprints202207.0271.v1
Google Scholar
[5]
K. Wille, A.E. Naaman, G.J. Parra-Montesinos, Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way, ACI Mater. J., 108(1) (2011) 46–54.
DOI: 10.14359/51664215
Google Scholar
[6]
E. Denarié, E. Brühwiler, A. Znidaric, Y. Houstand, R. Rohleder, Full-scale application of UHPFRC for the rehabilitation of bridges—from the lab to the field, European project 5th FWP/SAMARIS—Sustainable and Advanced Materials for Road Infrastructures—WP14: HPFRCC, 2005, https://infoscience.epfl.ch/record/256517
Google Scholar
[7]
L. Moreillon, P. Menétrey, Rehabilitation and strengthening of existing RC structures with UHPFRC: various applications, in: RILEM-fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete, Marseille, France, 1–2 October 2013, RILEM Publications SARL, p.127–136, https://www.rilem.net/publication/publication/422.RILEM
DOI: 10.1007/978-3-030-83719-8_41
Google Scholar
[8]
Y.L. Voo, B. Nematollahi, A.B.B.M. Said, B.A. Gopal, T.S. Yee, Application of ultra-high-performance fiber-reinforced concrete: The Malaysia perspective, Int. J. Sustain. Constr. Eng. Technol., 3(1) (2012) 26–44, https://publisher.uthm.edu.my/ojs/index. php/IJSCET/article/view/391.
Google Scholar
[9]
Guan Q, Zhang P, Xie X. Flexural behavior of steel fiber reinforced high-strength concrete beams. Res J Appl Sci, Eng Technol, 6(1) (2013) 1–6.
DOI: 10.19026/rjaset.6.4025
Google Scholar
[10]
Yang IH, Joh C, Kim BS. Structural behavior of ultra-high-performance concrete beams subjected to bending. Eng Struct, 32(11) (2010) 3478–87.
DOI: 10.1016/j.engstruct.2010.07.017
Google Scholar
[11]
I.H. Yang, C. Joh, B.S. Kim, Structural behavior of ultra-high-performance concrete beams subjected to bending, Eng. Struct., 32(11) (2010) 3478–3487
DOI: 10.1016/j.engstruct.2010.07.017
Google Scholar
[12]
D.Y. Yoo, Y.S. Yoon, Structural performance of ultra-high-performance concrete beams with different steel fibers, Eng. Struct., 102 (2015) 409–423
DOI: 10.1016/j.engstruct.2015.08.029
Google Scholar
[13]
D.Y. Yoo, N. Banthia, Y.S. Yoon, Experimental and numerical study on flexural behavior of ultra-high-performance fiber-reinforced concrete beams with low reinforcement ratios, Can. J. Civ. Eng., 44(1) (2017) 18–28
DOI: 10.1139/cjce-2015-0384
Google Scholar
[14]
A.N. Dancygier, E. Berkover, Cracking localization and reduced ductility in fiber-reinforced concrete beams with low reinforcement ratios, Eng. Struct., 111 (2016) 411–424
DOI: 10.1016/j.engstruct.2015.11.046
Google Scholar
[15]
J.R. Deluce, F.J. Vecchio, Cracking behavior of steel fiber-reinforced concrete members containing conventional reinforcement, ACI Struct. J., 110(3) (2013) 481–490. https://www.researchgate.net/publication/286757907
DOI: 10.14359/51685605
Google Scholar
[16]
Y. Yuguang, J.C. Walraven, J.A. den Uijl, Combined effect of fibers and steel rebars in high performance concrete, Heron, 54(2/3) (2009) 205–224. https://heronjournal.nl/54-23/6.pdf
Google Scholar
[17]
A.N. Dancygier, Z. Savir, Flexural behavior of HSFRC with low reinforcement ratios, Eng. Struct., 28 (2006) 1503–1512
DOI: 10.1016/j.engstruct.2006.02.005
Google Scholar
[18]
K. Wille, A.E. Naaman, S. El-Tawil, G.J. Parra-Montesinos, Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing, Mater. Struct., 45 (2012) 309–324
DOI: 10.1617/s11527-011-9767-0
Google Scholar
[19]
D.J. Kim, S.H. Park, G.S. Ryu, K.T. Koh, Comparative flexural behavior of hybrid ultra-high performance fiber reinforced concrete with different macro fibers, Constr. Build. Mater., 25 (2011) 4144–4155
DOI: 10.1016/j.conbuildmat.2011.04.051
Google Scholar
[20]
K. Wille, G.J. Parra-Montesinos, Effect of beam size, casting method, and support conditions on flexural behavior of ultra-high-performance fiber-reinforced concrete, ACI Mater. J., 109(4) (2012) 379–388
DOI: 10.14359/51683829
Google Scholar
[21]
D.Y. Yoo, J.H. Lee, Y.S. Yoon, Effect of fiber content on mechanical and fracture properties of ultra-high performance fiber reinforced cementitious composites, Compos. Struct., 106 (2013) 742–753
DOI: 10.1016/j.compstruct.2013.07.011
Google Scholar
[22]
D.Y. Yoo, S.T. Kang, Y.S. Yoon, Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC, Constr. Build. Mater., 64 (2014) 67–81
DOI: 10.1016/j.conbuildmat.2014.04.021
Google Scholar
[23]
D.Y. Yoo, H.O. Shin, J.M. Yang, Y.S. Yoon, Material and bond properties of ultra-high performance fiber reinforced concrete with micro steel fibers, Compos. B, 58 (2014) 122–133
DOI: 10.1016/j.compositesb.2013.10.071
Google Scholar
[24]
D.Y. Yoo, N. Banthia, Y.S. Yoon, Predicting the flexural behavior of ultra-high-performance fiber-reinforced concrete, Cem. Concr. Compos., 74 (2016) 71–87
DOI: 10.1016/j.cemconcomp.2016.08.007
Google Scholar
[25]
H. Yazıcı, E. Deniz, B. Baradan, The effect of autoclave pressure, temperature, and duration time on mechanical properties of reactive powder concrete, Constr. Build. Mater., 42 (2013) 53–63
DOI: 10.1016/j.conbuildmat.2012.12.058
Google Scholar
[26]
H. Yazıcı, M.Y. Yardımcı, H. Yigiter, S. Aydın, S. Türkel, Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag, Cem. Concr. Compos., 32 (2010) 639–648
DOI: 10.1016/j.cemconcomp.2010.07.005
Google Scholar
[27]
Wu, Z., Shi, C., He, W., Wu, L., Effect of steel fiber content and shape on the mechanical properties of ultra-high-performance concrete, Constr. Build. Mater., 103 (2016) 8–14
DOI: 10.1016/j.conbuildmat.2015.11.028
Google Scholar
[28]
Kahanji, C., Ali, F., Nadjai, A., Structural performance of ultra-high-performance fiber reinforced concrete beams, Struct. Concr., 18(2) (2017) 249–258.
DOI: 10.1002/suco.201600006
Google Scholar
[29]
Chen, L., Graybeal, B.A., Modeling structural performance of second-generation ultrahigh-performance concrete pi-girders, J. Bridge Eng., 17(4) (2012) 634–643.
DOI: 10.1061/(asce)be.1943-5592.0000301
Google Scholar
[30]
Yang, I.H., Joh, C., Kim, B.S., Flexural strength of large-scale ultra-high-performance concrete prestressed T-beams, Can. J. Civ. Eng., 38(11) (2011) 1185–1195.
DOI: 10.1139/l11-078
Google Scholar
[31]
Qi, J., Wang, J., John, Z., Flexural response of high-strength steel-ultra-high-performance fiber reinforced concrete beams based on a mesoscale constitutive model: experiment and theory, Struct. Concr., 19(3) (2018) 719–734.
DOI: 10.1002/suco.201700043
Google Scholar
[32]
Chen, S., Zhang, R., Jia, L.J., Wang, J.Y., Flexural behavior of rebar-reinforced ultra-high-performance concrete beams, Mag. Concr. Res., 70(19) (2018) 997–1015.
DOI: 10.1680/jmacr.17.00283
Google Scholar
[33]
Yoo, D.Y., Banthia, N., Yoon, Y.S., Flexural behavior of ultra-high-performance fiber reinforced concrete beams reinforced with GFRP and steel rebars, Eng. Struct., 111 (2016) 246–262.
DOI: 10.1016/j.engstruct.2015.12.003
Google Scholar
[34]
Singh, M., Sheikh, A.H., Ali, M.S.M., Visintin, P., Griffith, M.C., Experimental and numerical study of the flexural behavior of ultra-high performance fiber-reinforced concrete beams, Constr. Build. Mater., 138 (2017) 12–25.
DOI: 10.1016/j.conbuildmat.2017.02.002
Google Scholar
[35]
Kamal, M.M., Safan, M.A., Etman, Z.A., Salama, R.A., Behavior and strength of beams cast with ultra-high-strength concrete containing different types of fibers, HBRC J., 10(1) (2014) 55–63.
DOI: 10.1016/j.hbrcj.2013.09.008
Google Scholar
[36]
Shafieifar, M., Farzad, M., Azizinamini, A., A comparison of existing analytical methods to predict the flexural capacity of Ultra High Performance Concrete (UHPC) beams, Constr. Build. Mater., 172 (2018) 10–18.
DOI: 10.1016/j.conbuildmat.2018.03.229
Google Scholar
[37]
Tanarslan, H.M., Alver, N., Jahangiri, R., Yalçınkaya, Ç., Yazıcı, H., Flexural strengthening of RC beams using UHPFRC laminates: bonding techniques and rebar addition, Constr. Build. Mater., 155 (2017) 45–55.
DOI: 10.1016/j.conbuildmat.2017.08.056
Google Scholar
[38]
Hasgul, U., Turker, K., Birol, T., Yavas, A., Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios, Struct. Concr., 19(6) (2018) 1577–1590.
DOI: 10.1002/suco.201700089
Google Scholar
[39]
Rossi, P., Antonio, A., Parant, E., Fakhri, P., Bending and compressive behaviors of a new cement composite, Cem. Concr. Res., 35(1) (2005) 27–33.
DOI: 10.1016/j.cemconres.2004.05.043
Google Scholar
[40]
Wille, K., Kim, D.J., Naaman, A.E., Strain-hardening UHP-FRC with low fiber contents, Mater. Struct., 44(3) (2011) 583–598.
DOI: 10.1617/s11527-010-9650-4
Google Scholar
[41]
Banthia, N., Sappakittipakorn, M., Toughness enhancement in steel fiber reinforced concrete through fiber hybridization, Cem. Concr. Res., 37(9) (2007) 1366–1372.
DOI: 10.1016/j.cemconres.2007.05.005
Google Scholar
[42]
Turker, K., Hasgul, U., Birol, T., Yavas, A., Yazici, H., Hybrid fiber use on flexural behavior of ultra-high-performance fiber-reinforced concrete beams, Compos. Struct., 229 (2019) 111400
DOI: 10.1016/j.compstruct.2019.111400
Google Scholar
[43]
Romero, A.J., Moustafa, M.A., Effect of recycled tires steel fibers characteristics on crack behavior and mechanical properties of scalable ultra-economical UHPC, J. Build. Eng., 99 (2025) 111582
DOI: 10.1016/j.jobe.2024.111582
Google Scholar
[44]
Quadri, A.I., Kupolati, W.K., Ndambuki, J.M., Assessment of shear capacity of reinforced concrete slender beams using tire steel fiber, Innov. Infrastruct. Solut., 10 (2025) 92
DOI: 10.1007/s41062-025-01879-1
Google Scholar
[45]
Li, X., Zhang, W., Zhang, C., Liu, J., Li, L., Wang, S., Flexural behavior of GFRP and steel bars reinforced lightweight ultra-high performance fiber-reinforced concrete beams with various reinforcement ratios, Structures, 70 (2024) 107897. https://doi.org/10.1016/j.istruc. 2024.107897
DOI: 10.1016/j.istruc.2024.107897
Google Scholar
[46]
Mészöly, T., Randl, N., Shear behavior of fiber-reinforced ultra-high performance concrete beams, Engineering Structures, 168 (2018) 119–127
DOI: 10.1016/j.engstruct.2018.04.075
Google Scholar
[47]
Michalik, A., Chyliński, F., Bobrowicz, J., Pichór, W., Effectiveness of concrete reinforcement with recycled tire steel fibers, Materials, (2022).
DOI: 10.3390/ma15072444
Google Scholar
[48]
Isa, M.N., Pilakoutas, K., Guadagnini, M., Angelakopoulos, H., Mechanical performance of affordable and eco-efficient ultra-high performance concrete (UHPC) containing recycled tire steel fibers, Construction and Building Materials, 255 (2020), 119272
DOI: 10.1016/j.conbuildmat.2020.119272
Google Scholar